JEE MAIN + ADVANCED

MATHEMATICS

TOPIC NAME CONTINUITY &

DIFFERENTIABILITY

(PRACTICE SHEET)

LEVEL-1

(C) 3 (D) None of these

Q.6 If $f(x) = \begin{cases} \frac{x^2 - (a+2)x + a}{x-2} & x \neq 2 \\ 2, & x = 2 \end{cases}$ is continuous at x = 2, then a is equal to-(A) 0 (B) 1 (C) -1 (D) 2 Q.7 If $f(x) = \begin{cases} \frac{\sin^{-1}ax}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$ is continuous at x = 0, then k is equal to-(A) 0 (B) 1

Q.8 What is the value of $(\cos x)^{1/x}$ at x = 0 so that it becomes continuous at x = 0-

(D) None of these

(C) a

(A) 0 (B) 1 (C) -1 (D) e

Q.9 If
$$f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x}, & x \neq \pi/2 \\ 1, & x = \pi/2 \end{cases}$$
 is a continuous

function at $x = \pi/2$, then the value of k is-(A) -1 (B) 1 (C) -2 (D) 2

Q.10 If function $f(x) = \frac{x^3 - a^3}{x - a}$, is continuous at x = a, then the value of f(a) is -(A) 2a (B) 2a² (C) 3a (D) 3a²

Q.11 If $f(x) = \begin{cases} \sin \frac{1}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$ is continuous at x = 0, then k is equal to -(A) 8 (B) 1 (C) -1 (D) None of these

Q.12 Function $f(x) = \left(1 + \frac{x}{a}\right)^{1/x}$ is continuous at x = 0 if f(0) equals-(A) e^a (B) e^{-a} (C) 0 (D) $e^{1/a}$

Q.13 If $f(x) = \frac{1 - \cos 7(x - \pi)}{x - \pi}$, $(x \neq \pi)$ is continuous at $x = \pi$, then $f(\pi)$ equals-**(B)** 1 (A) 0 (C) - 1(D) 7 Q.14 If $f(x) = \begin{cases} \frac{\tan x}{\sin x}, & x \neq 0\\ 1, & x = 0 \end{cases}$, then f(x) is -(A) continuous everywhere (B) continuous nowhere (C) continuous at x = 0(D) continuous only at x = 0If $f(x) = \frac{2x + \tan x}{x}$ is continuous at x = 0, then Q.15 f(0) equals-**(B)** 1 (A) 0 (C) 2(D) 3 **Q.16** If $f(x) = \frac{\sqrt{1+x} - \sqrt[3]{1+x}}{x}$, $(x \neq 0)$ is continuous at x = 0, then the value of f(0) is-(B) 1/4 (C) 2 (A) 1/6 (D) 1/3 If $f(x) = \begin{cases} ax^2 - b & \text{when } 0 \le x < 1 \\ 2 & \text{when } x = 1 \\ x + 1 & \text{when } 1 < x \le 2 \end{cases}$ Q.17 is continuous at x = 1, then the most suitable values of a, b are-(A) a = 2, b = 0(B) a = 1, b = -1(C) a = 4, b = 2 (D) All the above If f(x) = $\begin{cases} |x|, & \text{when } x < 0 \\ x, & \text{when } 0 \le x < 1 & \text{then f is -} \\ 1, & \text{when } x > 1 \end{cases}$ Q.18 (A) continuous for every real number x (B) discontinuous at x = 0(C) discontinuous at x = 1(D) discontinuous at x = 0 and x = 1If $f(x) = \begin{cases} \sin(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases}$, then it is Q.19 discontinuous at -(A) x = 0(B) All points (C) No point (D) None of these

- Q.20 Function f(x) = x |x| is-(A) discontinuous at x = 0(B) discontinuous at x = 1(C) continuous at all points (D) discontinuous at all points
- Q.21 Function $f(x) = \tan x$, is discontinuous at-(A) x = 0 (B) $x = \pi/2$ (C) $x = \pi$ (D) $x = -\pi$
- Q.22 Function f(x) = [x] is discontinuous at(A) every real number
 (B) every natural number
 (C) every integer
 (D) No where
- Q.23 Function $f(x) = 3x^2 x$ is-(A) discontinuous at x = 1(B) discontinuous at x = 0(C) continuous only at x = 0(D) continuous at x = 0

Q.24 If
$$f(x) = \begin{cases} x^2, & \text{when } x \le 0\\ 1, & \text{when } 0 < x < 1, \text{ then } f(x) \text{ is-}\\ 1/x, & \text{when } x \ge 1 \end{cases}$$

(A) continuous at x = 0 but not at x = 1
(B) continuous at x = 1 but not at x = 0
(C) continuous at x = 0 and x = 1
(D) discontinuous at x = 0 and x = 1

Q.25 Function $f(x) = \begin{cases} -1, & x \in Q \\ 1, & x \notin Q \end{cases}$ is-(A) continuous at x = 0

(B) continuous at x = 1

- (C) every where continuous
- (D) every where discontinuous

Q.26 If
$$f(x) = \begin{cases} -x^2, & x \le 0\\ 5x - 4, & 0 < x \le 1\\ 4x^2 - 3x, & 1 < x < 2\\ 3x + 4, & x \ge 2 \end{cases}$$
, then $f(x)$ is-
(A) continuous at $x = 0$ but not at $x = 1$
(B) continuous at $x = 2$ but not at $x = 0$
(C) continuous at $x = 0, 1, 2$
(D) discontinuous at $x = 0, 1, 2$

Function f(x) = $\begin{cases} \frac{x^2 - 4x + 3}{x^2 - 1}, & x \neq 1 \\ 2, & x = 1 \end{cases}$ is-Q.27 (A) continuous at x = 1(B) continuous at x = -1(C) continuous at x = 1 and x = -1(D) discontinuous at x = 1 and x = -1Q.28 Let $f(x) = 3 - |\sin x|$, then f(x) is-(A) Everywhere continuous (B) Everywhere discontinuous (C) Continuous only at x = 0(D) Discontinuous only at x = 0The function $f(x) = \begin{cases} x-1, & x<2\\ 2x-3, & x \ge 2 \end{cases}$ is a **O.29** continuous function for-(A) all real values of x (B) only x = 2(C) all real values of $x \neq 2$ (D) only all integral values of x **Q.30** If $f(x) = \begin{cases} x \sin x, & 0 < x \le \pi/2 \\ \frac{\pi}{2} \sin (\pi + x), & \frac{\pi}{2} < x < \pi \end{cases}$, then -(A) f(x) is discontinuous at $x = \pi/2$ (B) f(x) is continuous at $x = \pi/2$ (C) f(x) is continuous at x = 0(D) None of these Q.31 The value of k so that $f(x) = \begin{cases} k(2x - x^2) & \text{when } x < 0\\ \cos x, & \text{when } x \ge 0 \end{cases}$ continuous at x = 0 is-(A) 1 (B) 2 (C) 4 (D) None of these If $f(x) = \frac{(a+x)^2 \sin(a+x) - a^2 \sin a}{x}$, $x \neq 0$; Q.32 then the value of f(0) so that f is continuous at x = 0 is-(A) $a^2 \cos a + a \sin a$ (B) $a^2 \cos a + 2a \sin a$ (C) $2a^2 \cos a + a \sin a$ (D) None of these

Q.33 Let f(x) = |x| + |x-1|, then-(A) f(x) is continuous at x = 0 and x = 1(B) f(x) is continuous at x = 0 but not at x = 1(C) f(x) is continuous at x = 1 but not at x = 0(D) None of these 0.34 Consider the following statements: I. A function f is continuous at a point $x_0 \in \text{Dom}(f)$ if $\lim f(x) = f(x_0)$. II. f is continuous in [a, b] if f is continuous in (a, b) and f(a) = f(b). III. A constant function is continuous in an interval. Out of these correct statements are (A) I and II (B) II and III (C) I and III (D) All the above If $f(x) = \begin{cases} x+2, & \text{when } x < 1 \\ 4x-1, & \text{when } 1 \le x \le 3 \text{, then correct} \\ x^2+5, & \text{when } x > 3 \end{cases}$ 0.35 statement is-(A) $\lim_{x \to 1} f(x) = \lim_{x \to 3} f(x)$ (B) f(x) is continuous at x = 3(C) f(x) is continuous at x = 1(D) f(x) is continuous at x = 1 and 3 Q.36 Let f(x) and $\phi(x)$ be defined by f(x) = [x] and $\phi(\mathbf{x}) = \begin{cases} 0, & \mathbf{x} \in \mathbf{I} \\ \mathbf{x}^2 & \mathbf{x} \in \mathbf{R} - \mathbf{I} \end{cases} \quad [\ . \] = \mathbf{G}.\mathbf{I}.\mathbf{F}.$ (A) $\lim_{x \to 1} \phi(x)$ exist but ϕ is not continuous at x = 1(B) $\lim_{x \to 1} f(x)$ does not exist and f is continuous at x = 1(C) ϕ is continuous for all x (D) None of these **Q.37** $f(x) = \begin{cases} \frac{x-4}{|x-4|} + a, & x < 4\\ a+b, & x = 4 \end{cases}$ is continuous at $\frac{x-4}{|x-4|} + b, & x > 4 \end{cases}$ x = 4, if-(A) a = 0, b = 0 (B) a = 1, b = 1(C) a = 1, b = -1 (D) a = -1, b = 1

The function $f(x) = \frac{\cos x - \sin x}{\cos 2x}$ is continuous **O.38** everywhere then $f(\pi/4) =$ (B) –1 (A) 1 (D) $1/\sqrt{2}$ (C) $\sqrt{2}$ If $f(x) = \frac{\tan\left(\frac{\pi}{4} - x\right)}{\cot^2 x}$, $x \neq \pi/4$ is every where Q.39 continuous, then $f(\pi/4)$ equals-(A) 0 **(B)** 1 (C) - 1(D) 1/2 Question Continuity from left and right based on **Q.40** If $f(x) = \begin{cases} \frac{x}{e^{1/x} + 1}, & x \neq 0\\ 0, & x = 0 \end{cases}$, then -(A) $\lim_{x \to 0} f(x) = 1$ $x \rightarrow 0^+$ (B) $\lim_{x \to 0} f(x) = 1$ (C) f(x) is continuous at x = 0(D) None of these Q.41 If f(x) = [x], where [x] = greatest integer $\leq x$, then at x = 1, f is-(A) continuous (B) left continuous (C) right continuous (D) None of these Question based on Continuity of a function in an interval

Q.42 If
$$f(x) = \begin{cases} \frac{\sqrt{1+px} - \sqrt{1-px}}{x}, & -1 \le x < 0\\ \frac{2x+1}{x-2}, & 0 \le x \le 1 \end{cases}$$
 is

continuous in the interval [-1,1] then p equals - (A) -1 (B) 1

(C)
$$1/2$$
 (D) $-1/2$

Q.43 If
$$f(x) = \begin{cases} \frac{x^2}{a}, & 0 \le x < 1\\ a, & 1 \le x < \sqrt{2} \\ \frac{(2b^2 - 4b)}{x^2}, & \sqrt{2} \le x < \infty \end{cases}$$

continuousintheinterval $[0, \infty)$, then values of a and b are respectively -(A) 1, -1 $(B) -1, 1 + \sqrt{2}$ (C) -1, 1(D) None of these

Q.44 Which of the following function is not continuous in the interval $(0, \pi)$

(A)
$$x \sin \frac{1}{x}$$

(B)
$$\begin{cases} 1, & 0 < x \le \frac{3\pi}{4} \\ 2\sin\left(\frac{2x}{9}\right), & \frac{3\pi}{4} < x < \pi \end{cases}$$
(C) $\tan x$

(D) None of these

Question based on Continuous and discontinuous function

- Q.45 Function f(x) = |x| is-(A) discontinuous at x = 0(B) discontinuous at x = 1(C) continuous at all point
 - (D) discontinuous at all points
- Q.46 Point of discontinuity for sec x is -

(A)
$$x = -\pi/2$$
 (B) $x = 3\pi/2$
(C) $x = -5\pi/2$ (D) All of these

- **Q.47** Function $f(x) = \frac{1}{\log |x|}$ is discontinuous at -
 - (A) one point
 - (B) two points
 - (C) three points
 - (D) infinite number of points

Q.48 If f(x) = x - [x], then f is discontinuous at (A) every natural number
(B) every integer
(C) origin
(D) Nowhere

Q.49 Which one is the discontinuous function at any point -(A) sin x (B) x²

(C)
$$1/(1-2x)$$
 (D) $1/(1+x^2)$

Q.50The point of discontinuity of cosec x is -
(A) $x = \pi$ (B) $x = \pi / 2$
(C) $x = 3 \pi / 2$ (D) None of theseQ.51In the following, continuous function is-

CONTINUITY & DIFFERENTIABILITY

(A) tan x	(B) sec x
(C) sin 1/x	(D) None of these

- Q.52In the following, discontinuous function is-
(A) sin x(B) cos x
(C) tan x(D) e^x
- Q.54 Which of the following functions is discontinuous at x = a-(A) tan (x - a) (B) sin (x - a)(C) cosec (x - a) (D) sec (x - a)
- Q.55 If f(x) is continuous and g(x) is discontinuous function, then f(x) + g(x) is(A) continuous function
 (B) discontinuous function
 (C) constant function
 (D) identity function
- Q.56 Function f(x) = |x-2| -2| |x-4| is discontinuous at (A) x = 2, 4 (B) x = 2(C) Nowhere (D) Except x = 2, 4
- Q.57 Function $f(x) = |\sin x| + |\cos x| + |x|$ is discontinuous at-(A) x = 0 (B) $x = \pi/2$ (C) $x = \pi$ (D) No where
- Q.58 Function $f(x) = 1 + |\sin x|$ is-(A) continuous only at x = 0(B) discontinuous at all points (C) continuous at all points (D) None of these

Q.59 If function is f(x) = |x| + |x - 1| + |x - 2|, then it is -(A) discontinuous at x = 0(B) discontinuous at x = 0, 1

- (C) discontinuous at x = 0, 1, 2
- (D) everywhere continuous

- **Q.60** Function $f(x) = \frac{x^3 1}{x^2 3x + 2}$ is discontinuous at -(A) x = 1 (B) x = 2(C) x = 1, 2 (D) No where
- Q.61 If $f(x) = \frac{1}{(1-x)}$ and $g(x) = f[f{f(x)}]$, then g(x)is discontinuous at -(A) x = 3 (B) x = 2(C) x = 0 (D) x = 4
- Q.62 The function $f(x) = \frac{|3x-4|}{3x-4}$ is discontinuous at (A) x = 4 (B) x = 3/4(C) x = 4/3 (D) No where
- **Q.63** The function $f(x) = \left(\frac{\pi}{2} x\right)$ tan x is discontinuous at-

(A)
$$x = \pi$$
 (B) $x = 0$
(C) $x = \frac{\pi}{2}$ (D) None of these

- Q.64 Which of the following function has finite number of points of discontinuity-(A) $\sin [\pi x]$ (B) |x|/x
 - (C) $\tan x$ (D) x + [x]
- Q.65 The points of discontinuity of

f(x) = tan
$$\left(\frac{\pi x}{x+1}\right)$$
 other than x = -1 are-
(A) x = π (B) x = 0
(C) x = $\frac{2m-1}{2m+1}$
(D) x = $\frac{2m+1}{1-2m}$, m is any integer
Q.66 In the following continuous function is-
(A) [x] (B) x - [x]
(C) sin [x] (D) e^x + e^{-x}

Q.67In the following, discontinuous function is-
(A) $\sin^2 x + \cos^2 x$ (B) $e^x + e^{-x}$
(C) e^{x^2} (D) $e^{1/x}$

- Q.68 If f(x) is continuous function and g(x) is discontinuous function, then correct statement is (A) f(x) + g(x) is a continuous function
 - (B) f(x) g(x) is a continuous function
 - (C) f(x) + g(x) is a discontinuous function
 - (D) f(x) g(x) is a continuous function

Question based on Differentiability of function

- Q.69 Which of the following functions is not differentiable at x = 0-(A) x |x| (B) x^{3} (C) e^{-x} (D) x + |x|
- Q.70 Which of the following is differentiable function-

(A)
$$x^2 \sin \frac{1}{x}$$
 (B) $x |x|$
(C) $\cosh x$ (D) all above

- Q.71 The function f(x) = sin |x| is(A) continuous for all x
 (B) continuous only at certain points
 (C) differentiable at all points
 (D) None of these
- Q.72 If f(x) = |x-3|, then f is(A) discontinuous at x = 2
 (B) not differentiable at x = 2
 (C) differentiable at x = 3
 (D) continuous but not differentiable at x = 3

Q.73 If
$$f(x) = \frac{|x-1|}{x-1}$$
, $x \neq 1$, and $f(1) = 1$, then the correct statement is-
(A) discontinuous at $x = 1$
(B) continuous at $x = 1$
(C) differentiable at $x = 1$
(D) discontinuous for $x > 1$

Q.74 If
$$f(x) = \begin{cases} x+1, & x>1 \\ 0, & x=1, \text{ then } f'(0) \text{ equals-} \\ 7-3x, & x<1 \end{cases}$$

(A) 1 (B) 2 (C) 0 (D) -3

Q.75 The function f(x) = |x| + |x - 1| is not differential at -

(A)
$$x = 0,1$$
 (B) $x = 0,-1$
(C) $x = -1, 1$ (D) $x = 1, 2$

Q.76 If $f(x) = \begin{cases} e^{1/x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, then which one is

correct-

- (A) f(x) is differentiable at x = 0
- (B) f(x) is discontinuous at x = 0
- (C) f(x) is continuous no where
- (D) None of these
- Q.77 Function [x] is not differentiable at -(A) every rational number
 - (B) every integer
 - (C) origin
 - (D) every where

Q.78 If
$$f(x) = \begin{cases} |x-3|, & \text{when } x \ge 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{when } x < 1 \end{cases}$$
, then

correct statement is-

- (A) f is discontinuous at x = 1
- (B) f is discontinuous at x = 3
- (C) f is differentiable at x = 1
- (D) f is differentiable at x = 3
- Q.79 Function $f(x) = \frac{|x|}{x}$ is-(A) continuous every where (B) differentiable every where (C) differentiable every where except at x = 0(D) None of these
- Q.80 Let f(x) = |x-a| + |x-b|, then-(A) f(x) is continuous for all $x \in R$ (B) f(x) is differential for $\forall x \in R$ (C) f(x) is continuous except at x = a and b (D) None of these
- Q.81 Function f(x) = |x 1| + |x 2| is differentiable in [0, 3], except at-(A) x = 0 and x = 3 (B) x = 1
 - (C) x = 2 (D) x = 1 and x = 2

Q.82		when $x < 0$ when $0 \le x \le \pi/2$, then at
	x = 0, f'(x) equals-	
	(A) 1	(B) 0
	$(C) \infty$	(D) Does not exist
Q.83	If $f(x) = \begin{cases} \frac{x}{1 + e^{1/x}}, \\ 0, \end{cases}$	$x \neq 0$, then the function $x = 0$
	f(x) is differentiable	for -
	$(A)x\in R_{^+}$	$(B) x \in R$
	(C) $x \in R_0$	(D) None of these
Q.84	If $f(x) = \begin{cases} x^{\alpha} \sin \frac{1}{x}, \\ 0, \end{cases}$	$x \neq 0$ is differentiable at $x = 0$
	x = 0, then-	
	(A) $\alpha > 0$	(B) $\alpha > 1$
	(C) $\alpha \ge 1$	(D) $\alpha \geq 0$
Q.85	If $f(x) = \begin{cases} e^x, & x \\ 1-x , & x \end{cases}$ (A) continuous at $x = (B)$ differentiable at (C) differentiable at	= 0 $\mathbf{x} = 0$
	(D) differentiable bo	
Q.86		(B) $x = -1$ (D) Nowhere
0.97		
Q.8 7	which of the fo	llowing function is not

Q.87 Which of the following function is no differentiable at x = 1(A) sin⁻¹x (B) tan x

(C) a ^x	(D) sin x
. ,	· · ·

Q.88 If
$$f(x) = \begin{cases} \frac{x-1}{2x^2 - 7x + 5}, & x \neq 1 \\ -\frac{1}{3}, & x = 1 \end{cases}$$
, then f'(1)
equals -

(A)
$$\frac{2}{9}$$
 (B) $-\frac{2}{9}$
(C) 0 (D) Does not exist

Q.89 If
$$f(x) = \begin{cases} \frac{\sin x^2}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$$
, then at $x = 0$, $f(x)$ is

- (A) continuous and differentiable
- (B) neither continuous nor differentiable

(C) continuous but not differentiable

(D) None of these

Q.90 Function f(x) = 1 + | sin x | is(A) continuous no where
(B) differentiable no where
(C) everywhere continuous
(D) None of these

Q.91 Function
$$f(x) = \begin{cases} x^2, & x \le 0\\ 1, & 0 < x \le 1 \text{ is} - \\ 1/x, & x > 1 \end{cases}$$

(A) differentiable at x = 0, 1(B) differentiable only at x = 0

(C) differentiable at only x = 1

(D) Not differentiable at x = 0, 1

- Q.1 If [.] denotes G.I.F. then, in the following, continuous function is-(A) $\cos [x]$ (B) $\sin \pi [x]$
 - (C) sin $\frac{\pi}{2}$ [x] (D) All above

Q.2 If
$$f(x) = \frac{1 - \cos(1 - \cos x)}{x^4}$$
, $(x \neq 0)$ is continuous

everywhere, then f(0) equals-

- (A) 1/8 (B) 1/2
- (C) 1/4 (D) None of these

Q.3 For function
$$f(x) = \begin{cases} \left(1 + \frac{4x}{5}\right)^{1/x}, & x \neq 0 \\ e^{4/5}, & x = 0 \end{cases}$$
, the

correct statement is-

- (A) f(0+0) and f(0-0) do not exist
- (B) $f(0+0) \neq f(0-0)$
- (C) f(x) continuous at x = 0

(D)
$$\lim_{x \to 0} f(x) \neq f(0)$$

Q.4 If
$$f(x) = \begin{cases} \frac{\sin(a+1)x + \sin x}{x}, & x < 0\\ c, & x = 0, \text{ is} \\ \frac{\sqrt{x+bx^2} - \sqrt{x}}{bx\sqrt{x}}, & x > 0 \end{cases}$$

continuous at x = 0, then (A) a = 3/2, c = 1/2, b is any real number (B) a = -3/2, c =1/2, b is R - {0} (C) a = 3/2, c = -1/2, b \in R - {0} (D) None of these

Q.5 Function $f(x) = 4x^3 + 3x^2 + e^{\cos x} + |x-3| + \log (a^x - 1) + x^{1/3} (a > 1)$ is discontinuous at-(A) x = 0 (B) x = 1(C) x = 2 (D) $x = \frac{\pi}{2}$

Q.6 If
$$f(x) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}$$
 is $(a > 0)$

continuous for all values of x, then f(0) is equal to-

(A)
$$a\sqrt{a}$$
 (B) \sqrt{a}
(C) $-\sqrt{a}$ (D) $-a\sqrt{a}$

Q.7 Function
$$f(x) = \begin{cases} \frac{(b^2 - a^2)}{2}, & 0 \le x \le a \\ \frac{b^2}{2} - \frac{x^2}{6} - \frac{a^3}{3x}, & a < x \le b, \text{ is} \\ \frac{1}{3} \left(\frac{b^3 - a^3}{x} \right), & x > b \end{cases}$$

- (A) continue at x = a(B) continue at x = b
- (C) discontinue on both x = a, x = b
- (D) continue at both x = a, x = b

Q.8 The function
$$f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

- (A) is continuous at x = 0
- (B) is not continuous at x = 0
- (C) is continuous at x = 2
- (D) None of these

Q.9 If function $f(x) = \left(\frac{\sin x}{\sin \alpha}\right)^{1/x-\alpha}$ where, $\alpha \neq m\pi$

(m
$$\in$$
 I) is continuous then -
(A) f(α) = e^{tan α} (B) f(α) = e^{cot α}

(C)
$$f(\alpha) = e^{2 \cot \alpha}$$
 (D) $f(\alpha) = \cot \alpha$

Q.10 If
$$f(x) = \begin{cases} -2\sin x, & x \le -\pi/2 \\ a\sin x + b, & -\pi/2 < x < \pi/2, \text{ is a} \\ \cos x, & x \ge \pi/2 \end{cases}$$

continuous function for every value x, then-

(A) a = b = 1 (B) a = b = -1(C) a = 1, b = -1 (D) a = -1, b = 1

Q.11 If function f(x) = x- |x-x²|,-1 ≤ x ≤1 then f is-(A) continuous at x = 0 (B) continuous at x = 1 (C) continuous at x = -1 (D) everywhere continuous
Q.12 f(x) = 1+ 2^{1/x} is-(A) continuous everywhere (B) continuous nowhere (C) discontinuous at x = 0 (D) None of these
Q.13 Let [.] denotes G.I.F. and f(x) = [x] + [-x] and m is any integer, then correct statement is -

- (A) $\lim_{x \to m} f(x)$ does not exist
- (B) f(x) is continuous at x = m
- (C) $\lim_{x \to m} f(x)$ exists
- (D) None of these
- **Q.14** If $f(x) = (\tan x \cot \alpha)^{1/(x-\alpha)}$ is continuous at $x = \alpha$, then the value of $f(\alpha)$ is -(A) $e^{2 \sin 2\alpha}$ (B) $e^{2 \operatorname{cosec} 2 \alpha}$ (C) $e^{\operatorname{cosec} 2 \alpha}$ (D) $e^{\sin 2 \alpha}$
- Q.15 Let [.] denotes G.I.F. for the function $f(x) = \frac{\tan (\pi [x - \pi])}{1 + [x]^2}$ the wrong statement is -(A) f(x) is discontinuous at x = 0 (B) f(x) is continuous for all values of x
 - (C) f(x) is continuous at x = 0
 - (D) f(x) is a constant function

Q.16 The point of discontinuity of the function $f(x) = \frac{1 + \cos 5x}{1 - \cos 4x}$ is-(A) x = 0 (B) x = π (C) x = $\pi/2$ (D) All the above

Q.17 Let $f(x) = \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}$. The value

which should be assigned to f at x = 0 so that it is continuous everywhere is-

(A) 1 (B) 2 (C) -2 (D) 1/2

Q.18 If the function

$$f(x) = \begin{cases} \frac{\sin(k+1)x + \sin x}{x}, & \text{when } x < 0\\ \frac{1/2}{2x^{3/2}}, & \text{when } x = 0 \text{ is}\\ \frac{(x+2x^2)^{1/2}}{2x^{3/2}}, & \text{when } x > 0 \end{cases}$$

continuous at x = 0, then the value of k is-(A) 1/2 (B) -1/2(C) -3/2 (D) 1

Q.19 If
$$f(x) = \begin{cases} 3, & x < 0 \\ 2x + 1, & x \ge 0 \end{cases}$$
 then -

- (A) both f(x) and f(| x |) are differentiable at x = 0
- (B) f(|x|) is differentiable but f(x) is not differentiable at x = 0
- (C) f(x) is differentiable but f(|x|) is not differentiable at x = 0
- (D) both f(x) and f(|x|) are not differentiable at x = 0

Q.20 The number of points in the interval (0, 2) where the derivative of the function $f(x) = |x - 1/2| + |x - 1| + \tan x$ does not exist is-(A) 1 (B) 2 (C) 3 (D) 4

Q.21 Function f(x) = sin (π[x]) is(A) differentiable every where
(B) differentiable no where
(C) not differentiable at x = 1 and -1
(D) None of these

Q.22 Function
$$f(x) = \begin{cases} x \tan^{-1}(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 at $x = 0$
is-

15	
(A) discontinuous	(B) continuous
(C) differentiable	(D) None of these

Q.23 Function $f(x) = \frac{\cos x - \sin x}{\sin 4x}$ is not defined at

 $x = \frac{\pi}{4}$. The value which should be assigned to

f at
$$x = \frac{\pi}{4}$$
, so that it is continuous there, is-

(A) 0 (B)
$$\frac{1}{2\sqrt{2}}$$
 (C) $-\frac{1}{\sqrt{2}}$ (D) None

Q.24 Let $f(x) = \max \{2 \sin x, 1 - \cos x\}, x \in (0, \pi)$. Then set of points of non-differentiability is -

(A)
$$\phi$$
 (B) { $\pi/2$ }
(C) { $\pi - \cos^{-1} 3/5$ } (D) { $\cos^{-1} 3/5$ }

Q.25 If
$$f(x) = \begin{cases} x \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, then correct

statement is-

- (A) f is continuous at all points except x = 0
- (B) f is continuous at every point but not differentiable
- (C) f is differentiable at every point
- (D) f is differentiable only at the origin

Q.26 Consider the following statements-

- (I) If a function is differentiable at some point then it must be continuous at that point
- (II) If a function continuous at some point then it is not necessary that it is differentiable at that point.
- (III) Differentiability of a function at some point is the necessary and sufficient condition for continuity at that point.

From above, correct statements are-

(A) I, II, III	(B) I, III

(C) I, II (D) II, III

- Q.27 State which of the following is a false statement -
 - (A) If f(x) is continuous at x = a then $f(a) = \lim_{x \to a} f(x)$
 - (B) If $\lim_{x \to a} f(x)$ exists, then f(x) is continuous at x = a
 - (C) If f (x) is differentiable at x = a, then it is continuous at x = a
 - (D) If f(x) is continuous at x=a, then $\lim_{x\to a} f(x)$

exists

Q.1 If the derivative of the function -

 $f(\mathbf{x}) = \begin{cases} ax^2 + b, & x < -1 \\ bx^2 + ax + 4, & x \ge -1 \end{cases}$

is everywhere continuous, then

(A) a = 2, b = 3 (B) a = 3, b = 2(C) a = -2, b = -3 (D) a = -3, b = -2

Q.2 The value of f(0), so that the function $f(x) = \frac{(27 - 2x)^{1/3} - 3}{9 - 3(243 + 5x)^{1/5}}, (x \neq 0)$ is continuous,

is given by -

$$(A) 2/3 (B) 6 (C) 2 (D) 4$$

Q.3 If
$$f(x) = \begin{cases} |x-4|, & \text{for } x \ge 1 \\ (x^3/2) - x^2 + 3x + (1/2), & \text{for } x < 1 \end{cases}$$
, then

- (A) f(x) is continuous at x = 1 and at x = 4
- (B) f(x) is differentiable at x = 4
- (C) f(x) is continuous and differentiable at x = 1
- (D) f(x) is only continuous at x = 1
- Q.4 Let f(x) = |x| and g(x) = |x³|, then –
 (A) f(x) & g(x) both are continuous at x = 0
 (B) f(x) & g(x) both are differentiable at x = 0
 (C) f(x) is differentiable but g(x) is not differentiable at x = 0
 (D) f(x) & g(x) both are not differentiable at x = 0

Q.5 Let
$$f(x) = \begin{cases} x^n \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
. Then $f(x)$ is

continuous but not differentiable at x = 0 if -

Q.6 If $f(x) = a |\sin x| + be^{|x|} + c |x|^3$ and if f(x) is differentiable at x = 0, then -(A) a = b = c = 0(B) $a = 0, b = 0; c \in \mathbb{R}$

- (C) $b = c = 0; a \in R$
- $(D) \ c = 0, \ a = 0 \ ; \ b \in R$

Q.7 The set of points where function

$$f(x) = \sqrt{1 - e^{-x^{2}}} \text{ is differentiable is -}$$
(A) $(-\infty, \infty)$ (B) $(-\infty, 0) \cup (0, \infty)$
(C) $(-1, \infty)$ (D) none of these

Q.8 Let
$$f(x) = \begin{cases} \sin 2x, \ 0 < x \le \pi/6 \\ ax + b, \ \pi/6 < x < l \end{cases}$$
; If $f(x)$ and

$$f'(\mathbf{x})$$
 are continuous, then

(A)
$$a = 1, b = \frac{1}{\sqrt{2}} + \frac{\pi}{6}$$

(B) $a = \frac{1}{\sqrt{2}}, b = \frac{1}{\sqrt{2}}$
(C) $a = 1, b = \frac{\sqrt{3}}{2} - \frac{\pi}{6}$

Q.9 Let $f(x) = \lim_{n \to \infty} (\sin x)^{2n}$; then f is -(A) discontinuous at $x = 3\pi/2$ (B) discontinuous at $x = \pi/2$ (C) discontinuous at $x = -\pi/2$ (D) All the above

$$f(x) = \left(\frac{x}{2} - 1\right)$$
 then in the interval $[0, \pi]$

- (A) tan [f(x)] is discontinuous but 1/f(x) is continuous
- (B) $\tan [f(x)]$ is continuous but $\frac{1}{f(x)}$ is

discontinuous

- (C) $\tan [f(x)]$ and $f^{-1}(x)$ is continuous
- (D) $\tan [f(x)]$ and 1/f(x) both are discontinuous

Q.11 The function $f(x) = \frac{4 - x^2}{4x - x^3}$ is equal to -

- (A) discontinuous at only one point
- (B) discontinuous exactly at two points
- (C) discontinuous exactly at three points
- (D) none of these

0.12 The function $f(x) = \sin^{-1}(\cos x)$ is -(A) discontinuous at x = 0

- (B) continuous at x = 0
- (C) differentiable at x = 0
- (D) none of these
- The function $f(x) = e^{-|x|}$ is -Q.13 (A) continuous everywhere but not differentiable at x = 0
 - (B) continuous and differentiable everywhere
 - (C) not continuous at x = 0
 - (D) none of these
- If x + 4 |y| = 6 y, then y as a function of x is -**Q.14** (A) continuous at x = 0 (B) derivable at x = 0(C) $\frac{dy}{dx} = \frac{1}{2}$ for all x (D) none of these
- Let f(x + y) = f(x) + f(y) and $f(x) = x^2 g(x)$ for Q.15 all x, y, \in R, where g(x) is continuous function. Then f'(x) is equal to -(A) g' (B) g(x)(C) $f(\mathbf{x})$ (D) none of these
- Let f(x + y) = f(x) f(y) for all x, y, $\in \mathbb{R}$, Q.16 Suppose that f(3) = 3 and f'(0) = 11 then f'(3)is equal to-(A) 22 (B) 44 (C) 28 (D) none of these

Statement type Questions

All questions are Assertion & Reason type questions. Each of these questions contains two statements: Statement-1 (Assertion) and Statement-2 (Reason). Answer these questions from the following four option.

- Statement-I and Statement-II are true Statement-(A) II is the correct explanation of Statement-I
- **(B)** Statement-I Statement-II are true but Statement-II is not the correct explanation of Statement-I.
- **(C)** Statement-I is true but Statement-II is false
- Statement-I is false but Statement-II is true. **(D)**

Q.17 Statement-1:

 $f(x) = \frac{1}{x - \lfloor x \rfloor}$ is discontinuous for integral

values of x

Statement-2: For integral values of x, f(x) is undefined.

Q.18 Statement-1:

If
$$f(x) = \frac{(e^{kx} - 1)\sin kx}{4x^2}$$
 (x \ne 0) and $f(0) = 9$ is

continuous at x = 0 then $k = \pm 6$. Statement-2 : For continuous function $\lim_{x \to 0} f(x) = f(0)$

Statement I: Q.19

> $y = \frac{x}{1+|x|}, x \in R, f(x)$ is differentiable every where. Statement II:

$$f(x) = \frac{x}{1+|x|}, x \in R \text{ then } f'(x) = \begin{cases} \frac{1}{(1+x)^2}, x \ge 0\\ \frac{1}{(1-x)^2}, x < 0 \end{cases}$$

Statement-1 : If $f(x) = \lim_{n \to \infty} (\sin x)^{2n}$, then the Q.20 set of points discontinuities of f is $\left\{(2n+1)\frac{\pi}{2}, n \in \mathbf{I}\right\}$

> **Statement-2**: Since $-1 < \sin x < 1$, as $n \rightarrow \infty$, $(\sin x)^{2n} \rightarrow 0, \sin x = \pm 1 \implies \pm (1)^{2n} \rightarrow 1, n \rightarrow \infty$

- 0.21 Statement I : f(x) = |x - 2| is differentiable at x = 2. Statement II: f(x) = |x - 2| is continuous at x = 2.
- Q.22 Statement-1 : The function $y = \sin^{-1}(\cos x)$ is not differentiable at $x = n\pi$, $n \in Z$ is particular at $x = \pi$

Statement-2: $\frac{dy}{dx} = \frac{-\sin x}{|\sin x|}$ so the function is

not differentiable at the points where $\sin x = 0$.

Q.23 Statement-1: The function $f(x) = |x^3|$ is differentiable at x = 0

Statement-2 : at x = 0, f'(x) = 0

O.24 Statement I : f(x) = sinx and g(x) = sgn(x)then f(x) g(x) is differentiable at x = 1. Statement II : Product of two differentiable function is differentiable function

Passage Based Questions

ſ

Let
$$f(x) = \begin{cases} \frac{a(1 - x \sin x) + b \cos x + 5}{x^2} , x < 0\\ 3 , x = 0\\ \left\{ 1 + \left(\frac{cx + dx^3}{x^2}\right) \right\}^{1/x} , x > 0 \end{cases}$$

If f is continuous at x = 0On the basis of above information, answer the following questions : -

- Q.25 The value of a is -(A) - 1 (B) ln 3 (C) 0 (D) - 4
- Q.26 The value of b is -(A) -1 (B) ln 3 (C) 0 (D) -4
- Q.27 The value of c is (A) 2 (B) 3 (C) 0 (D) none of these
- Q.28 The value of e^d is -(A) 0 (B) 1 (C) 2 (D) 3

> Column Matching Questions

Match the entry in Column I with the entry in Column II.

Q.29 Column-I Column-II

- (A) $f(x) = x^2 \sin(1/x), x \neq 0$ (P) continuous but f(0) = 0 not derivable
 - (B) $f(x) = \frac{1}{1 e^{-1/x}}, x \neq 0$, (Q) f is differentiable and f(0) = 0 f' is not

continuous

(C) f(x) = x sin 1/x, x ≠ 0 (R) f is not continuous f(0) = 0
 (D) f(x) = x³ sin 1/x, x ≠ 0 (S) f' is continuous

f(0) = 0 but not derivable

Q.30 Column I Column II

- (A) $f(x) = |x^3|$ is (P) continuous in (-1, 1)
- (B) $f(x) = \sqrt{|x|}$ (Q) differentiable in (-1, 1)

(C) $f(x) = |\sin^{-1}x|$ is (R) differentiable in (0, 1)

(D) f(x) = |x| is (S) not differentiable

at least at one point in (-1, 1)

	(Question asked in previo		
	SECTION –A	Q.6	Suppose $f(x)$ is differentiable at $x = 1$ and
Q.1	If $f(x) = \begin{cases} x & x \in Q \\ -x & x \notin Q \end{cases}$, then f is continuous at-		$\lim_{h \to 0} \frac{1}{h} f(1+h) = 5$, then f'(1) equals -
	[AIEEE-2002]		[AIEEE-2005]
	(A) only at zero		(A) 3 (B) 4 (C) 5 (D) 6
	(B) only at 0, 1	0.7	THE CONTRACT AND A
	(C) all real numbers	Q.7	The set of points where $f(x) = \frac{x}{1 + x }$
	(D) all rational numbers		is differentiable is - [AIEEE- 2006]
01	If for all values of $y \in y$, $f(y + y) = f(y)$, $f(y)$		$(A) (-\infty, -1) \cup (-1, \infty)$
Q.2	If for all values of x & y; $f(x + y) = f(x) . f(y)$ and $f(5) = 2 f'(0) = 3$, then $f'(5)$ is-		 (B) (-∞, ∞)
	[AIEEE- 2002]		$(C) (0, \infty)$
	(A) 3 (B) 4		$(D) (-\infty, 0) \cup (0, \infty)$
	(C) 5 (D) 6		$(D)(-\infty,0) \cup (0,\infty)$
	$\begin{pmatrix} 1 & 1 \end{pmatrix}$	Q.8	The function $f : \mathbb{R} \setminus \{0\} \rightarrow \mathbb{R}$ given by
Q.3	If $f(x) = \begin{cases} x e^{-(\frac{1}{ x } + \frac{1}{x})}, & x \neq 0 \text{ then } f(x) \text{ is} \\ 0, & x = 0 \end{cases}$		$f(x) = \frac{1}{x} - \frac{2}{e^{2x} - 1}$ can be made continuous at
	[AIEEE- 2003]		x = 0 by defining $f(0)$ as - [AIEEE- 2007]
	(A) discontinuous everywhere		(A) 2 (B) -1
	(B) continuous as well as differentiable for all x		(C) 0 (D) 1
	(C) continuous for all x but not differentiable at	0.0	Lat f , D , D has a function defined by
	x = 0	Q.9	Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by $f(\mathbf{x}) = \text{Min } \{\mathbf{x} + 1, \mathbf{x} + 1\}$. Then which of the
	(D) neither differentiable nor continuous at $x = 0$		following is true? [AIEEE 2007]
			(A) $f(\mathbf{x}) \ge 1$ for all $\mathbf{x} \in \mathbf{R}$
			(B) $f(x)$ is not differentiable at $x = 1$
Q.4	Let $f(x) = \frac{1 - \tan x}{4x - \pi}$, $x \neq \frac{\pi}{4}$, $x \in \left[0, \frac{\pi}{2}\right]$. If $f(x)$		(C) $f(x)$ is differentiable everywhere
			(D) $f(x)$ is not differentiable at $x = 0$
	is continuous in $\left[0, \frac{\pi}{2}\right]$, then $f\left(\frac{\pi}{4}\right)$ is-		
	[AIEEE- 2004]	Q.10	Let $f(x) = \begin{cases} (x-1)\sin\frac{1}{x-1}, & \text{if } x \neq 1 \\ 0, & \text{if } x = 1 \end{cases}$
	(A) 1 (B) 1/2	2.1.0	$\begin{bmatrix} x - 1 \\ 0, & \text{if } x = 1 \end{bmatrix}$
	(C) - 1/2 (D) -1		Then which one of the following is true?
			[AIEEE 2008]
Q.5	If f is a real-valued differentiable function		(A) f is differentiable at $x = 0$ and at $x = 1$
	satisfying $ f(x) - f(y) \le (x - y)^2$, $x, y \in R$ and		(B) f is differentiable at $x = 0$ but not at $x = 1$
	f(0) = 0, then $f(1)$ equals- [AIEEE-2005]		(C) f is differentiable at $x = 1$ but not at $x = 0$
			······································

(A) –1

(C) 2

(B) 0

(D) 1

LEVEL-4

CONTINUITY & DIFFERENTIABILITY

(D) f is neither differentiable at x = 0 nor at x = 1

Statement Based Question : (Q.11 to Q.12)

- (A) Statement -1 is true, Statement -2 is true;
 Statement -2 is a correct explanation for Statement -1
- (B) Statement -1 is true, Statement -2 is true; Statement -2 is *not* a correct explanation for Statement -1
- (C) Statement -1 is true, Statement -2 is false.
- (D) Statement -1 is false, Statement -2 is true.
- Q.11 Let f(x) = x | x | and $g(x) = \sin x$. Statement – 1 : gof is differentiable at x = 0 and its derivative is continuous at that point. Statement – 2 : gof is twice differentiable at x = 0.
- [AIEEE 2009] Q.12 Let $f : R \to R$ be a continuous function defined by $f(x) = \frac{1}{e^x + 2e^{-x}}$

Statement-1 :
$$f(c) = \frac{1}{3}$$
, for some $c \in R$.

Statement-2: $0 < f(x) \le \frac{1}{2\sqrt{2}}$, for all $x \in \mathbb{R}$

[AIEEE 2010]

Q.1

Q.13 The value of p and q for which the function

$$f(x) = \begin{cases} \frac{\sin(p+1)x + \sin x}{x} &, x < 0\\ \frac{q}{\sqrt{x + x^2} - \sqrt{x}} &, x = 0\\ \frac{\sqrt{x + x^2} - \sqrt{x}}{x^{3/2}} &, x > 0 \end{cases}$$

is continuous for all x in R, are :

(A)
$$p = \frac{1}{2}, q = -\frac{3}{2}$$
 (B) $p = \frac{5}{2}, q = \frac{1}{2}$
(C) $p = -\frac{3}{2}, q = \frac{1}{2}$ (D) $p = \frac{1}{2}, q = \frac{3}{2}$

Q.14 If f: $R \rightarrow R$ is a function defined by

$$f(x) = [x] \cos\left(\frac{2x-1}{2}\right)\pi$$
, where [x] denotes the

greatest integer function, then f is : [AIEEE 2012]

- (A) discontinuous only at x = 0
- (B) discontinuous only at non-zero integral values of x
- (C) continuous only at x = 0
- (D) continuous for every real x

Q.15 Consider the function, f(x) = |x - 2| + |x - 5|, $x \in \mathbb{R}$.

Statement 1 : f'(4) = 0 [AIEEE 2012] **Statement 2 :** f is continuous in [2, 5], differentiable in (2, 5) and f(2) = f(5).

- (A) Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for Statement 1.
- (B) Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation for Statement 1.
- (C) Statement 1 is true, Statement 2 is false.
- (D) Statement 1 is false, Statement 2 is true.

SECTION-B

If
$$f(x) = \begin{cases} \frac{1 - \cos 4x}{x^2}, & \text{when } x < 0 \\ a, & \text{when } x = 0 \\ \frac{\sqrt{x}}{\sqrt{16 + \sqrt{x}}}, & \text{when } x > 0 \end{cases}$$

continuous at x = 0, then the value of 'a' will be [IIT-1990]

is

16

(A) 8 (B)
$$- 8$$

(C) 4 (D) None

Q.2 The following functions are continuous on $(0, \pi)$ [IIT-1991] (A) tan x

(B)
$$\begin{cases} x \sin x ; & 0 < x \le \pi/2 \\ \frac{\pi}{2} \sin(\pi + x); & \frac{\pi}{2} < x < \pi \end{cases}$$

(C)
$$\begin{cases} 1, & 0 < x \le \frac{3\pi}{4} \\ 2\sin\frac{2}{9}x, & \frac{3\pi}{4} < x < \pi \end{cases}$$

(D) None of these

Q.3 If
$$f(x) = \begin{cases} x \sin x, \text{when } 0 < x \le \frac{\pi}{2} \\ \frac{\pi}{2} \sin(\pi + x), \text{when } \frac{\pi}{2} < x < \pi \end{cases}$$
, then -
[IIT-1991]

(A) f(x) is discontinuous at
$$x = \frac{\pi}{2}$$

(B) f(x) is continuous at $x = \frac{\pi}{2}$
(C) f(x) is continuous at $x = 0$
(D) None of these

Q.4 The function $f(x) = [x] \cos \{(2x - 1)/2\}\pi$, [] denotes the greatest integer function, is discontinuous at [IIT-1995] (A) all x (B) all integer points (C) no x (D) x which is not an integer

Q.5 Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfy $f\left(\frac{x}{y}\right) = f(x) - f(y)$ for all x, y & f(e) = 1. Then-[IIT Scr.95] (A) f(x) is bounded (B) $f\left(\frac{1}{x}\right) \to 0$ as $x \to 0$

(C) x f (x)
$$\rightarrow$$
 1 as x \rightarrow 0
(D) f(x) = log x

Q.6 The function $f(x) = [x]^2 - [x^2]$ (where [y] is the greatest integer less than or equal to y), is [IIT-1999] discontinuous at -(A) All integers (B) All integers except 0 and 1 (C) All integers except 0

(D) All integers except 1

Q.7 Indicate the correct alternative: Let [x] denote the greater integer $\leq x$ and

- $f(x) = [tan^2x]$, then [IIT-1993]
- (A) $\lim_{x\to 0} f(x)$ does not exist
- (B) f(x) is continuous at x = 0
- (C) f(x) is not differentiable at x = 0(D) f'(0) = 1

Q.8
$$g(x) = x f(x)$$
, where $f(x) = \begin{cases} x \sin(1/x), & x \neq 0 \\ 0 & x = 0 \end{cases}$
at $x = 0$ [IIT-1994]

- (A) g is differentiable but g' is not continuous (B) both f and g are differentiable (C) g is differentiable but g' is continuous
- (D) None of these

- Let $f\left(\frac{x+y}{2}\right) = \frac{f(x)+f(y)}{2}$ for all real x and y Q.9 and f' (0) = -1, f(0) = 1, then f'(2) = [IIT-1995] (A) 1/2 **(B)** 1 (C) - 1(D) - 1/2
- 0.10 Let $h(x) = \min \{x, x^2\}$, for every real number of x. Then -[IIT-1998] (A) h is not differentiable at two values of x (B) h is differentiable for all x (C) h' (x) = 0, for all x > 1(D) None of these
- The function $f(x) = (x^2 1) |x^2 3x + 2| + \cos(|x|)$ 0.11 is not differentiable at. [IIT-1999] (A) - 1**(B)** 0 (C) 1 (D) 2
- Q.12 Let $f : R \rightarrow R$ is a function which is defined by $f(x) = \max \{x, x^3\}$ set of points on which f(x)is not differentiable is [IIT Scr. 2001] (A) $\{-1, 1\}$ (B) $\{-1, 0\}$ (C) $\{0, 1\}$ (D) $\{-1, 0, 1\}$
- Q.13 Find left hand derivative at $x = k, k \in I$. $f(x) = [x] \sin(\pi x)$ [IIT Scr. 2001] (A) $(-1)^k (k-1)\pi$ (B) $(-1)^{k-1} (k-1)\pi$ (C) $(-1)^k (k-1) k \pi$ (D) $(-1)^{k-1} (k-1) k \pi$
- **Q.14** Which of the following functions is differentiable at x = 0? [IIT Scr. 2001] (A) $\cos(|x|) + |x|$ (B) $\cos(|x|) - |x|$ (C) $\sin(|\mathbf{x}|) + |\mathbf{x}|$ (D) $\sin(|x|) - |x|$
- Q.15 f(x) = ||x| - 1| is not differentiable at x =[IIT Scr.2005] $(A) 0, \pm 1$ $(B) \pm 1$

Q.16 Let
$$g(x) = \frac{(x-1)^n}{\log \cos^m (x-1)}$$
; $0 < x < 2$, m and n

are integers, $m \neq 0$, n > 0, and let p be the left hand derivative of |x - 1| at x = 1. [IIT- 2008] If $\lim_{x \to \infty} g(x) = p$, then (A) n = 1, m = 1(B) n = 1, m = -1(C) n = 2, m = 2(D) n > 2, m = n**CONTINUITY & DIFFERENTIABILITY** 17

Q.17 Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that $f(x + y) = f(x) + f(y), \forall x, y \in \mathbb{R}$

If f(x) is differentiable at x = 0, then

[IIT- 2011]

- (A) f(x) is differentiable only in a finite interval containing zero
- (B) f(x) is continuous $\forall x \in \mathbb{R}$
- (C) f'(x) is constant $\forall x \in \mathbb{R}$
- (D) f(x) is differentiable except at finitely many points

Q.18 If

$$f(x) = \begin{cases} -x - \frac{\pi}{2}, & x \le -\frac{\pi}{2} \\ -\cos x, & -\frac{\pi}{2} < x \le 0, \text{ then} \\ x - 1, & 0 < x \le 1 \\ \ln x, & x > 1 \end{cases}$$

[IIT- 2011]

- (A) f (x) is continuous at $x = -\frac{\pi}{2}$ (B) f (x) is not differentiable at x = 0
- (C) f(x) is differentiable at x = 1

(D) f (x) is differentiable at $x = -\frac{3}{2}$

Q.19 For every integer n, let a_n and b_n be real numbers. Let function f: IR \rightarrow IR be given by

$$f(x) = \begin{cases} a_n + \sin \pi x, & \text{for } x \in [2n, 2n+1] \\ b_n + \cos \pi x, & \text{for } x \in (2n-1, 2n) \end{cases}, \text{ for }$$

all integers n. If f is continuous, then which of the following hold(s) for all n? [IIT- 2012] (A) $a_{n-1} - b_{n-1} = 0$ (B) $a_n - b_n = 1$ (C) $a_n - b_{n+1} = 1$ (D) $a_{n-1} - b_n = -1$

Q.20 Let
$$f(x) = \begin{cases} x^2 \left| \cos \frac{\pi}{x} \right|, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, $x \in IR$,

then f is [IIT-2012] (A) differentiable both at x = 0 and at x = 2

- (A) differentiable both at x = 0 and at x = 2
- (B) differentiable at x = 0 but not differentiable at x = 2
- (C) not differentiable at x = 0 but differentiable at x = 2
- (D) differentiable neither at x = 0 nor at x = 2

ANSWER KEY

LEVEL-1

Que	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	D	С	А	D	С	Α	С	В	D	D	D	D	Α	С	D	Α	D	С	Α	С
Que	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans	В	С	D	В	D	В	D	Α	Α	А	D	В	Α	С	С	Α	С	D	D	С
Que	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	С	D	С	С	С	D	С	В	С	А	D	С	D	С	В	С	D	С	D	С
Que	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	С	С	С	В	D	D	D	С	D	D	Α	D	Α	D	Α	В	В	С	С	Α
Que	81	82	83	84	85	86	87	88	89	90	91									
Ans.	D	D	С	В	Α	С	А	В	Α	С	D									

LEVEL-2

Que	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	В	Α	С	В	Α	С	D	В	В	D	D	С	С	В	А	D	Α	С	D	С
Que	21	22	23	24	25	26	27													
Ans	А	В	В	С	В	С	В													

LEVEL-3

Que	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	А	С	А	Α	А	В	В	С	D	D	С	В	Α	А	D	D	Α	А	Α	Α
Que	21	22	23	24	25	26	27	28												
Ans	D	Α	А	Α	А	D	С	D												

29. $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow S$

30. A \rightarrow P,Q,R ; B \rightarrow P,R,S ; C \rightarrow P,R,S ; D \rightarrow P,R,S

LEVEL-4

SECTION-A

Que	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	Α	D	С	С	В	С	В	D	С	В	С	Α	С	D	В

SECTION-B

(B)

1.[A] f(x) =

$$f(x) = \begin{cases} \frac{1 - \cos 4x}{x^2} & : & x < 0\\ a & : & x = 0\\ \frac{\sqrt{x}}{\sqrt{16 + \sqrt{x}} - 4} & & x > 0 \end{cases}$$

$$\therefore$$
 f(x) is continuous at x = 0

$$\therefore \text{ R.H.L. } \lim_{h \to 0} \frac{1 - \cos(4(0 - h))}{(0 - h)^2}$$
$$\lim_{h \to 0} \frac{1 - \cos 4h}{h^2} \qquad \left(\frac{0}{0} \text{ form}\right)$$
$$= \lim_{h \to 0} \frac{0 + 4\sin 4h}{2h} \times \frac{2}{2}$$
$$= 8$$

$$\therefore$$
 L.H.L. = f(0)

 $\Rightarrow 8 = a$ 2.[C] (A) tan x is discontinuous at $\pi/2$ in $(0, \pi)$ $f(x) = \begin{cases} x \sin x ; & 0 < x \le \pi/2 \\ \frac{\pi}{2} \sin(\pi + x); & \frac{\pi}{2} < x < \pi \end{cases}$ at $x = \frac{\pi}{2}$ L.H.L. $\lim_{h \to 0} \left(\frac{\pi}{2} - h\right) \sin\left(\frac{\pi}{2} - h\right)$ $= \pi/2 \sin \pi/2 = \pi/2$ R.H.L. $\lim_{h\to 0} \pi/2 \sin(\pi + \pi/2 + h)$ $= \pi/2 \sin 3\pi/2$ $= - \pi/2$ $\text{L.H.L.} \neq \text{R.H.L.}$

CONTINUITY & DIFFERENTIABILITY

$$\therefore f(x) \text{ is not continuous at } x = \pi/4$$
(C) $f(x) = \begin{cases} 1, & 0 < x \le \frac{3\pi}{4} \\ 2\sin\frac{2}{9}x, & \frac{3\pi}{4} < x < \pi \end{cases}$
at $x = 3\pi/4$ L.H.L. = 1
 $f(3\pi/4) = 1$
R.H.L. $\lim_{h \to 0} 2\sin\frac{2}{9} (3\pi/4 + h)$
 $2\sin\frac{2}{9} \frac{3\pi}{4}$
 $= 2\sin\pi/6 = 2 \times \frac{1}{2} = 1$
 $\therefore f(x) \text{ is continuous at } x = \frac{3\pi}{4}$
3.[A] $f(x) = \begin{cases} x\sin x; & 0 < x \le \pi/2 \\ \frac{\pi}{2}\sin(\pi + x); & \frac{\pi}{2} < x < \pi \end{cases}$
at $x = \frac{\pi}{2}$
L.H.L. $\lim_{h \to 0} \left(\frac{\pi}{2} - h\right) \sin\left(\frac{\pi}{2} - h\right)$
 $= \pi/2 \sin\pi/2 = \pi/2$
R.H.L. $\lim_{h \to 0} \pi/2 \sin(\pi + \pi/2 + h)$
 $= \pi/2 \sin \pi/2 = \pi/2$
L.H.L. \neq R.H.L. $\therefore f(x)$ is not continuous at $x = \pi/4$
4.[C] $f(x) = [x] \cos(2x-1) \times \pi/2$
 $let x = n, n \in I$
 $f(n) = n \cos(2n-1) \pi/2 = 0$
 $f(n-) = (n-1) \cos(2n-1) \pi/2 = 0$
 $(\because \cos(2n-1)\frac{\pi}{2} = 0)$
continuous for all x.
5.[D] $f(x) = k \ln x$

put
$$x = e$$

 $k = 1$
 \therefore $f(x) = ln x$

6.[D]
$$f(x) = [x]^2 - [x^2]$$

Let us check continuity at $x = 0 \& 1$
L.H.L. $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} [x]^2 - [x^2]$
 $= \lim_{h \to 0} [0-h]^2 - [(0-h)^2]$

= +1 - 0 = 1R.H.L. $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} [x]^2 - [x^2]$ $= \lim_{h \to 0} [0 + h]^2 - [(0 + h)]^2$ h→0 0 - 0 = 0L.H.L. \neq R.H.L. \therefore f(x) is not continuous at x = 0 at x = 1L.H.L. $\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0^{-}} [1-h]^2 - [(1-h)^2]$ 0 - 0 = 0R.H.L. $\lim_{x \to 1^+} f(x) = \lim_{h \to 0} [(1+h)]^2 - [(1+h)^2]$ $x \rightarrow l^{+}$ = 1 - 1 = 0 $f(1) = [1]^2 - [1^2] = 0$ \therefore f(x) is continuous at x = 1 clearly f(x) is discontinuous at all other integers except 1 7.[B] $f(x) = [tan^2x]$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} [\tan^2 x]$ for continuity at x = 0 $f(0) = [\tan^2 0] = [0] = 0$ L.H.L. $\lim_{h\to 0} [\tan^2(0-h)]$ = $\lim_{n \to \infty} [\tan^2 h] = [\text{Value greater then 0 less then 1}]$ h→0 = 0R.H.L. $\lim_{h\to 0} [\tan^2(0-h)]$ $= \lim_{h \to 0} [\tan^2 h]$ = [Value greater then 0 & less then 1] = 0 \therefore L.H.L. = R.H.L. = f(0) \therefore f(x) is continuous at x = 0 8.[A] g(x) = x f(x) & $f(x) = \begin{cases} x \sin 1/x, & x \neq 0 \\ 0 & x = 0 \end{cases}$ $g(x) = xf(x) = \begin{cases} x^{2} \sin \frac{1}{x} : x \neq 0\\ 0 & x = 0 \end{cases}$ $\therefore \text{ we know function } \begin{cases} x^{\alpha} \sin \frac{1}{x} : x \neq 0\\ 0 & x = 0 \end{cases} \text{ is }$ differentiable when $\alpha > 1$ in g(x) $\alpha = 2$: it is differentiable Now g'(x) = $\begin{cases} x^{2} \cos \frac{1}{x} \left(-\frac{1}{x^{2}} \right) + \sin \frac{1}{x} \cdot 2x ; x \neq 0 \\ 0 & x = 0 \end{cases}$ $= \begin{cases} -\cos\frac{1}{x} + 2x\sin\frac{1}{x}; x \neq 0\\ 0 \qquad x = 0 \end{cases}$

for continuity at x = 0L.H.L. $\lim_{h \to 0} -\cos \frac{1}{0-h} + 2(0-h) \sin \frac{1}{0-h}$ $\lim_{h \to 0} -\cos \frac{1}{h} + 2h \sin \frac{1}{h}$ $-\cos \frac{1}{0} + 2 \times 0 = -$ (value between -1 and $1) \neq$ unique $\Rightarrow g'(x)$ is discontinuous at x = 09.[C] $f\left(\frac{x+y}{2}\right) = \frac{f(x)+f(y)}{2}$ differentiating both side keeping y as constant $f\left(\frac{x+y}{2}\right) \left[\frac{1+0}{2}\right] = \frac{f'(x)+0}{2}$

$$\Rightarrow \frac{1}{2} f'\left(\frac{x+y}{2}\right) = \frac{f'(x)}{2}$$

put x = 0
f'(y/2) = -1
put y = 4
f'(2) = -1

10.[A]

minimum (x, x^2) sharp point at x = 0, 1 \Rightarrow Not differentiable at x = 0, 1

11.[D]

 $(x+1)(x-1)|(x-1)(x-2)| + \cos x$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ $D \qquad D \qquad N.D \text{ at } x = 2 \qquad D$ (x - x - x) = |x| = 0

 $(\because \cos |\mathbf{x}| = \cos \mathbf{x})$

 $\Rightarrow \text{Not differentiable at } x = 2$ **12.[D]** $f(x) = \max \{x, x^3\}$

by graph

$$f(x) = \begin{cases} x & ; \quad x \leq -1 \\ x^3 & ; \quad -1 \leq x \leq 0 \\ x & ; \quad 0 \leq x \leq 1 \\ x^3 & ; \quad x \geq 1 \end{cases}$$

at x = 1, -1, 0 there is sharp point \therefore f(x) is not differentiable at these points 13.[A] f(x) = [x] sin πx at x = k we have to find out L.H.D. \therefore x is just less then k \therefore [k - h] = k - 1 \therefore f(x) = $(k-1)sin \pi x$ L.H.L. of f(x) = $\lim_{x \to k^{-}} \frac{f(x) - f(k)}{x - k}$ $= \lim_{h \to 0} \frac{f(k - h) - f(k)}{-h}$ $= \lim_{h \to 0} \frac{(k - 1)sin(\pi)(k - h) - k sin \pi k}{-h}$ $= \lim_{h \to 0} \frac{(k - 1)sin(\pi)(k - h) - k sin \pi k}{-h}$ $= \lim_{h \to 0} \frac{(k - 1)sin(\pi k - \pi h) - 0}{-h}$ $= \lim_{h \to 0} \frac{(k - 1)(-1)^{k-1}sin \pi h}{-h}$ $= \lim_{h \to 0} \frac{(k - 1)(-1)^{k-1}sin \pi h}{-\pi h} \times \pi$ $(x - h) = -sin \theta)$ $= -(k-1) (-1)^{k-1}\pi$ $= (k-1) (-1)^k\pi$

14.[D]
$$f(x) = \begin{bmatrix} \sin x - x, & x \ge 0 \\ -\sin x + x, & x < 0 \end{bmatrix}$$

 $f'(x) = \begin{bmatrix} \cos x - 1, & x > 0 \\ -\cos x + 1, & x < 0 \end{bmatrix}$
 $f'(0+) = 1-1=0$
 $f'(0-) = -1+1=0 \end{bmatrix} \Rightarrow \text{diff. at } x = 0$

15.[A] f(x) = ||x| - 1|

using graphical transformation

 $x = 0, \pm 1$

16.[C]
$$g(x) = \frac{(x-1)^{n}}{\log \cos^{m}(x-1)}$$

Left hand derivative of $|x - 1|$ at $x = 1$ is $-1 = p$
(given)
 $\therefore \lim_{x \to 1^{+}} g(x) = p$
 $\Rightarrow \lim_{h \to 0} \frac{h^{n}}{\log \cos^{m} h} = -1$
 $\Rightarrow \lim_{h \to 0} \frac{n h^{n-1}}{m \cdot \frac{1}{\cosh}(-\sinh)} = -1$ (applying D)
 $= \lim_{h \to 0} \frac{n}{m} \cdot \frac{h^{n-1} \cosh}{\sinh} = 1$
If $n = 2$ then
 $\lim_{h \to 0} \frac{2}{m} \cdot \frac{h}{\sinh} \cosh = 1$
 $\Rightarrow \frac{2}{m} = 1$
 $\Rightarrow m = 2$

17.[B,C] $f : R \rightarrow R$

$$\begin{split} f(x + y) &= f(x) + f(y) \\ \Rightarrow f(x) &= \lambda x \\ \text{Which of equation of straight line} \\ \text{Which is continuous & differentiable every} \\ \text{where & } f'(x) &= \lambda \qquad (\text{constant function}) \end{split}$$

18.[A, B, C, D]

$$f(x) = \begin{cases} -x - \frac{\pi}{2}, & x \le -\frac{\pi}{2} \\ -\cos x, & -\frac{\pi}{2} < x \le 0 \\ x - 1, & 0 < x \le 1 \\ \ln x, & x > 1 \end{cases}$$

Option (A)

at
$$x = -\frac{\pi}{2}$$
 L.H.L. $\lim_{h \to 0} -\left(-\frac{\pi}{2} - h\right) - \frac{\pi}{2} = 0$
R.H.L. $\lim_{h \to 0} -\cos\left(-\frac{\pi}{2} - h\right) = 0$
 $f\left(-\frac{\pi}{2}\right) = -\left(-\frac{\pi}{2}\right) - \frac{\pi}{2} = 0$
 \therefore f(x) is continuous at $x = -\frac{\pi}{2}$

Option (B) LHD at x = 0 is zero R.H.D. at x = 0 is 1 \therefore not diff. at x = 0Option (C) L.H.D. at x = 1 is 1 R.H.D. at x = 1 is 1 differentiable at x = 1Option (D) $f'\left(-\frac{3}{2}\right) = \sin\left(-\frac{3}{2}\right)$ differentiable

$$\begin{array}{l} \textbf{19.[B, D]} \ At \ x = 2n \\ x \rightarrow 2n^{+} \ a_{n} + \sin 2n\pi = a_{n} \\ x \rightarrow 2n^{-} \ b_{n} + \cos 2n\pi = b_{n} + 1 \\ For \ continuous \ a_{n} = b_{n} + 1 \\ At \ x = 2n + 1 \\ x \rightarrow 2n + 1^{+} \ b_{n+1} + \cos \pi (2n+1) = b_{n+1} - 1 \\ x \rightarrow 2n + 1^{-} a_{n} + \sin \pi (2n+1) = a_{n} \\ for \ continuous \ a_{n} = b_{n+1} - 1 \\ a_{n} - b_{n+1} = -1 \\ for \ n = n - 1a_{n-1} - b_{n} = -1 \end{array}$$

20.[B]
$$f'(0+h) = \lim_{h \to 0} \frac{h^2 \left| \cos \frac{\pi}{h} \right| - 0}{h - 0} = 0$$

 $f'(0-h) = \lim_{h \to 0} \frac{h^2 \left| \cos \frac{\pi}{h} \right| - 0}{-h} = 0$
 $\therefore f'(0^+) = f'(0^-) = 0 = \text{finite}$
So $f(x)$ is differentiable at $x = 0$

$$f'(2+h) = \lim_{h \to 0} \frac{(2+h)^2 \left| \cos\left(\frac{\pi}{2+h}\right) \right| - 0}{h} = \pi$$
$$f'(2-h) = \lim_{h \to 0} \frac{(2-h)^2 \left| \cos\left(\frac{\pi}{2-h}\right) \right| - 0}{-h} = -\pi$$

: $f'(2^+) \neq f'(2^-)$ but both are finite so f(x) is not differentiable at x = 2 but continuous at x = 2