SOLVED EXAMPLES

- **Ex.1** Which of the following is a function?
 - (A) $\{(2,1), (2,2), (2,3), (2,4)\}$
 - (B) $\{(1,4), (2,5), (1,6), (3,9)\}$
 - (C) $\{(1,2), (3,3), (2,3), (1,4)\}$
 - (D) { (1,2), (2,2), (3,2), (4,2) }
- **Sol**. We know that for a relation to be function every element of first set should be associated with one and only one element of second set but elements of first set can have same f-image in second set which is given in (D).

Ans.[D]

Ex.2 If
$$f(x) = \frac{x}{x-1} = \frac{1}{y}$$
, then $f(y)$ equals
(A) x (B) $x - 1$
(C) $x + 1$ (D) $1 - x$
Sol. $f(y) = \frac{y}{y-1} = \frac{(x-1)/x}{\frac{x-1}{x}-1} = \frac{x-1}{x-1-x} = 1 - x.$

Ans.[D]

Ex.3 The domain of
$$f(x) = \frac{1}{x^3 - x}$$
 is -
(A) R - {-1,0,1} (B) R
(C) R - {0,1} (D) None of these

- Sol. Domain = $\{x; x \in R; x^3 x \neq 0\}$ = R - $\{-1, 0, 1\}$ Ans.[A]
- **Ex.4** The range of $f(x) = \cos \frac{\pi[x]}{2}$ is -

(A)
$$\{0,1\}$$
 (B) $\{-1,1\}$
(C) $\{-1,0,1\}$ (D) $[-1,1]$

Sol. [x] is an integer, $\cos(-x) = \cos x$ and

$$\cos\left(\frac{\pi}{2}\right) = 0, \cos 2\left(\frac{\pi}{2}\right) = -1.$$
$$\cos 0\left(\frac{\pi}{2}\right) = 1, \cos 3\left(\frac{\pi}{2}\right) = 0,....$$
Hence range = {-1,0,1} Ans.[C]

Ex.5 If
$$f : R^+ \to R^+$$
, $f(x) = x^2 + 2$ and

g:
$$\mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$$
, $g(\mathbf{x}) = \sqrt{\mathbf{x} + 1}$
then $(\mathbf{f} + \mathbf{g})$ (x) equals -
(A) $\sqrt{\mathbf{x}^{2} + 3}$ (B) x + 3
(C) $\sqrt{\mathbf{x}^{2} + 2} + (\mathbf{x} + 1)$ (D) $\mathbf{x}^{2} + 2 + \sqrt{(\mathbf{x} + 1)}$
Sol. $(\mathbf{f} + \mathbf{g})$ (x) = $\mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x})$
= $\mathbf{x}^{2} + 2 + \sqrt{\mathbf{x} + 1}$ Ans. [D]

n+

- Ex.6 Function $f(x) = x^{-2} + x^{-3}$ is -(A) a rational function (B) an irrational function (C) an inverse function (D) None of these Sol. $f(x) = \frac{1}{x^2} + \frac{1}{x^3} = \frac{x+1}{x^3}$
 - $x^2 x^3 x^3$ = ratio of two polynomials \therefore f(x) is a rational function. **Ans.[A]**

Ex.7 The period of
$$|\sin 2x|$$
 is-
(A) $\pi/4$ (B) $\pi/2$ (C) π (D) 2π

Sol. Here
$$|\sin 2x| = \sqrt{\sin^2 2x}$$
$$= \sqrt{\frac{(1-\cos 4x)}{2}}$$

Period of cos 4 x is $\pi/2$ Period of |sin 2x | will be $\pi/2$.Ans.[B]

Ex.8 If
$$f(x) = \frac{x-3}{x+1}$$
, then f [f {f (x)}] equals -
(A) x (B) 1/x (C) -x (D) -1/x

Sol. Here
$$f \{f(x)\} = f\left(\frac{x-3}{x+1}\right) = \frac{\left(\frac{x-3}{x+1}\right) - 3}{\left(\frac{x-3}{x+1}\right) + 1} = \frac{x+3}{1-x}$$

$$\therefore f[f\{f(x)\}] = \frac{\frac{x+3}{1-x}-3}{\frac{x+3}{1-x}+1} = \frac{4x}{4} = x \text{ Ans. [A]}$$

Ex.9 If f(x) = 2|x - 2| - 3|x - 3|, then the value of f(x) when 2 < x < 3 is -(A) 5 - x (B) x - 5

(C) 5x - 13(D) None of these Sol. $2 < x < 3 \Longrightarrow |x - 2| = x - 2$ |x - 3| = 3 - xf(x) = 2(x-2) - 3(3-x) = 5x - 13. **Ans.** [C] **Ex.10** Which of the following functions defined from R to R are one-one -(A) f(x) = |x|(B) $f(x) = \cos x$ (D) $f(x) = x^2$ (C) $f(x) = e^{x}$ $x_1 \neq x_2 \implies e^{x_1} \neq e^{x_2}$ Sol. \Rightarrow f(x₁) \neq f(x₂) \therefore f(x) = e^x is one-one. Ans. [C] **Ex.11** The function $f : R \rightarrow R$, $f(x) = x^2$ is -

- (A) one-one but not onto
 - (B) onto but not one-one
 - (C) one-one onto
 - (D) None of these
- **Sol.** :: $4 \neq -4$, but f (4) = f(-4) = 16
 - \therefore f is many one function.
 - Again f (R) = $R^+ \cup \{0\}$ R, therefore f is into.

Ans. [D]

Ex.12 If
$$f: I_0 \rightarrow N$$
, $f(x) = |x|$, then f is -

(C) one-one onto (D) none of these

Sol. Observing the graph of this function, we find that every line parallel to x-axis meets its graph at more than one point so it is not one-one.

Now range of f = N = Co-domain, so it is onto.

Ans. [B]

Ex.13 If
$$f: R - \{3\} R - \{1\}$$
, $f(x) = \frac{x-2}{x-3}$ then

function f(x) is -

(A) Only one-one	(B) one-one into
(C) Many one onto	(D) one-one onto

Sol. : $f(x) = \frac{x-2}{x-3}$

:
$$f'(x) = \frac{(x-3).1 - (x-2).1}{(x-3)^2} = \frac{-1}{(x-3)^2}$$

 $\therefore \quad f'(x) < 0 \ \forall \ x \in R - \{3\}$

- \therefore f (x) is monotonocally decreasing function
- \Rightarrow f is one-one function.

onto/ into : Let $y \in R - \{1\}$ (co-domain)

Then one element $x \in R - \{3\}$ is domain is such that

$$f(x) = y \Rightarrow \frac{x-2}{x-3} = y \Rightarrow x-2 = xy-3y$$
$$\Rightarrow x = \left(\frac{3y-2}{y-1}\right) = x \in \mathbb{R} - \{3\}$$

∴ the pre-image of each element of co-domain $R - \{1\}$ exists in domain $R - \{3\}$. ⇒ f is onto. Ans. [D]

Ex.14 Function $f: N \rightarrow N$, f(x) = 2x + 3 is -(A) one-one onto (B) one-one into (C) many one onto (D) many one into **Sol.** f is one-one because for any $x_1, x_2 \in N$

f is one-one because for any
$$x_1, x_2 \in N$$

 $x_1 \neq x_2 \Rightarrow 2x_1 + 3 \neq 2x_2 + 3 \Rightarrow f(x_1) \neq f(x_2)$
Further $f^{-1}(x) = \frac{x-3}{2} \notin N$ (domain) when
 $x = 1, 2, 3$ etc.

 \therefore f is into which shows that f is one- one into.

<u>Alter</u>

- f(x) = 2x + 3 $f'(x) = 2 > 0 \forall x \in N$
- \therefore f(x) is increasing function
- \therefore f(x) is one-one function
- & :: $x = 1, 2, 3, \dots$
- \therefore min value of f(x) is 2.1 + 3 = 5
- \therefore f(x) \neq {1, 2, 3, 4}
- ∴ Co Domain ≠ Range
- \therefore f(x) is into function **Ans. [B]**
- **Ex.15** Function $f: R \rightarrow R$, $f(x) = x^3 x$ is -(A) one-one onto (B) one-one into (C) many-one onto (D) many-one into **Sol.** Since $-1 \neq 1$, but f(-1) = f(1), therefore f is

many-one. Also let, $f(x) = x^3 - x = \alpha \Rightarrow x^3 - x - \alpha = 0$. This is a cubic equation in x which has at least one real root because complex roots always occur in pairs. Therefore each element of co-domain R has pre-image in R. Thus function f in onto .

 \therefore function f is many-one onto.

<u>Alter</u>

from graph function is many one- onto function Ans. [C]

Ex.16 If $f : R \to R$, f(x) = 2x - 1 and $g : R \to R$, $g(x) = x^2 + 2$, then (gof) (x) equals-(A) $2x^2 - 1$ (B) $(2x - 1)^2$ (C) $2x^2 + 3$ (D) $4x^2 - 4x + 3$ **Sol.** Here (gof) (x) = g [f(x)] = g (2x - 1) $= (2x - 1)^2 + 2 = 4x^2 - 4x + 3$. **Ans. [D]**

Ex.17 If
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 4x^3 + 3$, then $f^{-1}(x)$ equals-
(A) $\left(\frac{x-3}{4}\right)^{1/3}$ (B) $\left(\frac{x^{1/3}-3}{4}\right)$
(C) $\frac{1}{4} (x-3)^{1/3}$ (D) None of these
Sol. Since f is a bijection, therefore f^{-1} exists. Now
if f-image of x is y, then $f^{-1}: \mathbb{R} \to \mathbb{R}$ defined as
follows :
 $f^{-1}(y) = x \Rightarrow f(x) = y$
But $f(x) = 4x^3 + 3 \Rightarrow y = 4x^3 + 3 \Rightarrow x = \left(\frac{y-3}{4}\right)^{1/3}$
Therefore $f^{-1}(y) = \left(\frac{y-3}{4}\right)^{1/3}$

$$\Rightarrow f^{-1}(x) = \left(\frac{x-3}{4}\right)^{1/3}$$
 Ans. [A]

Ex.18 $f(x) = \sqrt{|x-1|}$ and $g(x) = \sin x$ then (fog) (x)

(A)
$$\sin \left\{ \sqrt{|x-1|} \right\}$$

(B) $|\sin x/2 - \cos x/2|$
(C) $|\sin x - \cos x|$
(D) None of these
Sol. (fog) (x) = f [g(x)] = f [sin x]
 $= \sqrt{|\sin x - 1|}$
 $= \sqrt{|\sin x - 1|}$
 $= \sqrt{|\sin^2 x/2 + \cos^2 x/2 - 2\sin x/2\cos x/2|}$
 $= \sqrt{|\sin x/2 - \cos x/2|^2}$
 $= \sqrt{|(\sin x/2 - \cos x/2)^2|}$
 $= |\sin x/2 - \cos x/2|$ Ans.[B]

Ex.19 If
$$f : R \to R$$
, $f(x) = 2x + 1$ and $g : R \to R$,
 $g(x) = x^3$, then $(gof)^{-1}(27)$ equals -
(A) -1 (B) 0 (C) 1 (D) 2

Sol. Here
$$f(x) = 2x + 1 f^{-1}(x) = \frac{x-1}{2}$$

and $g(x) = x^3 \Rightarrow g^{-1}(x) = x^{1/3}$
 $\therefore (gof)^{-1}(27) = (f^{-1}og^{-1})(27)$
 $= f^{-1}[g^{-1}(27)] = f^{-1}[(27)^{1/3}]$
 $= f^{-1}(3) = \frac{3-1}{2} = 1$ Ans.[C]

Ex.20 The domain of function $f(x) = \sqrt{2^x - 3^x}$ is -(A) $(-\infty, 0]$ (B) R (C) $[0, \infty)$ (D) No value of x **Sol.** Domain = $\{x ; 2^x - 3^x \ge 0\} = \{x ; (2/3)^x \ge 1\}$

$$= x \in (-\infty, 0]$$
 Ans.[A]

Ex.21 The domain of the function

$$f(x) = \sin^{-1} \left(\log_2 \frac{x^2}{2} \right) \text{ is } -$$
(A) [-2, 2] - (-1, 1) (B) [-1,2] - {0}
(C) [1, 2] (D) [-2,2] - {0}

Sol. We know that the domain of $\sin^{-1}x$ is [-1,1]. So for f(x) to be meaningful, we must have

$$-1 \le \log_2 \frac{x^2}{2} \le 1$$

$$\Rightarrow 2^{-1} \le x^2/2 \le 2 \quad x \ne 0$$

$$\Rightarrow 1 \le x^2 \le 4, x \ne 0$$

$$\Rightarrow x \in [-2, -1] \cup [1, 2]$$

$$\Rightarrow x \in [-2, 2] - (-1, 1)$$
Ans.[A]

- **Ex.22** The range of function $f(x) = \frac{x^2}{1+x^2}$ is -
 - (A) $R \{1\}$ (B) $R^+ \cup \{0\}$
 - (C) [0, 1] (D) None of these
- Sol. Range is containing those real numbers y for which f(x) = y where x is real number.

Now
$$f(x) = y \Rightarrow \frac{x^2}{1 + x^2} = y$$

 $\Rightarrow x = \sqrt{\frac{y}{(1 - y)}}$ (1)

by (1) clearly $y \neq 1$, and for x to be real

$$\frac{y}{1-y} \geq \ 0 \Longrightarrow \qquad \qquad y \geq 0 \text{ and } y < 1.$$

(:: If y = 2 then
$$\frac{y}{1-y} = \frac{2}{1-2} = (-2)$$
 and

$$\sqrt{\frac{y}{(1-y)}} = \sqrt{-2} \notin R$$

 $\therefore 0 \le y < 1$

 \therefore Range of function = $(0 \le y < 1) = [0,1)$

Ans.[D] Ex.23 If $f(x) = \cos(\log x)$, then

f(x) f(y) - 1/2 [f (x/y) + f(xy)] is equal to (A) -1 (B) 1/2(C) -2 (D) 0

Sol.
$$\cos (\log x) \cos (\log y)$$

 $-\frac{1}{2} [\cos (\log x/y) + \cos (\log xy)]$
 $= \frac{1}{2} [\cos (\log x + \log y) + \cos (\log x - \log y)]$
 $-\frac{1}{2} [\cos (\log x - \log y) + \cos (\log x + \log y)]$

Ex.24 If
$$f(x) = \frac{2^{x} + 2^{-x}}{2}$$
, then $f(x + y) \cdot f(x - y)$ is
equal to -
(A) $\frac{1}{2} [f(x+y) + f(x-y)]$
(B) $\frac{1}{2} [f(2x) + f(2y)]$
(C) $\frac{1}{2} [f(x+y) \cdot f(x-y)]$
(D) None of these
Sol. $f(x + y) \cdot f(x - y) = \frac{2^{x+y} + 2^{-x-y}}{2} \cdot \frac{2^{x+y} + 2^{-x-y}}{2}$
 $= \frac{2^{2x} + 2^{2y} + 2^{-2x} + 2^{-2y}}{4}$
 $= \frac{1}{2} \left[\frac{2^{2x} + 2^{-2x}}{2} \cdot \frac{2^{2y} + 2^{-2y}}{2} \right]$
 $= \frac{1}{2} [f(2x) + f(2y)]$ Ans.[B]

Ex.25 If
$$f: R \to R$$
. $f(x) = 2x + |x|$, then
 $f(3x) - f(-x) - 4x$ equals -
(A) $f(x)$ (B) - $f(x)$
(C) $f(-x)$ (D) $2f(x)$
Sol. $f(3x) - f(-x) - 4x$
 $= 6x + |3x| - \{-2x + |-x|\} - 4x$
 $= 6x + 3|x| + 2x - |x| - 4x$

$$= 6x + 3 |x| + 2x - |x| - 4x$$

= 4x + 2 |x| = 2 f(x). Ans.[D]

Ex.26 If
$$g(x) = x^2 + x - 2$$
 and $\frac{1}{2}$ (gof) (x) = $2x^2 - 5x + 2$,
then f(x) is equal to -
(A) $2x - 3$ (B) $2x + 3$
(C) $2x^2 + 3x + 1$ (D) $2x^2 - 3x - 1$
Sol. $g(x) = x^2 + x - 2$
 \Rightarrow (gof) (x) = $g[f(x)] = [f(x)]^2 + f(x) - 2$
Given, $\frac{1}{2}$ (gof) (x) = $2x^2 - 5x + 2$
 $\therefore \frac{1}{2} [f(x)]^2 + \frac{1}{2} f(x) - 1 = 2x^2 - 5x + 2$
 $\Rightarrow [f(x)]^2 + f(x) = 4x^2 - 10x + 6$
 $\Rightarrow f(x) [f(x) + 1] = (2x - 3) [(2x - 3) + 1]$

Ans.[D]

$$\Rightarrow f(x) = 2x - 3$$

Ex.27 If f(x) = |x| and g(x) = [x], then value of

fog
$$\left(-\frac{1}{4}\right)$$
 + gof $\left(-\frac{1}{4}\right)$ is -
(A) 0 (B) 1
(C) -1 (D) 1/4

Sol.

fog = f $\left[g\left(-\frac{1}{4}\right)\right]$ f (-1) = 1 and gof $\left(-\frac{1}{4}\right) = g\left[f\left(-\frac{1}{4}\right)\right] = g\left(\frac{1}{4}\right) = [1/4] = 0$