JEE MAIN + ADVANCED

MATHEMATICS

TOPIC NAME
 CONTINUITY

DIFFERENTIABILITY

(PRACTICE SHEET)

LEVEL-1

Question based on

Continuity of a function at a point

Q. 1 Function $f(x)=\left\{\begin{array}{ll}1+x, & \text { when } x<2 \\ 5-x, & \text { when } x>2\end{array} ; x=2\right.$ is continuous at $\mathrm{x}=2$, if $\mathrm{f}(2)$ equals -
(A) 0
(B) 1
(C) 2
(D) 3
Q. 2 If $f(x)=\left\{\begin{array}{cl}x \cos \frac{1}{x}, & x \neq 0 \\ k & x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$, then
(A) $\mathrm{k}>0$
(B) $\mathrm{k}<0$
(C) $\mathrm{k}=0$
(D) $\mathrm{k} \geq 0$
Q. 3 If function $f(x)=\left\{\begin{array}{ll}x^{2}+2, & x>1 \\ 2 x+1, & x=1\end{array}\right.$ is continuous at $x=1$, then value of $f(x)$ for $x<1$ is-
(A) 3
(B) $1-2 x$
(C) $1-4 x$
(D) None of these
Q. 4 Which of the following function is continuous at $\mathrm{x}=0$ -
(A) $f(x)=\left\{\begin{array}{cc}\sin \frac{2 x}{x}, & x \neq 0 \\ 1, & x=0\end{array}\right.$
(B) $f(x)=\left\{\begin{array}{cc}(1+x)^{1 / x}, & x \neq 0 \\ 1, & x=0\end{array}\right.$
(C) $f(x)=\left\{\begin{array}{cc}e^{-1 / x}, & x \neq 0 \\ 1, & x=0\end{array}\right.$
(D) None of these
Q. 5 If $f(x)=\left\{\begin{array}{ll}6 \times 5^{x}, & x \leq 0 \\ 2 a+x, & x>0\end{array}\right.$ is continuous at $x=0$, then the value of a is -
(A) 1
(B) 2
(C) 3
(D) None of these
Q. 6 If $f(x)=\left\{\begin{array}{cl}\frac{x^{2}-(a+2) x+a}{x-2} & x \neq 2 \\ 2, & x=2\end{array}\right.$ is continuous at $x=2$, then a is equal to-
(A) 0
(B) 1
(C) -1
(D) 2
Q. 7 If $f(x)=\left\{\begin{array}{cl}\frac{\sin ^{-1} a x}{x}, & x \neq 0 \\ k, & x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$, then k is equal to-
(A) 0
(B) 1
(C) a
(D) None of these
Q. 8 What is the value of $(\cos x)^{1 / x}$ at $x=0$ so that it becomes continuous at $x=0$ -
(A) 0
(B) 1
(C) -1
(D) e
Q. 9 If $f(x)=\left\{\begin{array}{cl}\frac{k \cos x}{\pi-2 x}, & x \neq \pi / 2 \\ 1, & x=\pi / 2\end{array}\right.$ is a continuous function at $\mathrm{x}=\pi / 2$, then the value of k is-
(A) -1
(B) 1
(C) -2
(D) 2
Q. 10 If function $f(x)=\frac{x^{3}-a^{3}}{x-a}$, is continuous at $x=a$, then the value of $f(a)$ is -
(A) 2 a
(B) $2 a^{2}$
(C) 3 a
(D) $3 a^{2}$
Q. 11 If $f(x)=\left\{\begin{array}{cl}\sin \frac{1}{x}, & x \neq 0 \\ k, & x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$, then k is equal to -
(A) 8
(B) 1
(C) -1
(D) None of these
Q. 12 Function $f(x)=\left(1+\frac{x}{a}\right)^{1 / x}$ is continuous at $x=0$ if $f(0)$ equals-
(A) e^{a}
(B) $\mathrm{e}^{-\mathrm{a}}$
(C) 0
(D) $e^{1 / a}$
Q. 13 If $f(x)=\frac{1-\cos 7(x-\pi)}{x-\pi},(x \neq \pi)$ is continuous at $x=\pi$, then $\mathrm{f}(\pi)$ equals-
(A) 0
(B) 1
(C) -1
(D) 7
Q. 14 If $f(x)=\left\{\begin{array}{cl}\frac{\tan x}{\sin x}, & x \neq 0 \\ 1, & x=0\end{array}\right.$, then $f(x)$ is -
(A) continuous everywhere
(B) continuous nowhere
(C) continuous at $x=0$
(D) continuous only at $x=0$
Q. 15 If $\mathrm{f}(\mathrm{x})=\frac{2 \mathrm{x}+\tan \mathrm{x}}{\mathrm{x}}$ is continuous at $\mathrm{x}=0$, then $f(0)$ equals-
(A) 0
(B) 1
(C) 2
(D) 3
Q. 16 If $f(x)=\frac{\sqrt{1+x}-\sqrt[3]{1+x}}{x},(x \neq 0)$ is continuous at $x=0$, then the value of $f(0)$ is-
(A) $1 / 6$
(B) $1 / 4$
(C) 2
(D) $1 / 3$
Q. 17 If $f(x)=\left\{\begin{array}{clc}a x^{2}-b & \text { when } 0 \leq x<1 \\ 2 & \text { when } & x=1 \\ x+1 & \text { when } & 1<x \leq 2\end{array} \quad\right.$ is continuous at $\mathrm{x}=1$, then the most suitable values of a, b are-
(A) $a=2, b=0$
(B) $\mathrm{a}=1, \mathrm{~b}=-1$
(C) $a=4, b=2$
(D) All the above
Q. 18 If $f(x)=\left\{\begin{array}{ll}|x|, & \text { when } \quad x<0 \\ x, & \text { when } 0 \leq x<1 \\ 1, & \text { when } \quad x>1\end{array}\right.$ then f is -
(A) continuous for every real number x
(B) discontinuous at $\mathrm{x}=0$
(C) discontinuous at $x=1$
(D) discontinuous at $x=0$ and $x=1$
Q. 19 If $f(x)=\left\{\begin{array}{cc}\sin (1 / x), & x \neq 0 \\ 0, & x=0\end{array}\right.$, then it is discontinuous at -
(A) $x=0$
(B) All points
(C) No point
(D) None of these
Q. 20 Function $f(x)=x-|x|$ is-
(A) discontinuous at $x=0$
(B) discontinuous at $x=1$
(C) continuous at all points
(D) discontinuous at all points
Q. 21 Function $f(x)=\tan x$, is discontinuous at-
(A) $x=0$
(B) $x=\pi / 2$
(C) $x=\pi$
(D) $x=-\pi$
Q. 22 Function $f(x)=[x]$ is discontinuous at-
(A) every real number
(B) every natural number
(C) every integer
(D) No where
Q. 23 Function $f(x)=3 x^{2}-x$ is-
(A) discontinuous at $x=1$
(B) discontinuous at $x=0$
(C) continuous only at $x=0$
(D) continuous at $x=0$
Q. 24 If $f(x)=\left\{\begin{array}{clc}x^{2}, & \text { when } \quad x \leq 0 \\ 1, & \text { when } 0<x<1, \text { then } f(x) \text { is- } \\ 1 / x, & \text { when } \quad x \geq 1\end{array}\right.$
(A) continuous at $x=0$ but not at $x=1$
(B) continuous at $x=1$ but not at $x=0$
(C) continuous at $x=0$ and $x=1$
(D) discontinuous at $x=0$ and $x=1$
Q. 25 Function $f(x)=\left\{\begin{array}{cl}-1, & x \in Q \\ 1, & x \notin Q\end{array}\right.$ is-
(A) continuous at $x=0$
(B) continuous at $x=1$
(C) every where continuous
(D) every where discontinuous
Q. 26 If $f(x)=\left\{\begin{array}{cc}-x^{2}, & x \leq 0 \\ 5 x-4, & 0<x \leq 1 \\ 4 x^{2}-3 x, & 1<x<2 \\ 3 x+4, & x \geq 2\end{array}\right.$, then $f(x)$ is-
(A) continuous at $x=0$ but not at $x=1$
(B) continuous at $x=2$ but not at $x=0$
(C) continuous at $x=0,1,2$
(D) discontinuous at $\mathrm{x}=0,1,2$
Q. 27 Function $f(x)=\left\{\begin{array}{cl}\frac{x^{2}-4 x+3}{x^{2}-1}, & x \neq 1 \\ 2, & x=1\end{array}\right.$ is-
(A) continuous at $x=1$
(B) continuous at $x=-1$
(C) continuous at $x=1$ and $x=-1$
(D) discontinuous at $\mathrm{x}=1$ and $\mathrm{x}=-1$
Q. 28 Let $f(x)=3-|\sin x|$, then $f(x)$ is-
(A) Everywhere continuous
(B) Everywhere discontinuous
(C) Continuous only at $x=0$
(D) Discontinuous only at $x=0$
Q. 29 The function $f(x)=\left\{\begin{array}{cc}x-1, & x<2 \\ 2 x-3, & x \geq 2\end{array}\right.$ is a continuous function for-
(A) all real values of x
(B) only $x=2$
(C) all real values of $x \neq 2$
(D) only all integral values of x
Q. $30 \quad$ If $f(x)=\left\{\begin{array}{cc}x \sin x, & 0<x \leq \pi / 2 \\ \frac{\pi}{2} \sin (\pi+x), & \frac{\pi}{2}<x<\pi\end{array}\right.$, then -
(A) $f(x)$ is discontinuous at $x=\pi / 2$
(B) $f(x)$ is continuous at $x=\pi / 2$
(C) $f(x)$ is continuous at $x=0$
(D) None of these
Q. 31 The value of k so that
$f(x)=\left\{\begin{array}{cc}k\left(2 x-x^{2}\right) & \text { when } x<0 \\ \cos x, & \text { when } x \geq 0\end{array}\right.$
continuous at $x=0$ is-
(A) 1
(B) 2
(C) 4
(D) None of these
Q. 32 If $f(x)=\frac{(a+x)^{2} \sin (a+x)-a^{2} \sin a}{x}, x \neq 0$; then the value of $f(0)$ so that f is continuous at $\mathrm{x}=0$ is-
(A) $a^{2} \cos a+a \sin a$
(B) $a^{2} \cos a+2 a \sin a$
(C) $2 a^{2} \cos a+a \sin a$
(D) None of these
Q. 33 Let $\mathrm{f}(\mathrm{x})=|\mathrm{x}|+|\mathrm{x}-1|$, then-
(A) $f(x)$ is continuous at $x=0$ and $x=1$
(B) $f(x)$ is continuous at $x=0$ but not at $x=1$
(C) $f(x)$ is continuous at $x=1$ but not at $x=0$
(D) None of these
Q. 34 Consider the following statements:
I. A function f is continuous at a point $x_{0} \in \operatorname{Dom}(f)$ if $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.
II. f is continuous in [a, b] if f is continuous in (a, b) and $f(a)=f(b)$.
III. A constant function is continuous in an interval.
Out of these correct statements are
(A) I and II
(B) II and III
(C) I and III
(D) All the above
Q. 35 If $f(x)=\left\{\begin{array}{ccc}x+2, & \text { when } \quad x<1 \\ 4 x-1, & \text { when } 1 \leq x \leq 3, \\ x^{2}+5, & \text { when } \quad x>3\end{array}\right.$ then correct statement is-
(A) $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 3} f(x)$
(B) $f(x)$ is continuous at $x=3$
(C) $f(x)$ is continuous at $x=1$
(D) $f(x)$ is continuous at $x=1$ and 3
Q. 36 Let $f(x)$ and $\phi(x)$ be defined by $f(x)=[x]$ and $\phi(x)=\left\{\begin{array}{ll}0, & x \in I \\ x^{2}, & x \in R-I\end{array} \quad[]=\right.$. G.I.F.
(A) $\lim _{x \rightarrow 1} \phi(x)$ exist but ϕ is not continuous at $x=1$
(B) $\lim _{x \rightarrow 1} f(x)$ does not exist and f is continuous at $x=1$
(C) ϕ is continuous for all x
(D) None of these
Q. $37 f(x)=\left\{\begin{array}{cl}\frac{x-4}{|x-4|}+a, & x<4 \\ a+b, & x=4 \\ \frac{x-4}{|x-4|}+b, & x>4\end{array}\right.$ is continuous at $x=4$, if-
(A) $\mathrm{a}=0, \mathrm{~b}=0$
(B) $\mathrm{a}=1, \mathrm{~b}=1$
(C) $a=1, b=-1$
(D) $a=-1, b=1$
Q. 38 The function $f(x)=\frac{\cos x-\sin x}{\cos 2 x}$ is continuous everywhere then $\mathrm{f}(\pi / 4)=$
(A) 1
(B) -1
(C) $\sqrt{2}$
(D) $1 / \sqrt{2}$
Q. 39 If $f(x)=\frac{\tan \left(\frac{\pi}{4}-x\right)}{\cot 2 x}, x \neq \pi / 4$ is every where continuous, then $f(\pi / 4)$ equals-
(A) 0
(B) 1
(C) -1
(D) $1 / 2$

Question based on

Continuity from left and right

Q. 40 If $f(x)=\left\{\begin{array}{cc}\frac{x}{\mathrm{e}^{1 / x}+1}, & x \neq 0 \\ 0, & x=0\end{array}\right.$, then -
(A) $\lim _{x \rightarrow 0^{+}} f(x)=1$
(B) $\lim _{x \rightarrow 0^{-}} f(x)=1$
(C) $f(x)$ is continuous at $x=0$
(D) None of these
Q. 41 If $\mathrm{f}(\mathrm{x})=[\mathrm{x}]$, where $[\mathrm{x}]=$ greatest integer $\leq \mathrm{x}$, then at $\mathrm{x}=1$, f is-
(A) continuous
(B) left continuous
(C) right continuous
(D) None of these

Continuity of a function in an interval
Q. 42 If $f(x)=\left\{\begin{array}{cc}\frac{\sqrt{1+p x}-\sqrt{1-p x}}{x}, & -1 \leq x<0 \\ \frac{2 x+1}{x-2}, & 0 \leq x \leq 1\end{array} \quad\right.$ is continuous in the interval $[-1,1]$ then p equals -
(A) -1
(B) 1
(C) $1 / 2$
(D) $-1 / 2$
Q. 43 If $f(x)=\left\{\begin{array}{cc}\frac{x^{2}}{a}, & 0 \leq x<1 \\ a, & 1 \leq x<\sqrt{2} \\ \frac{\left(2 b^{2}-4 b\right)}{x^{2}}, & \sqrt{2} \leq x<\infty\end{array}\right.$ is continuous in the interval $[0, \infty)$, then values of a and b are respectively -
(A) $1,-1$
(B) $-1,1+\sqrt{2}$
(C) $-1,1$
(D) None of these
Q. 44 Which of the following function is not continuous in the interval $(0, \pi)$
(A) $x \sin \frac{1}{x}$
(B) $\left\{\begin{array}{cl}1, & 0<x \leq \frac{3 \pi}{4} \\ 2 \sin \left(\frac{2 x}{9}\right), & \frac{3 \pi}{4}<x<\pi\end{array}\right.$
(C) $\tan x$
(D) None of these

Question
 based on

Continuous and discontinuous function

Q. 45 Function $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$ is-
(A) discontinuous at $x=0$
(B) discontinuous at $\mathrm{x}=1$
(C) continuous at all point
(D) discontinuous at all points
Q. 46 Point of discontinuity for $\sec x$ is -
(A) $x=-\pi / 2$
(B) $x=3 \pi / 2$
(C) $x=-5 \pi / 2$
(D) All of these
Q. 47 Function $f(x)=\frac{1}{\log |x|}$ is discontinuous at -
(A) one point
(B) two points
(C) three points
(D) infinite number of points
Q. 48 If $f(x)=x-[x]$, then f is discontinuous at -
(A) every natural number
(B) every integer
(C) origin
(D) Nowhere
Q. 49 Which one is the discontinuous function at any point -
(A) $\sin x$
(B) x^{2}
(C) $1 /(1-2 x)$
(D) $1 /\left(1+x^{2}\right)$
Q. 50 The point of discontinuity of $\operatorname{cosec} x$ is -
(A) $x=\pi$
(B) $x=\pi / 2$
(C) $x=3 \pi / 2$
(D) None of these
Q. 51 In the following, continuous function is-
(A) $\tan x$
(B) $\sec \mathrm{x}$
(C) $\sin 1 / x$
(D) None of these
Q. 52 In the following, discontinuous function is-
(A) $\sin x$
(B) $\cos x$
(C) $\tan x$
(D) e^{x}
Q. 53 Which of the following functions is every where continuous-
(A) $\mathrm{x}+|\mathrm{x}|$
(B) $x-|x|$
(C) $\mathrm{x}|\mathrm{x}|$
(D) All above
Q. 54 Which of the following functions is discontinuous at $\mathrm{x}=\mathrm{a}-$
(A) $\tan (x-a)$
(B) $\sin (x-a)$
(C) $\operatorname{cosec}(x-a)$
(D) $\sec (x-a)$
Q. 55 If $f(x)$ is continuous and $g(x)$ is discontinuous function, then $f(x)+g(x)$ is-
(A) continuous function
(B) discontinuous function
(C) constant function
(D) identity function
Q. 56 Function $f(x)=|x-2|-2|x-4|$ is discontinuous at
(A) $x=2,4$
(B) $\mathrm{x}=2$
(C) Nowhere
(D) Except $\mathrm{x}=2,4$
Q. 57 Function $\mathrm{f}(\mathrm{x})=|\sin \mathrm{x}|+|\cos \mathrm{x}|+|\mathrm{x}|$ is discontinuous at-
(A) $\mathrm{x}=0$
(B) $x=\pi / 2$
(C) $x=\pi$
(D) No where
Q. 58 Function $\mathrm{f}(\mathrm{x})=1+|\sin \mathrm{x}|$ is-
(A) continuous only at $\mathrm{x}=0$
(B) discontinuous at all points
(C) continuous at all points
(D) None of these
Q. 59 If function is $\mathrm{f}(\mathrm{x})=|\mathrm{x}|+|\mathrm{x}-1|+|\mathrm{x}-2|$, then it is -
(A) discontinuous at $\mathrm{x}=0$
(B) discontinuous at $\mathrm{x}=0,1$
(C) discontinuous at $\mathrm{x}=0,1,2$
(D) everywhere continuous
Q. 60 Function $f(x)=\frac{x^{3}-1}{x^{2}-3 x+2}$ is discontinuous at -
(A) $\mathrm{x}=1$
(B) $x=2$
(C) $x=1,2$
(D) No where
Q. 61 If $f(x)=\frac{1}{(1-x)}$ and $g(x)=f[f\{f(x)\}]$, then $g(x)$ is discontinuous at -
(A) $\mathrm{x}=3$
(B) $x=2$
(C) $\mathrm{x}=0$
(D) $x=4$
Q. 62 The function $f(x)=\frac{|3 x-4|}{3 x-4}$ is discontinuous at
(A) $x=4$
(B) $x=3 / 4$
(C) $x=4 / 3$
(D) No where
Q. 63 The function $\mathrm{f}(\mathrm{x})=\left(\frac{\pi}{2}-\mathrm{x}\right) \tan \mathrm{x}$ is discontinuous at-
(A) $x=\pi$
(B) $x=0$
(C) $\mathrm{x}=\frac{\pi}{2}$
(D) None of these
Q. 64 Which of the following function has finite number of points of discontinuity-
(A) $\sin [\pi x]$
(B) $|x| / x$
(C) $\tan x$
(D) $x+[x]$
Q. 65 The points of discontinuity of
$f(x)=\tan \left(\frac{\pi x}{x+1}\right)$ other than $x=-1$ are-
(A) $x=\pi$
(B) $x=0$
(C) $\mathrm{x}=\frac{2 \mathrm{~m}-1}{2 \mathrm{~m}+1}$
(D) $\mathrm{x}=\frac{2 \mathrm{~m}+1}{1-2 \mathrm{~m}}, \mathrm{~m}$ is any integer
Q. 66 In the following continuous function is-
(A) $[\mathrm{x}]$
(B) $\mathrm{x}-[\mathrm{x}]$
(C) $\sin [\mathrm{x}]$
(D) $\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}$
Q. 67 In the following, discontinuous function is-
(A) $\sin ^{2} x+\cos ^{2} x$
(B) $e^{x}+e^{-x}$
(C) $\mathrm{e}^{\mathrm{x} 2}$
(D) $e^{1 / x}$
Q. 68 If $f(x)$ is continuous function and $g(x)$ is discontinuous function, then correct statement is -
(A) $f(x)+g(x)$ is a continuous function
(B) $f(x)-g(x)$ is a continuous function
(C) $f(x)+g(x)$ is a discontinuous function
(D) $f(x) g(x)$ is a continuous function

Question based on

Differentiability of function

Q. 69 Which of the following functions is not differentiable at $\mathrm{x}=0$ -
(A) $x|x|$
(B) x^{3}
(C) $\mathrm{e}^{-\mathrm{x}}$
(D) $x+|x|$
Q. 70 Which of the following is differentiable function-
(A) $x^{2} \sin \frac{1}{x}$
(B) $x|x|$
(C) $\cosh x$
(D) all above
Q. 71 The function $f(x)=\sin |x|$ is-
(A) continuous for all x
(B) continuous only at certain points
(C) differentiable at all points
(D) None of these
Q. 72 If $f(x)=|x-3|$, then f is-
(A) discontinuous at $x=2$
(B) not differentiable at $x=2$
(C) differentiable at $x=3$
(D) continuous but not differentiable at $\mathrm{x}=3$
Q. 73 If $f(x)=\frac{|x-1|}{x-1}, x \neq 1$, and $f(1)=1$, then the correct statement is-
(A) discontinuous at $x=1$
(B) continuous at $x=1$
(C) differentiable at $x=1$
(D) discontinuous for $\mathrm{x}>1$
Q. 74 If $f(x)=\left\{\begin{array}{cl}x+1, & x>1 \\ 0, & x=1 \\ 7-3 x, & x<1\end{array}\right.$, then $f^{\prime}(0)$ equals-
(A) 1
(B) 2
(C) 0
(D) -3
Q. 75 The function $f(x)=|x|+|x-1|$ is not differential at -
(A) $x=0,1$
(B) $x=0,-1$
(C) $x=-1,1$
(D) $x=1,2$
Q. 76 If $f(x)=\left\{\begin{array}{cc}e^{1 / x}, & x \neq 0 \\ 0, & x=0\end{array}\right.$, then which one is correct-
(A) $f(x)$ is differentiable at $x=0$
(B) $f(x)$ is discontinuous at $x=0$
(C) $f(x)$ is continuous no where
(D) None of these
Q. 77 Function [x] is not differentiable at -
(A) every rational number
(B) every integer
(C) origin
(D) every where
Q. 78 If $f(x)=\left\{\begin{array}{cl}|x-3|, & \text { when } x \geq 1 \\ \frac{x^{2}}{4}-\frac{3 x}{2}+\frac{13}{4}, & \text { when } x<1\end{array}\right.$, then correct statement is-
(A) f is discontinuous at $x=1$
(B) f is discontinuous at $x=3$
(C) f is differentiable at $\mathrm{x}=1$
(D) f is differentiable at $\mathrm{x}=3$
Q. 79 Function $f(x)=\frac{|x|}{x}$ is-
(A) continuous every where
(B) differentiable every where
(C) differentiable every where except at $x=0$
(D) None of these
Q. 80 Let $f(x)=|x-a|+|x-b|$, then-
(A) $f(x)$ is continuous for all $x \in R$
(B) $f(x)$ is differential for $\forall x \in R$
(C) $f(x)$ is continuous except at $x=a$ and b
(D) None of these
Q. 81 Function $f(x)=|x-1|+|x-2|$ is differentiable in $[0,3]$, except at-
(A) $x=0$ and $x=3$
(B) $x=1$
(C) $x=2$
(D) $x=1$ and $x=2$
Q. 82 If $f(x)=\left\{\begin{array}{cc}1, & \text { when } x<0 \\ 1+\sin x, & \text { when } 0 \leq x \leq \pi / 2\end{array}\right.$, then at $x=0, f^{\prime}(x)$ equals-
(A) 1
(B) 0
(C) ∞
(D) Does not exist
Q. 83 If $f(x)=\left\{\begin{array}{cc}\frac{x}{1+e^{1 / x}}, & x \neq 0 \\ 0, & x=0\end{array}\right.$, then the function $\mathrm{f}(\mathrm{x})$ is differentiable for -
(A) $\mathrm{x} \in \mathrm{R}_{+}$
(B) $x \in R$
(C) $\mathrm{x} \in \mathrm{R}_{0}$
(D) None of these
Q. 84 If $f(x)=\left\{\begin{array}{cl}x^{\alpha} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right.$ is differentiable at $\mathrm{x}=0$, then-
(A) $\alpha>0$
(B) $\alpha>1$
(C) $\alpha \geq 1$
(D) $\alpha \geq 0$
Q. 85 If $f(x)=\left\{\begin{array}{cc}e^{x}, & x \leq 0 \\ |1-x|, & x>0\end{array}\right.$, then $f(x)$ is-
(A) continuous at $\mathrm{x}=0$
(B) differentiable at $\mathrm{x}=0$
(C) differentiable at $\mathrm{x}=1$
(D) differentiable both at $\mathrm{x}=0$ and 1
Q. 86 The function $f(x)=x-|x|$ is not differentiable at
(A) $x=1$
(B) $x=-1$
(C) $x=0$
(D) Nowhere
Q. 87 Which of the following function is not differentiable at $\mathrm{x}=1$
(A) $\sin ^{-1} x$
(B) $\tan x$
(C) a^{x}
(D) $\sin x$
Q. 88 If $f(x)=\left\{\begin{array}{cc}\frac{x-1}{2 x^{2}-7 x+5}, & x \neq 1 \\ -\frac{1}{3} & x=1\end{array}\right.$, then $f^{\prime}(1)$ equals -
(A) $\frac{2}{9}$
(B) $-\frac{2}{9}$
(C) 0
(D) Does not exist
Q. 89 If $f(x)=\left\{\begin{array}{cc}\frac{\sin x^{2}}{x}, & x \neq 0 \\ 0 & x=0\end{array}\right.$, then at $x=0, f(x)$ is
(A) continuous and differentiable
(B) neither continuous nor differentiable
(C) continuous but not differentiable
(D) None of these
Q. $90 \quad$ Function $\mathrm{f}(\mathrm{x})=1+|\sin \mathrm{x}|$ is-
(A) continuous no where
(B) differentiable no where
(C) everywhere continuous
(D) None of these
Q. 91 Function $f(x)=\left\{\begin{array}{cc}x^{2}, & x \leq 0 \\ 1, & 0<x \leq 1 \text { is- } \\ 1 / x, & x>1\end{array}\right.$
(A) differentiable at $\mathrm{x}=0,1$
(B) differentiable only at $\mathrm{x}=0$
(C) differentiable at only $x=1$
(D) Not differentiable at $\mathrm{x}=0,1$

LEVEL- 2

Q. 1 If [.] denotes G.I.F. then, in the following, continuous function is-
(A) $\cos [\mathrm{x}]$
(B) $\sin \pi[x]$
(C) $\sin \frac{\pi}{2}[x]$
(D) All above
Q. 2 If $f(x)=\frac{1-\cos (1-\cos x)}{x^{4}},(x \neq 0)$ is continuous everywhere, then $f(0)$ equals-
(A) $1 / 8$
(B) $1 / 2$
(C) $1 / 4$
(D) None of these
Q. 3 For function $f(x)=\left\{\begin{array}{cl}\left(1+\frac{4 x}{5}\right)^{1 / x}, & x \neq 0 \\ e^{4 / 5}, & x=0\end{array}\right.$, the correct statement is-
(A) $f(0+0)$ and $f(0-0)$ do not exist
(B) $f(0+0) \neq f(0-0)$
(C) $\mathrm{f}(\mathrm{x})$ continuous at $\mathrm{x}=0$
(D) $\lim _{x \rightarrow 0} f(x) \neq f(0)$
Q. 4 If $f(x)= \begin{cases}\frac{\sin (a+1) x+\sin x}{x}, & x<0 \\ c & x=0, \text { is } \\ \frac{\sqrt{x+b x^{2}}-\sqrt{x}}{b x \sqrt{x}}, & x>0\end{cases}$
continuous at $\mathrm{x}=0$, then
(A) $\mathrm{a}=3 / 2, \mathrm{c}=1 / 2, \mathrm{~b}$ is any real number
(B) $\mathrm{a}=-3 / 2, \mathrm{c}=1 / 2, \mathrm{~b}$ is $\mathrm{R}-\{0\}$
(C) $\mathrm{a}=3 / 2, \mathrm{c}=-1 / 2, \mathrm{~b} \in \mathrm{R}-\{0\}$
(D) None of these
Q. 5 Function $f(x)=4 x^{3}+3 x^{2}+e^{\cos x}+|x-3|+$ $\log \left(a^{x}-1\right)+x^{1 / 3}(a>1)$ is discontinuous at-
(A) $\mathrm{x}=0$
(B) $x=1$
(C) $\mathrm{x}=2$
(D) $x=\frac{\pi}{2}$
Q. 6 If $f(x)=\frac{\sqrt{a^{2}-a x+x^{2}}-\sqrt{a^{2}+a x+x^{2}}}{\sqrt{a+x}-\sqrt{a-x}}$ is $(a>0)$ continuous for all values of x, then $f(0)$ is equal to-
(A) $a \sqrt{a}$
(B) $\sqrt{\mathrm{a}}$
(C) $-\sqrt{a}$
(D) $-\mathrm{a} \sqrt{\mathrm{a}}$
Q. 7 Function $f(x)=\left\{\begin{array}{cl}\frac{\left(b^{2}-a^{2}\right)}{2}, & 0 \leq x \leq a \\ \frac{b^{2}}{2}-\frac{x^{2}}{6}-\frac{a^{3}}{3 x}, & a<x \leq b \text {, is } \\ \frac{1}{3}\left(\frac{b^{3}-a^{3}}{x}\right), & x>b\end{array}\right.$
(A) continue at $\mathrm{x}=\mathrm{a}$
(B) continue at $\mathrm{x}=\mathrm{b}$
(C) discontinue on both $\mathrm{x}=\mathrm{a}, \mathrm{x}=\mathrm{b}$
(D) continue at both $\mathrm{x}=\mathrm{a}, \mathrm{x}=\mathrm{b}$
Q. 8 The function $f(x)=\left\{\begin{array}{cc}\frac{\mathrm{e}^{1 / x}-1}{\mathrm{e}^{1 / x}+1}, & x \neq 0 \\ 0, & x=0\end{array}\right.$,
(A) is continuous at $\mathrm{x}=0$
(B) is not continuous at $\mathrm{x}=0$
(C) is continuous at $\mathrm{x}=2$
(D) None of these
Q. 9 If function $f(x)=\left(\frac{\sin x}{\sin \alpha}\right)^{1 / x-\alpha}$ where, $\alpha \neq m \pi$ ($\mathrm{m} \in \mathrm{I}$) is continuous then -
(A) $f(\alpha)=e^{\tan \alpha}$
(B) $\mathrm{f}(\alpha)=\mathrm{e}^{\cot \alpha}$
(C) $f(\alpha)=e^{2 \cot \alpha}$
(D) $f(\alpha)=\cot \alpha$
Q. 10 If $f(x)=\left\{\begin{array}{rc}-2 \sin x, & x \leq-\pi / 2 \\ \operatorname{asin} x+b, & -\pi / 2<x<\pi / 2 \text {, is a } \\ \cos x, & x \geq \pi / 2\end{array}\right.$ continuous function for every value x , then-
(A) $\mathrm{a}=\mathrm{b}=1$
(B) $\mathrm{a}=\mathrm{b}=-1$
(C) $a=1, b=-1$
(D) $a=-1, b=1$
Q. 11 If function $\mathrm{f}(\mathrm{x})=\mathrm{x}-\left|\mathrm{x}-\mathrm{x}^{2}\right|,-1 \leq \mathrm{x} \leq 1$ then f is-
(A) continuous at $\mathrm{x}=0$
(B) continuous at $\mathrm{x}=1$
(C) continuous at $\mathrm{x}=-1$
(D) everywhere continuous
Q. $12 f(x)=1+2^{1 / x}$ is-
(A) continuous everywhere
(B) continuous nowhere
(C) discontinuous at $\mathrm{x}=0$
(D) None of these
Q. 13 Let [.] denotes G.I.F. and $f(x)=[x]+[-x]$ and m is any integer, then correct statement is -
(A) $\lim _{\mathrm{x} \rightarrow \mathrm{m}} \mathrm{f}(\mathrm{x})$ does not exist
(B) $f(x)$ is continuous at $x=m$
(C) $\lim _{\mathrm{x} \rightarrow \mathrm{m}} \mathrm{f}(\mathrm{x})$ exists
(D) None of these
Q. 14 If $f(x)=(\tan x \cot \alpha)^{1 /(x-\alpha)}$ is continuous at $x=\alpha$, then the value of $f(\alpha)$ is -
(A) $\mathrm{e}^{2 \sin 2 \alpha}$
(B) $\mathrm{e}^{2 \operatorname{cosec} 2 \alpha}$
(C) $\mathrm{e}^{\operatorname{cosec} 2 \alpha}$ (D) $\mathrm{e}^{\sin 2 \alpha}$
Q. 15 Let [.] denotes G.I.F. for the function
$f(x)=\frac{\tan (\pi[x-\pi])}{1+[x]^{2}}$ the wrong statement is -
(A) $\mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=0$
(B) $f(x)$ is continuous for all values of x
(C) $f(x)$ is continuous at $x=0$
(D) $f(x)$ is a constant function
Q. 16 The point of discontinuity of the function $\mathrm{f}(\mathrm{x})=\frac{1+\cos 5 \mathrm{x}}{1-\cos 4 \mathrm{x}}$ is-
(A) $\mathrm{x}=0$
(B) $x=\pi$
(C) $x=\pi / 2$
(D) All the above
Q. 17 Let $f(x)=\frac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{x}$. The value which should be assigned to f at $x=0$ so that it is continuous everywhere is-
(A) 1
(B) 2
(C) -2
(D) $1 / 2$
Q. 18 If the function
$f(x)= \begin{cases}\frac{\sin (k+1) x+\sin x}{x}, & \text { when } x<0 \\ 1 / 2, & \text { when } x=0 \text { is } \\ \frac{\left(x+2 x^{2}\right)^{1 / 2}}{2 x^{3 / 2}}, & \text { when } x>0\end{cases}$
continuous at $\mathrm{x}=0$, then the value of k is-
(A) $1 / 2$
(B) $-1 / 2$
(C) $-3 / 2$
(D) 1
Q. 19 If $f(x)=\left\{\begin{array}{cc}3, & x<0 \\ 2 x+1, & x \geq 0\end{array}\right.$ then -
(A) both $\mathrm{f}(\mathrm{x})$ and $\mathrm{f}(|\mathrm{x}|)$ are differentiable at $x=0$
(B) $\mathrm{f}(|\mathrm{x}|)$ is differentiable but $\mathrm{f}(\mathrm{x})$ is not differentiable at $\mathrm{x}=0$
(C) $f(x)$ is differentiable but $f(|x|)$ is not differentiable at $\mathrm{x}=0$
(D) both $f(x)$ and $f(|x|)$ are not differentiable at $x=0$
Q. 20 The number of points in the interval $(0,2)$ where the derivative of the function
$f(x)=|x-1 / 2|+|x-1|+\tan x$ does not exist is-
(A) 1
(B) 2
(C) 3
(D) 4
Q. 21 Function $f(x)=\sin (\pi[x])$ is-
(A) differentiable every where
(B) differentiable no where
(C) not differentiable at $\mathrm{x}=1$ and -1
(D) None of these
Q. 22 Function $f(x)=\left\{\begin{array}{cl}x \tan ^{-1}(1 / x), & x \neq 0 \\ 0, & x=0\end{array}\right.$ at $x=0$ is-
(A) discontinuous
(B) continuous
(C) differentiable
(D) None of these
Q. 23 Function $f(x)=\frac{\cos x-\sin x}{\sin 4 x}$ is not defined at $\mathrm{x}=\frac{\pi}{4}$. The value which should be assigned to f at $x=\frac{\pi}{4}$, so that it is continuous there, is-
(A) 0
(B) $\frac{1}{2 \sqrt{2}}$ (C) $-\frac{1}{\sqrt{2}}$
(D) None
Q. 24 Let $f(x)=\max \{2 \sin x, 1-\cos x), x \in(0, \pi)$ Q. $27 \quad$ State which of the following is a false Then set of points of non-differentiability is -
(A) ϕ
(B) $\{\pi / 2\}$
(C) $\left\{\pi-\cos ^{-1} 3 / 5\right\}$
(D) $\left\{\cos ^{-1} 3 / 5\right\}$
Q. 25 If $f(x)=\left\{\begin{array}{ll}x \frac{e^{1 / x}-e^{-1 / x}}{e^{1 / x}+e^{-1 / x}}, & x \neq 0 \\ 0 & x=0\end{array}\right.$, then correct statement is-
(A) f is continuous at all points except $\mathrm{x}=0$
(B) f is continuous at every point but not differentiable
(C) f is differentiable at every point
(D) f is differentiable only at the origin
Q. 26 Consider the following statements-
(I) If a function is differentiable at some point then it must be continuous at that point
(II) If a function continuous at some point then it is not necessary that it is differentiable at that point.
(III) Differentiability of a function at some point is the necessary and sufficient condition for continuity at that point.
From above, correct statements are-
(A) I, II, III
(B) I, III
(C) I, II
(D) II, III
statement -
(A) If $f(x)$ is continuous at $x=a$ then
$f(a)=\lim _{x \rightarrow a} f(x)$
(B) If $\lim _{x \rightarrow a} f(x)$ exists, then $f(x)$ is continuous at $\mathrm{x}=\mathrm{a}$
(C) If $f(x)$ is differentiable at $x=a$, then it is continuous at $\mathrm{x}=\mathrm{a}$
(D) If $f(x)$ is continuous at $x=a$, then $\lim _{x \rightarrow a} f(x)$ exists

LEVEL- 3

Q. 1 If the derivative of the function -

$$
f(x)= \begin{cases}a x^{2}+b, & x<-1 \\ b x^{2}+a x+4, & x \geq-1\end{cases}
$$

is everywhere continuous, then
(A) $a=2, b=3$
(B) $\mathrm{a}=3, \mathrm{~b}=2$
(C) $a=-2, b=-3$
(D) $a=-3, b=-2$
Q. 2 The value of $f(0)$, so that the function $f(x)=\frac{(27-2 x)^{1 / 3}-3}{9-3(243+5 x)^{1 / 5}},(x \neq 0)$ is continuous, is given by -
(A) $2 / 3$
(B) 6
(C) 2
(D) 4
Q. 3 If $f(x)=\left\{\begin{array}{ll}|x-4|, & \text { for } \mathrm{x} \geq 1 \\ \left(\mathrm{x}^{3} / 2\right)-\mathrm{x}^{2}+3 \mathrm{x}+(1 / 2), & \text { for } \mathrm{x}<1\end{array}\right.$, then
(A) $f(x)$ is continuous at $x=1$ and at $x=4$
(B) $f(x)$ is differentiable at $x=4$
(C) $f(x)$ is continuous and differentiable at $x=1$
(D) $f(x)$ is only continuous at $x=1$
Q. $4 \quad$ Let $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$ and $\mathrm{g}(\mathrm{x})=\left|\mathrm{x}^{3}\right|$, then -
(A) $f(\mathrm{x}) \& \mathrm{~g}(\mathrm{x})$ both are continuous at $\mathrm{x}=0$
(B) $f(\mathrm{x}) \& \mathrm{~g}(\mathrm{x})$ both are differentiable at $\mathrm{x}=0$
(C) $f(\mathrm{x})$ is differentiable but $\mathrm{g}(\mathrm{x})$ is not differentiable at $\mathrm{x}=0$
(D) $f(\mathrm{x}) \& \mathrm{~g}(\mathrm{x})$ both are not differentiable at $\mathrm{x}=0$
Q. 5 Let $f(x)=\left\{\begin{array}{ll}\mathrm{x}^{\mathrm{n}} \sin \frac{1}{\mathrm{x}}, & \mathrm{x} \neq 0 \\ 0, & \mathrm{x}=0\end{array}\right.$.Then $f(\mathrm{x}) \quad$ is continuous but not differentiable at $\mathrm{x}=0$ if -
(A) $\mathrm{n} \in(0,1]$
(B) $\mathrm{n} \in[0, \infty)$
(C) $n \in(-\infty, 0)$
(D) $\mathrm{n}=0$
Q. 6 If $f(\mathrm{x})=\mathrm{a}|\sin \mathrm{x}|+\mathrm{be}{ }^{|\mathrm{x}|}+\mathrm{c}|\mathrm{x}|^{3}$ and if $f(\mathrm{x})$ is differentiable at $\mathrm{x}=0$,
then -
(A) $\mathrm{a}=\mathrm{b}=\mathrm{c}=0$
(B) $a=0, b=0 ; c \in R$
(C) $b=c=0 ; a \in R$
(D) $\mathrm{c}=0, \mathrm{a}=0 ; \mathrm{b} \in \mathrm{R}$
Q. 7 The set of points where function $f(\mathrm{x})=\sqrt{1-\mathrm{e}^{-\mathrm{x}^{2}}}$ is differentiable is -
(A) $(-\infty, \infty)$
(B) $(-\infty, 0) \cup(0, \infty)$
(C) $(-1, \infty)$
(D) none of these
Q. $8 \quad$ Let $f(\mathrm{x})=\left\{\begin{array}{l}\sin 2 \mathrm{x}, 0<\mathrm{x} \leq \pi / 6 \\ \mathrm{ax}+\mathrm{b}, \pi / 6<\mathrm{x}<1\end{array}\right.$; If $f(\mathrm{x})$ and $f^{\prime}(\mathrm{x})$ are continuous, then -
(A) $a=1, b=\frac{1}{\sqrt{2}}+\frac{\pi}{6}$
(B) $a=\frac{1}{\sqrt{2}}, b=\frac{1}{\sqrt{2}}$
(C) $\mathrm{a}=1, \mathrm{~b}=\frac{\sqrt{3}}{2}-\frac{\pi}{6}$
(D) none of these
Q. $9 \quad$ Let $f(\mathrm{x})=\lim _{\mathrm{n} \rightarrow \infty}(\sin \mathrm{x})^{2 \mathrm{n}}$; then f is -
(A) discontinuous at $\mathrm{x}=3 \pi / 2$
(B) discontinuous at $\mathrm{x}=\pi / 2$
(C) discontinuous at $\mathrm{x}=-\pi / 2$
(D) All the above
Q. 10 Let [.] denotes G.I.F. and if function $\mathrm{f}(\mathrm{x})=\left(\frac{\mathrm{x}}{2}-1\right)$ then in the interval $[0, \pi]$
(A) $\tan [\mathrm{f}(\mathrm{x})]$ is discontinuous but $1 / \mathrm{f}(\mathrm{x})$ is continuous
(B) $\tan [\mathrm{f}(\mathrm{x})]$ is continuous but $\frac{1}{\mathrm{f}(\mathrm{x})}$ is discontinuous
(C) $\tan [\mathrm{f}(\mathrm{x})]$ and $\mathrm{f}^{-1}(\mathrm{x})$ is continuous
(D) $\tan [\mathrm{f}(\mathrm{x})]$ and $1 / \mathrm{f}(\mathrm{x})$ both are discontinuous
Q. 11 The function $f(x)=\frac{4-x^{2}}{4 x-x^{3}}$ is equal to -
(A) discontinuous at only one point
(B) discontinuous exactly at two points
(C) discontinuous exactly at three points
(D) none of these
Q. 12 The function $f(\mathrm{x})=\sin ^{-1}(\cos \mathrm{x})$ is -
(A) discontinuous at $x=0$
(B) continuous at $x=0$
(C) differentiable at $x=0$
(D) none of these
Q. 13 The function $f(\mathrm{x})=\mathrm{e}^{-|\mathrm{x}|}$ is -
(A) continuous everywhere but not differentiable at $\mathrm{x}=0$
(B) continuous and differentiable everywhere
(C) not continuous at $x=0$
(D) none of these
Q. 14 If $x+4|y|=6 y$, then y as a function of x is -
(A) continuous at $x=0(B)$ derivable at $x=0$
(C) $\frac{d y}{d x}=\frac{1}{2}$ for all x
(D) none of these
Q. 15 Let $f(\mathrm{x}+\mathrm{y})=f(\mathrm{x})+f(\mathrm{y})$ and $f(\mathrm{x})=\mathrm{x}^{2} \mathrm{~g}(\mathrm{x})$ for all $x, y, \in R$, where $g(x)$ is continuous function. Then $f^{\prime}(\mathrm{x})$ is equal to -
(A) g^{\prime}
(B) $g(x)$
(C) $f(\mathrm{x})$
(D) none of these
Q. 16 Let $f(\mathrm{x}+\mathrm{y})=f(\mathrm{x}) f(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y}, \in \mathrm{R}$, Suppose that $f(3)=3$ and $f^{\prime}(0)=11$ then $f^{\prime}(3)$ is equal to-
(A) 22
(B) 44
(C) 28
(D) none of these

Statement type Questions

All questions are Assertion \& Reason type questions. Each of these questions contains two statements: Statement-1 (Assertion) and Statement-2 (Reason). Answer these questions from the following four option.
(A) Statement-I and Statement-II are true StatementII is the correct explanation of Statement-I
(B) Statement-I Statement-II are true but StatementII is not the correct explanation of Statement-I.
(C) Statement-I is true but Statement-II is false
(D) Statement-I is false but Statement-II is true.

Q. 17 Statement-1 :

$f(x)=\frac{1}{x-[x]}$ is discontinuous for integral values of x
Statement-2 : For integral values of $x, f(x)$ is undefined.

Q. 18 Statement-1 :

If $f(x)=\frac{\left(e^{k x}-1\right) \sin k x}{4 x^{2}}(x \neq 0)$ and $f(0)=9$ is continuous at $x=0$ then $k= \pm 6$.
Statement-2 : For continuous function
$\lim _{x \rightarrow 0} f(x)=f(0)$

Q. 19 Statement I:

$y=\frac{x}{1+|x|}, x \in R, f(x)$ is differentiable
every where.
Statement II :
$f(x)=\frac{x}{1+|x|}, x \in R$ then $f^{\prime}(x)=\left\{\begin{array}{l}\frac{1}{(1+x)^{2}}, x \geq 0 \\ \frac{1}{(1-x)^{2}}, x<0\end{array}\right.$
Q. 20 Statement-1: If $f(x)=\lim _{n \rightarrow \infty}(\sin x)^{2 n}$, then the set of points discontinuities of f is $\left\{(2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in \mathrm{I}\right\}$

Statement-2 : Since $-1<\sin \mathrm{x}<1$, as $\mathrm{n} \rightarrow \infty$, $(\sin \mathrm{x})^{2 \mathrm{n}} \rightarrow 0, \sin \mathrm{x}= \pm 1 \Rightarrow \pm(1)^{2 \mathrm{n}} \rightarrow 1, \mathrm{n} \rightarrow \infty$
Q. 21 Statement I :
$f(x)=|x-2|$ is differentiable at $x=2$.
Statement II :
$f(x)=|x-2|$ is continuous at $x=2$.
Q. 22 Statement-1 : The function
$y=\sin ^{-1}(\cos x)$ is not differentiable at
$\mathrm{x}=\mathrm{n} \pi, \mathrm{n} \in \mathrm{Z}$ is particular at $\mathrm{x}=\pi$
Statement-2 : $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\sin \mathrm{x}}{|\sin \mathrm{x}|}$ so the function is not differentiable at the points where $\sin \mathrm{x}=0$.

Q. 23 Statement-1 :

The function $f(x)=\left|x^{3}\right|$ is differentiable at $x=0$
Statement-2 : at $\mathrm{x}=0, \mathrm{f}^{\prime}(\mathrm{x})=0$
Q. 24 Statement I : $f(x)=\sin x$ and $g(x)=\operatorname{sgn}(x)$ then $f(x) g(x)$ is differentiable at $x=1$.
Statement II : Product of two differentiable function is differentiable function

Passage Based Questions
$\operatorname{Let} f(x)=\left\{\begin{array}{cl}\frac{\mathrm{a}(1-\mathrm{x} \sin \mathrm{x})+\mathrm{b} \cos \mathrm{x}+5}{\mathrm{x}^{2}} & , \mathrm{x}<0 \\ 3 & , x=0 \\ \left\{1+\left(\frac{\mathrm{cx}+\mathrm{dx}^{3}}{\mathrm{x}^{2}}\right)\right\}^{1 / x} & , x>0\end{array}\right.$
If f is continuous at $\mathrm{x}=0$
On the basis of above information, answer the following questions :-
Q. 25 The value of a is -
(A) -1
(B) $\ln 3$
(C) 0
(D) -4
Q. 26 The value of b is -
(A) -1
(B) $\ln 3$
(C) 0
(D) -4
Q. 27 The value of c is
(A) 2
(B) 3
(C) 0
(D) none of these
Q. 28 The value of e^{d} is -
(A) 0
(B) 1
(C) 2
(D) 3

$>$ Column Matching Questions

Match the entry in Column I with the entry in Column II.
Q. 29 Column-I

Column-II

(A) $f(x)=x^{2} \sin (1 / x), x \neq 0$ $f(0)=0$
(P) continuous but not derivable
(B) $\mathrm{f}(\mathrm{x})=\frac{1}{1-\mathrm{e}^{-1 / \mathrm{x}}}, \mathrm{x} \neq 0$, and $f(0)=0$
(Q) f is differentiable f^{\prime} is not continuous
(C) $f(x)=x \sin 1 / x, x \neq 0$ $f(0)=0$
(D) $f(x)=x^{3} \sin 1 / x, x \neq 0$ $f(0)=0$
(S) f^{\prime} is continuous but not derivable
Q. 30 Column I
(A) $f(x)=\left|x^{3}\right|$ is $\quad(P)$ continuous in $(-1,1)$
(B) $f(x)=\sqrt{|x|}$
(Q) differentiable in $(-1,1)$
(C) $f(x)=\left|\sin ^{-1} x\right|$ is
(R) differentiable in $(0,1)$
(D) $f(x)=|x|$ is
(S) not differentiable atleast at one point in $(-1,1)$

LEVEL- 4

(Question asked in previous AIEEE and IIT-JEE)

SECTION -A

Q. 1 If $f(x)=\left\{\begin{array}{cc}x & x \in Q \\ -x & x \notin Q\end{array}\right.$, then f is continuous at-
[AIEEE-2002]
(A) only at zero
(B) only at 0,1
(C) all real numbers
(D) all rational numbers
Q. 2 If for all values of $\mathrm{x} \& \mathrm{y}$; $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) . \mathrm{f}(\mathrm{y})$ and $f(5)=2 f^{\prime}(0)=3$, then $f^{\prime}(5)$ is-
[AIEEE-2002]
(A) 3
(B) 4
(C) 5
(D) 6
Q. 3 If $f(x)= \begin{cases}x e^{-\left(\frac{1}{|x|}+\frac{1}{x}\right)}, & x \neq 0 \text { then } f(x) \text { is } \\ 0 & , x=0\end{cases}$
[AIEEE- 2003]
(A) discontinuous everywhere
(B) continuous as well as differentiable for all x
(C) continuous for all x but not differentiable at $\mathrm{x}=0$
(D) neither differentiable nor continuous at $\mathrm{x}=0$
Q. 4 Let $f(x)=\frac{1-\tan x}{4 x-\pi}, x \neq \frac{\pi}{4}, x \in\left[0, \frac{\pi}{2}\right]$. If $f(x)$ is continuous in $\left[0, \frac{\pi}{2}\right]$, then $\mathrm{f}\left(\frac{\pi}{4}\right)$ is-
[AIEEE- 2004]
(A) 1
(B) $1 / 2$
(C) $-1 / 2$
(D) -1
Q. 5 If f is a real-valued differentiable function satisfying $|f(x)-f(y)| \leq(x-y)^{2}, x, y \in R$ and $f(0)=0$, then $f(1)$ equals-
[AIEEE-2005]
(A) -1
(B) 0
(C) 2
(D) 1
Q. 6 Suppose $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=1$ and $\lim _{h \rightarrow 0} \frac{1}{h} f(1+h)=5$, then $f^{\prime}(1)$ equals -
[AIEEE-2005]
(A) 3
(B) 4
(C) 5
(D) 6
Q. 7 The set of points where $f(x)=\frac{x}{1+|x|}$ is differentiable is -
[AIEEE- 2006]
(A) $(-\infty,-1) \cup(-1, \infty)$
(B) $(-\infty, \infty)$
(C) $(0, \infty)$
(D) $(-\infty, 0) \cup(0, \infty)$
Q. 8 The function $\mathrm{f}: \mathrm{R} \backslash\{0\} \rightarrow \mathrm{R}$ given by $f(x)=\frac{1}{x}-\frac{2}{e^{2 x}-1}$ can be made continuous at $\mathrm{x}=0$ by defining $f(0)$ as -
[AIEEE- 2007]
(A) 2
(B) -1
(C) 0
(D) 1
Q. 9 Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be a function defined by $f(\mathrm{x})=\operatorname{Min}\{\mathrm{x}+1,|\mathrm{x}|+1\}$. Then which of the following is true?
[AIEEE 2007]
(A) $f(\mathrm{x}) \geq 1$ for all $\mathrm{x} \in \mathrm{R}$
(B) $f(x)$ is not differentiable at $x=1$
(C) $f(x)$ is differentiable everywhere
(D) $f(x)$ is not differentiable at $x=0$
Q. $10 \quad$ Let $f(x)=\left\{\begin{array}{cc}(x-1) \sin \frac{1}{x-1}, & \text { if } x \neq 1 \\ 0, & \text { if } x=1\end{array}\right.$

Then which one of the following is true?
[AIEEE 2008]
(A) f is differentiable at $\mathrm{x}=0$ and at $\mathrm{x}=1$
(B) f is differentiable at $\mathrm{x}=0$ but not at $\mathrm{x}=1$
(C) f is differentiable at $\mathrm{x}=1$ but not at $\mathrm{x}=0$
(D) f is neither differentiable at $\mathrm{x}=0$ nor at $\mathrm{x}=1$

Statement Based Question : (Q. 11 to Q.12)

(A) Statement -1 is true, Statement -2 is true;

Statement -2 is a correct explanation for Statement -1
(B) Statement -1 is true, Statement -2 is true;

Statement -2 is not a correct explanation for Statement -1
(C) Statement -1 is true, Statement -2 is false.
(D) Statement -1 is false, Statement -2 is true.
Q. 11 Let $f(x)=x|x|$ and $g(x)=\sin x$.

Statement-1 :
gof is differentiable at $x=0$ and its derivative is continuous at that point.
Statement-2 :
gof is twice differentiable at $x=0$.
[AIEEE 2009]
Q. 12 Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a continuous function defined by $f(x)=\frac{1}{e^{x}+2 e^{-x}}$
Statement-1 : $f(c)=\frac{1}{3}$, for some $c \in R$.
Statement-2 : $0<\mathrm{f}(\mathrm{x}) \leq \frac{1}{2 \sqrt{2}}$, for all $\mathrm{x} \in \mathrm{R}$
[AIEEE 2010]
Q. 13 The value of p and q for which the function
$f(x)=\left\{\begin{array}{ccc}\frac{\sin (p+1) x+\sin x}{x} & , & x<0 \\ q & , & x=0 \\ \frac{\sqrt{x+x^{2}}-\sqrt{x}}{x^{3 / 2}} & , & x>0\end{array}\right.$
is continuous for all x in R, are :
[AIEEE 2011]
(A) $\mathrm{p}=\frac{1}{2}, \mathrm{q}=-\frac{3}{2}$
(B) $\mathrm{p}=\frac{5}{2}, \mathrm{q}=\frac{1}{2}$
(C) $\mathrm{p}=-\frac{3}{2}, \mathrm{q}=\frac{1}{2}$
(D) $\mathrm{p}=\frac{1}{2}, \mathrm{q}=\frac{3}{2}$
Q. 14 If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is a function defined by
$f(x)=[x] \cos \left(\frac{2 x-1}{2}\right) \pi$, where $[x]$ denotes the greatest integer function, then f is : [AIEEE 2012]
(A) discontinuous only at $x=0$
(B) discontinuous only at non-zero integral values of x
(C) continuous only at $x=0$
(D) continuous for every real x
Q. 15 Consider the function, $f(x)=|x-2|+|x-5|$, $x \in R$.
Statement 1 : $\mathrm{f}^{\prime}(4)=0 \quad$ [AIEEE 2012]
Statement 2 : f is continuous in [2, 5], differentiable in $(2,5)$ and $f(2)=f(5)$.
(A) Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for Statement 1.
(B) Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation for Statement 1.
(C) Statement 1 is true, Statement 2 is false.
(D) Statement 1 is false, Statement 2 is true.

SECTION-B

Q. 1 If $f(x)=\left\{\begin{array}{l}\frac{1-\cos 4 x}{x^{2}}, \text { when } x<0 \\ a, \text { when } x=0 \\ \frac{\sqrt{x}}{\sqrt{16+\sqrt{x})}-4}, \text { when } x>0\end{array} \quad\right.$ is continuous at $x=0$, then the value of 'a' will be
[IIT-1990]
(A) 8
(B) -8
(C) 4
(D) None
Q. 2 The following functions are continuous on $(0, \pi)$
[IIT-1991]
(A) $\tan x$
(B) $\left\{\begin{array}{cc}x \sin x ; & 0<x \leq \pi / 2 \\ \frac{\pi}{2} \sin (\pi+x) ; & \frac{\pi}{2}<x<\pi\end{array}\right.$
(C) $\left\{\begin{array}{cc}1, & 0<x \leq \frac{3 \pi}{4} \\ 2 \sin \frac{2}{9} x, & \frac{3 \pi}{4}<x<\pi\end{array}\right.$
(D) None of these
Q. 3 If $f(x)=\left\{\begin{array}{l}x \sin x, \text { when } 0<x \leq \frac{\pi}{2} \\ \frac{\pi}{2} \sin (\pi+x), \text { when } \frac{\pi}{2}<x<\pi\end{array}\right.$, then -
[IIT-1991]
(A) $f(x)$ is discontinuous at $x=\frac{\pi}{2}$
(B) $f(x)$ is continuous at $x=\frac{\pi}{2}$
(C) $f(x)$ is continuous at $x=0$
(D) None of these
Q. 4 The function $f(x)=[x] \cos \{(2 x-1) / 2\} \pi$, [] denotes the greatest integer function, is discontinuous at
[IIT-1995]
(A) all x
(B) all integer points
(C) no x
(D) x which is not an integer
Q. 5 Let $\mathrm{f}(\mathrm{x})$ be defined for all $\mathrm{x}>0$ and be continuous. Let $f(x)$ satisfy $f\left(\frac{x}{y}\right)=f(x)-f(y)$ for all $x, y \& f(e)=1$. Then-
[IIT Scr.95]
(A) $f(x)$ is bounded
(B) $\mathrm{f}\left(\frac{1}{\mathrm{x}}\right) \rightarrow 0$ as $\mathrm{x} \rightarrow 0$
(C) $\mathrm{xf}(\mathrm{x}) \rightarrow 1$ as $\mathrm{x} \rightarrow 0$
(D) $f(x)=\log x$
Q. 6 The function $f(x)=[x]^{2}-\left[x^{2}\right]$ (where $[y]$ is the greatest integer less than or equal to y), is discontinuous at -
[IIT-1999]
(A) All integers
(B) All integers except 0 and 1
(C) All integers except 0
(D) All integers except 1
Q. 7 Indicate the correct alternative:

Let $[\mathrm{x}]$ denote the greater integer $\leq \mathrm{x}$ and $f(x)=\left[\tan ^{2} x\right]$, then
[IIT-1993]
(A) $\lim _{x \rightarrow 0} f(x)$ does not exist
(B) $f(x)$ is continuous at $x=0$
(C) $f(x)$ is not differentiable at $x=0$
(D) $\mathrm{f}^{\prime}(0)=1$
Q. $8 \quad g(x)=x f(x)$, where $f(x)=\left\{\begin{array}{cc}x \sin (1 / x), & x \neq 0 \\ 0 & x=0\end{array}\right.$ at $\mathrm{x}=0$
[IIT-1994]
(A) g is differentiable but g ' is not continuous
(B) both f and g are differentiable
(C) g is differentiable but g^{\prime} is continuous
(D) None of these
Q. 9 Let $f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}$ for all real x and y and $\mathrm{f}^{\prime}(0)=-1, \mathrm{f}(0)=1$, then $\mathrm{f}^{\prime}(2)=$
[IIT-1995]
(A) $1 / 2$
(B) 1
(C) -1
(D) $-1 / 2$
Q. 10 Let $h(x)=\min \left\{x, x^{2}\right\}$, for every real number of x . Then -
[IIT-1998]
(A) h is not differentiable at two values of x
(B) h is differentiable for all x
(C) $\mathrm{h}^{\prime}(\mathrm{x})=0$, for all $\mathrm{x}>1$
(D) None of these
Q. 11 The function $f(x)=\left(x^{2}-1\right)\left|x^{2}-3 x+2\right|+\cos (|x|)$ is not differentiable at.
[IIT-1999]
(A) -1
(B) 0
(C) 1
(D) 2
Q. 12 Let $f: R \rightarrow R$ is a function which is defined by $f(x)=\max \left\{x, x^{3}\right\}$ set of points on which $f(x)$ is not differentiable is
[IIT Scr. 2001]
(A) $\{-1,1\}$
(B) $\{-1,0\}$
(C) $\{0,1\}$
(D) $\{-1,0,1\}$
Q. 13 Find left hand derivative at $\mathrm{x}=\mathrm{k}, \mathrm{k} \in \mathrm{I}$.
$\mathrm{f}(\mathrm{x})=[\mathrm{x}] \sin (\pi \mathrm{x})$
[IIT Scr. 2001]
(A) $(-1)^{\mathrm{k}}(\mathrm{k}-1) \pi$
(B) $(-1)^{\mathrm{k}-1}(\mathrm{k}-1) \pi$
(C) $(-1)^{\mathrm{k}}(\mathrm{k}-1) \mathrm{k} \pi$
(D) $(-1)^{\mathrm{k}-1}(\mathrm{k}-1) \mathrm{k} \pi$
Q. 14 Which of the following functions is differentiable at $\mathrm{x}=0$?
[IIT Scr. 2001]
(A) $\cos (|x|)+|x|$
(B) $\cos (|x|)-|x|$
(C) $\sin (|x|)+|x|$
(D) $\sin (|x|)-|x|$
Q. $15 \quad f(x)=||x|-1|$ is not differentiable at $x=$
[IIT Scr.2005]
(A) $0, \pm 1$
(B) ± 1
(C) 0
(D) 1
Q. 16 Let $\mathrm{g}(\mathrm{x})=\frac{(\mathrm{x}-1)^{\mathrm{n}}}{\log \cos ^{m}(\mathrm{x}-1)} ; 0<\mathrm{x}<2, \mathrm{~m}$ and n are integers, $m \neq 0, n>0$, and let p be the left hand derivative of $|\mathrm{x}-1|$ at $\mathrm{x}=1$. If $\lim _{x \rightarrow 1^{+}} g(x)=p$, then
[IIT- 2008]
(A) $\mathrm{n}=1, \mathrm{~m}=1$
(B) $\mathrm{n}=1, \mathrm{~m}=-1$
(C) $\mathrm{n}=2, \mathrm{~m}=2$
(D) $\mathrm{n}>2, \mathrm{~m}=\mathrm{n}$
Q. 17 Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be a function such that
$f(x+y)=f(x)+f(y), \forall x, y \in R$
If $f(x)$ is differentiable at $x=0$, then
[IIT- 2011]
(A) $f(x)$ is differentiable only in a finite interval containing zero
(B) $f(x)$ is continuous $\forall x \in \mathrm{R}$
(C) $f^{\prime}(x)$ is constant $\forall x \in \mathrm{R}$
(D) $f(x)$ is differentiable except at finitely many points
Q. 20 Let $f(x)=\left\{\begin{array}{cc}x^{2} \left\lvert\, \begin{array}{cc}\left.\cos \frac{\pi}{x} \right\rvert\,, & x \neq 0 \\ 0, & x=0\end{array}\right., x \in I R, ~\end{array}\right.$
then f is
[IIT-2012]
(A) differentiable both at $x=0$ and at $x=2$
(B) differentiable at $\mathrm{x}=0$ but not differentiable at $x=2$
(C) not differentiable at $\mathrm{x}=0$ but differentiable at $x=2$
(D) differentiable neither at $\mathrm{x}=0$ nor at $\mathrm{x}=2$
Q. 18 If
$f(x)=\left\{\begin{array}{cc}-x-\frac{\pi}{2}, & x \leq-\frac{\pi}{2} \\ -\cos x, & -\frac{\pi}{2}<x \leq 0, \text { then } \\ x-1, & 0<x \leq 1 \\ \ln x, & x>1\end{array}\right.$
[IIT- 2011]
(A) $f(x)$ is continuous at $x=-\frac{\pi}{2}$
(B) $f(x)$ is not differentiable at $x=0$
(C) $f(x)$ is differentiable at $x=1$
(D) $f(x)$ is differentiable at $x=-\frac{3}{2}$
Q. 19 For every integer n, let a_{n} and b_{n} be real numbers.

Let function $\mathrm{f}: ~ \mathrm{IR} \rightarrow$ IR be given by
$f(x)=\left\{\begin{array}{ll}a_{n}+\sin \pi x, & \text { for } x \in[2 n, 2 n+1] \\ b_{n}+\cos \pi x, & \text { for } x \in(2 n-1,2 n)\end{array}\right.$, for all integers n. If f is continuous, then which of the following hold(s) for all n ?
[IIT- 2012]
(A) $a_{n-1}-b_{n-1}=0$
(B) $a_{n}-b_{n}=1$
(C) $a_{n}-b_{n+1}=1$
(D) $a_{n-1}-b_{n}=-1$

LEVEL-1

Que	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
Ans.	D	C	A	D	C	A	C	B	D	D	D	D	A	C	D	A	D	C	A	C
Que	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$	$\mathbf{3 6}$	$\mathbf{3 7}$	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{4 0}$
Ans	B	C	D	B	D	B	D	A	A	A	D	B	A	C	C	A	C	D	D	C
Que	$\mathbf{4 1}$	$\mathbf{4 2}$	$\mathbf{4 3}$	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{4 6}$	$\mathbf{4 7}$	$\mathbf{4 8}$	$\mathbf{4 9}$	$\mathbf{5 0}$	$\mathbf{5 1}$	$\mathbf{5 2}$	$\mathbf{5 3}$	$\mathbf{5 4}$	$\mathbf{5 5}$	$\mathbf{5 6}$	$\mathbf{5 7}$	$\mathbf{5 8}$	$\mathbf{5 9}$	$\mathbf{6 0}$
Ans.	C	D	C	C	C	D	C	B	C	A	D	C	D	C	B	C	D	C	D	C
Que	$\mathbf{6 1}$	$\mathbf{6 2}$	$\mathbf{6 3}$	$\mathbf{6 4}$	$\mathbf{6 5}$	$\mathbf{6 6}$	$\mathbf{6 7}$	$\mathbf{6 8}$	$\mathbf{6 9}$	$\mathbf{7 0}$	$\mathbf{7 1}$	$\mathbf{7 2}$	$\mathbf{7 3}$	$\mathbf{7 4}$	$\mathbf{7 5}$	$\mathbf{7 6}$	$\mathbf{7 7}$	$\mathbf{7 8}$	$\mathbf{7 9}$	$\mathbf{8 0}$
Ans.	C	C	C	B	D	D	D	C	D	D	A	D	A	D	A	B	B	C	C	A
Que	$\mathbf{8 1}$	$\mathbf{8 2}$	$\mathbf{8 3}$	$\mathbf{8 4}$	$\mathbf{8 5}$	$\mathbf{8 6}$	$\mathbf{8 7}$	$\mathbf{8 8}$	$\mathbf{8 9}$	$\mathbf{9 0}$	$\mathbf{9 1}$									
Ans.	D	D	C	B	A	C	A	B	A	C	D									

LEVEL-2

Que	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
Ans.	B	A	C	B	A	C	D	B	B	D	D	C	C	B	A	D	A	C	D	C
Que	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$													
Ans	A	B	B	C	B	C	B													

LEVEL-3

Que	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
Ans.	A	C	A	A	A	B	B	C	D	D	C	B	A	A	D	D	A	A	A	A
Que	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$												
Ans	D	A	A	A	A	D	C	D												

29. $\mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{R} ; \mathrm{C} \rightarrow \mathrm{P} ; \mathrm{D} \rightarrow \mathrm{S}$
30. $\mathrm{A} \rightarrow \mathrm{P}, \mathrm{Q}, \mathrm{R} ; \mathrm{B} \rightarrow \mathrm{P}, \mathrm{R}, \mathrm{S} ; \mathrm{C} \rightarrow \mathrm{P}, \mathrm{R}, \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{P}, \mathrm{R}, \mathrm{S}$

LEVEL- 4

SECTION-A

Que	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
Ans.	A	D	C	C	B	C	B	D	C	B	C	A	C	D	B

SECTION-B

1.[A] $f(x)=\left\{\begin{array}{cll}\frac{1-\cos 4 x}{x^{2}} & : & x<0 \\ \frac{a}{\sqrt{x}} & : & x=0 \\ \sqrt{16+\sqrt{x}}-4 & x>0\end{array}\right.$
$\because f(x)$ is continuous at $x=0$
\therefore R.H.L. $\lim _{h \rightarrow 0} \frac{1-\cos (4(0-h))}{(0-h)^{2}}$
$\lim _{h \rightarrow 0} \frac{1-\cos 4 h}{h^{2}}$
$\left(\frac{0}{0}\right.$ form $)$
$=\lim _{h \rightarrow 0} \frac{0+4 \sin 4 h}{2 h} \times \frac{2}{2}$
$=8$
\therefore L.H.L. $=\mathrm{f}(0)$
$\Rightarrow 8=\mathrm{a}$
2.[C]
(A) $\quad \tan x$ is discontinuous at $\pi / 2$ in $(0, \pi)$
$f(x)=\left\{\begin{array}{cc}x \sin x ; & 0<x \leq \pi / 2 \\ \frac{\pi}{2} \sin (\pi+x) ; & \frac{\pi}{2}<x<\pi\end{array}\right.$
at $\mathrm{x}=\frac{\pi}{2}$
L.H.L. $\lim _{\mathrm{h} \rightarrow 0}\left(\frac{\pi}{2}-\mathrm{h}\right) \sin \left(\frac{\pi}{2}-\mathrm{h}\right)$
$=\pi / 2 \sin \pi / 2=\pi / 2$
R.H.L. $\lim _{\mathrm{h} \rightarrow 0} \pi / 2 \sin (\pi+\pi / 2+\mathrm{h})$
$=\pi / 2 \sin 3 \pi / 2$
$=-\pi / 2$
L.H.L. \neq R.H.L.
$\therefore \mathrm{f}(\mathrm{x})$ is not continuous at $\mathrm{x}=\pi / 4$
(C) $\quad f(x)=\left\{\begin{array}{cc}1, & 0<x \leq \frac{3 \pi}{4} \\ 2 \sin \frac{2}{9} x, & \frac{3 \pi}{4}<x<\pi\end{array}\right.$
at $x=3 \pi / 4$ L.H.L. $=1$
$\mathrm{f}(3 \pi / 4)=1$
R.H.L. $\lim _{\mathrm{h} \rightarrow 0} 2 \sin \frac{2}{9}(3 \pi / 4+\mathrm{h})$
$2 \sin \frac{2}{9} \frac{3 \pi}{4}$
$=2 \sin \pi / 6=2 \times \frac{1}{2}=1$
$\therefore \mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=\frac{3 \pi}{4}$
3.[A] $\quad f(x)=\left\{\begin{array}{cc}x \sin x ; & 0<x \leq \pi / 2 \\ \frac{\pi}{2} \sin (\pi+x) ; & \frac{\pi}{2}<x<\pi\end{array}\right.$
at $\mathrm{x}=\frac{\pi}{2}$
L.H.L. $\lim _{h \rightarrow 0}\left(\frac{\pi}{2}-h\right) \sin \left(\frac{\pi}{2}-h\right)$
$=\pi / 2 \sin \pi / 2=\pi / 2$
R.H.L. $\lim _{\mathrm{h} \rightarrow 0} \pi / 2 \sin (\pi+\pi / 2+\mathrm{h})$
$=\pi / 2 \sin 3 \pi / 2$
$=-\pi / 2$
L.H.L. \neq R.H.L.
$\therefore \mathrm{f}(\mathrm{x})$ is not continuous at $\mathrm{x}=\pi / 4$
4. $[\mathrm{C}] \quad \mathrm{f}(\mathrm{x})=[\mathrm{x}] \cos (2 \mathrm{x}-1) \times \pi / 2$
let $x=n, n \in I$
$\mathrm{f}(\mathrm{n})=\mathrm{n} \cos (2 \mathrm{n}-1) \pi / 2=0$
$\mathrm{f}(\mathrm{n}+\mathrm{)}=\mathrm{n} \cos (2 \mathrm{n}-1) \pi / 2=0$
$f(n-)=(n-1) \cos (2 n-1) \pi / 2=0$

$$
\left(\because \cos (2 n-1) \frac{\pi}{2}=0\right)
$$

continuous for all x .
5.[D] $\mathrm{f}(\mathrm{x})=\mathrm{k} \ell \mathrm{n} \mathrm{x}$
put $\mathrm{x}=\mathrm{e}$
$\mathrm{k}=1$
$\therefore \mathrm{f}(\mathrm{x})=\ell \mathrm{n} \mathrm{x}$
6.[D] $\mathrm{f}(\mathrm{x})=[\mathrm{x}]^{2}-\left[\mathrm{x}^{2}\right]$

Let us check continuity at $x=0 \& 1$
L.H.L. $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}[x]^{2}-\left[x^{2}\right]$
$=\lim _{\mathrm{h} \rightarrow 0}[0-\mathrm{h}]^{2}-\left[(0-\mathrm{h})^{2}\right]$
$=+1-0=1$
R.H.L. $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}}[x]^{2}-\left[x^{2}\right]$
$=\lim _{\mathrm{h} \rightarrow 0}[0+\mathrm{h}]^{2}-[(0+\mathrm{h})]^{2}$
$0-0=0$
L.H.L. \neq R.H.L.
$\therefore \mathrm{f}(\mathrm{x})$ is not continuous at $\mathrm{x}=0$
at $\mathrm{x}=1$
L.H.L. $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0^{-}}[1-h]^{2}-\left[(1-h)^{2}\right]$ $0-0=0$
R.H.L. $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0}[(1+h)]^{2}-\left[(1+h)^{2}\right]$
$=1-1=0$
$\mathrm{f}(1)=[1]^{2}-\left[1^{2}\right]=0$
$\therefore \mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=1$
clearly $f(x)$ is discontinuous at all other integers except 1
7.[B] $\mathrm{f}(\mathrm{x})=\left[\tan ^{2} \mathrm{x}\right]$
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}\left[\tan ^{2} x\right]$
for continuity at $\mathrm{x}=0$
$\mathrm{f}(0)=\left[\tan ^{2} 0\right]=[0]=0$
L.H.L. $\lim _{h \rightarrow 0}\left[\tan ^{2}(0-h)\right]$
$=\lim _{\mathrm{h} \rightarrow 0}\left[\tan ^{2} \mathrm{~h}\right]=[$ Value greater then 0 less then 1$]$
$=0$
R.H.L. $\lim _{\mathrm{h} \rightarrow 0}\left[\tan ^{2}(0-\mathrm{h})\right]$
$=\lim _{\mathrm{h} \rightarrow 0}\left[\tan ^{2} \mathrm{~h}\right]$
$=[$ Value greater then $0 \&$ less then 1$]=0$
\therefore L.H.L. $=$ R.H.L. $=\mathrm{f}(0)$
$\therefore \mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$
8.[A] $g(x)=x f(x) \&$
$f(x)=\left\{\begin{array}{cc}x \sin 1 / x, & x \neq 0 \\ 0 & x=0\end{array}\right.$
$g(x)=x f(x)=\left\{\begin{aligned} x^{2} \sin \frac{1}{x}: & x \neq 0 \\ 0 \quad x & =0\end{aligned}\right.$
\because we know function $\left\{\begin{array}{ll}x^{\alpha} \sin \frac{1}{x}: x \neq 0 \\ 0 \quad x=0\end{array}\right.$ is differentiable when $\alpha>1$
in $\mathrm{g}(\mathrm{x}) \alpha=2 \therefore$ it is differentiable
Now $g^{\prime}(x)=\left\{\begin{array}{c}x^{2} \cos \frac{1}{x}\left(-\frac{1}{x^{2}}\right)+\sin \frac{1}{x} .2 x ; x \neq 0 \\ 0 \quad x=0\end{array}\right.$
$= \begin{cases}-\cos \frac{1}{x}+2 x \sin \frac{1}{x} & ; x \neq 0 \\ 0 & x=0\end{cases}$
for continuity at $\mathrm{x}=0$
L.H.L. $\lim _{h \rightarrow 0}-\cos \frac{1}{0-h}+2(0-h) \sin \frac{1}{0-h}$
$\lim _{h \rightarrow 0}-\cos \frac{1}{h}+2 h \sin \frac{1}{h}$
$-\cos \frac{1}{0}+2 \times 0=-($ value between -1 and 1$) \neq$ unique
$\Rightarrow \mathrm{g}^{\prime}(\mathrm{x})$ is discontinuous at $\mathrm{x}=0$
9.[C] $f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}$
differentiating both side keeping y as constant
$\mathrm{f}^{\prime}\left(\frac{\mathrm{x}+\mathrm{y}}{2}\right)\left[\frac{1+0}{2}\right)=\frac{\mathrm{f}^{\prime}(\mathrm{x})+0}{2}$
$\Rightarrow \frac{1}{2} \mathrm{f}^{\prime}\left(\frac{\mathrm{x}+\mathrm{y}}{2}\right)=\frac{\mathrm{f}^{\prime}(\mathrm{x})}{2}$
put $\mathrm{x}=0$
$f^{\prime}(y / 2)=-1$
put $y=4$
$f^{\prime}(2)=-1$

10.[A]

$\operatorname{minimum}\left(x, x^{2}\right)$
sharp point at $x=0,1$
\Rightarrow Not differentiable at $\mathrm{x}=0,1$
11.[D]

$(\because \cos |x|=\cos \mathrm{x})$
\Rightarrow Not differentiable at $x=2$
12.[D] $f(x)=\max .\left\{x, x^{3}\right\}$
by graph

$\therefore f(x)=\left\{\begin{array}{llc}\mathrm{x} & ; & \mathrm{x} \leq-1 \\ \mathrm{x}^{3} & ; & -1 \leq \mathrm{x} \leq 0 \\ \mathrm{x} & ; 0 \leq \mathrm{x} \leq 1 \\ \mathrm{x}^{3} & ; & \mathrm{x} \geq 1\end{array}\right.$
at $x=1,-1,0$ there is sharp point
$\therefore \mathrm{f}(\mathrm{x})$ is not differentiable at these points
13. $[\mathrm{A}] \quad \mathrm{f}(\mathrm{x})=[\mathrm{x}] \sin \pi \mathrm{x}$
at $\mathrm{x}=\mathrm{k}$ we have to find out L.H.D.
$\therefore \mathrm{x}$ is just less then k
$\therefore[\mathrm{k}-\mathrm{h}]=\mathrm{k}-1$
$\therefore \mathrm{f}(\mathrm{x})=(\mathrm{k}-1) \sin \pi \mathrm{x}$
L.H.L. of $f(x)=\lim _{x \rightarrow k^{-}} \frac{f(x)-f(k)}{x-k}$
$=\lim _{h \rightarrow 0} \frac{f(k-h)-f(k)}{-h}$
$=\lim _{\mathrm{h} \rightarrow 0} \frac{(\mathrm{k}-1) \sin (\pi)(\mathrm{k}-\mathrm{h})-\mathrm{k} \sin \pi \mathrm{k}}{-\mathrm{h}}:|\mathrm{k} \in \mathrm{I}|$
$=\lim _{\mathrm{h} \rightarrow 0} \frac{(\mathrm{k}-1) \sin (\pi \mathrm{k}-\pi \mathrm{h})-0}{-\mathrm{h}}$
$\left.\begin{array}{l}=\lim _{h \rightarrow 0} \frac{(k-1)(-1)^{k-1} \sin \pi h}{-h} \\ =\lim _{h \rightarrow 0} \frac{(k-1)(-1)^{k-1} \sin \pi h}{-\pi h} \times \pi\end{array} \begin{array}{l}\because n \text { is even } \\ \sin (n \pi-\theta)=-\sin \theta \\ \text { if } n \text { is odd } \\ \sin (n \pi-\theta)=\sin \theta\end{array}\right)$
$=-(\mathrm{k}-1)(-1)^{\mathrm{k}-1} \pi$
$=(\mathrm{k}-1)(-1)^{\mathrm{k}} \pi$
14.[D] $f(x)=\left[\begin{array}{cc}\sin x-x, & x \geq 0 \\ -\sin x+x, & x<0\end{array}\right.$
$f^{\prime}(x)=\left[\begin{array}{cc}\cos x-1, & x>0 \\ -\cos x+1, & x<0\end{array}\right.$
$\left.\begin{array}{c}\mathrm{f}^{\prime}(0+)=1-1=0 \\ \mathrm{f}^{\prime}(0-)=-1+1=0\end{array}\right] \Rightarrow$ diff. at $\mathrm{x}=0$
15.[A] $f(x)=\| x|-1|$
using graphical transformation

$\therefore \mathrm{f}(\mathrm{x})$ is not differentiable at
$\mathrm{x}=0, \pm 1$
16.[C] $g(x)=\frac{(x-1)^{n}}{\log \cos ^{m}(x-1)}$

Left hand derivative of $|x-1|$ at $x=1$ is $-1=p$ (given)
$\therefore \lim _{\mathrm{x} \rightarrow 1^{+}} \mathrm{g}(\mathrm{x})=\mathrm{p}$
$\Rightarrow \lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{~h}^{\mathrm{n}}}{\log \cos ^{\mathrm{m}} \mathrm{h}}=-1$
$\Rightarrow \lim _{h \rightarrow 0} \frac{n h^{\mathrm{n}-1}}{m \cdot \frac{1}{\cosh }(-\sinh)}=-1 \quad(\operatorname{applying} \mathrm{D})$
$=\lim _{h \rightarrow 0} \frac{n}{m} \cdot \frac{h^{n-1} \cosh }{\sinh }=1$
If $\mathrm{n}=2$ then
$\lim _{\mathrm{h} \rightarrow 0} \frac{2}{\mathrm{~m}} \cdot \frac{\mathrm{~h}}{\sinh } \cosh =1$
$\Rightarrow \frac{2}{\mathrm{~m}}=1$
$\Rightarrow \mathrm{m}=2$

17.[B,C] $f: R \rightarrow R$

$f(x+y)=f(x)+f(y)$
$\Rightarrow \mathrm{f}(\mathrm{x})=\lambda \mathrm{x}$
Which of equation of straight line
Which is continuous \& differentiable every where $\& \mathrm{f}^{\prime}(\mathrm{x})=\lambda \quad$ (constant function)

18.[A, B, C, D]

$f(x)=\left\{\begin{array}{cc}-x-\frac{\pi}{2}, & x \leq-\frac{\pi}{2} \\ -\cos x, & -\frac{\pi}{2}<x \leq 0 \\ x-1, & 0<x \leq 1 \\ \ln x, & x>1\end{array}\right.$
Option (A)
at $\mathrm{x}=-\frac{\pi}{2}$ L.H.L. $\lim _{\mathrm{h} \rightarrow 0}-\left(-\frac{\pi}{2}-\mathrm{h}\right)-\frac{\pi}{2}=0$
R.H.L. $\lim _{h \rightarrow 0}-\cos \left(-\frac{\pi}{2}-h\right)=0$
$f\left(-\frac{\pi}{2}\right)=-\left(-\frac{\pi}{2}\right)-\frac{\pi}{2}=0$
$\therefore \mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=-\frac{\pi}{2}$

Option (B)
LHD at $x=0 \quad$ is zero
R.H.D. at $x=0$ is 1
\therefore not diff. at $\mathrm{x}=0$
Option (C)
L.H.D. at $x=1$ is 1
R.H.D. at $x=1$ is 1
differentiable at $\mathrm{x}=1$
Option (D)
$f^{\prime}\left(-\frac{3}{2}\right)=\sin \left(-\frac{3}{2}\right)$ differentiable
19. $[B, D]$ At $x=2 n$
$\mathrm{x} \rightarrow 2 \mathrm{n}^{+} \mathrm{a}_{\mathrm{n}}+\sin 2 \mathrm{n} \pi=\mathrm{a}_{\mathrm{n}}$
$\mathrm{x} \rightarrow 2 \mathrm{n}^{-} \mathrm{b}_{\mathrm{n}}+\cos 2 \mathrm{n} \pi=\mathrm{b}_{\mathrm{n}}+1$
For continuous $a_{n}=b_{n}+1$
At $\mathrm{x}=2 \mathrm{n}+1$
$\mathrm{x} \rightarrow 2 \mathrm{n}+1^{+} \mathrm{b}_{\mathrm{n}+1}+\cos \pi(2 \mathrm{n}+1)=\mathrm{b}_{\mathrm{n}+1-1}$
$\mathrm{x} \rightarrow 2 \mathrm{n}+1^{-} \mathrm{a}_{\mathrm{n}}+\sin \pi(2 \mathrm{n}+1)=\mathrm{a}_{\mathrm{n}}$
for continuous $a_{n}=b_{n+1}-1$
$a_{n}-b_{n+1}=-1$
for $\mathrm{n}=\mathrm{n}-1 \mathrm{a}_{\mathrm{n}-1}-\mathrm{b}_{\mathrm{n}}=-1$
20.[B] $\quad f^{\prime}(0+h)=\lim _{h \rightarrow 0} \frac{h^{2}\left|\cos \frac{\pi}{h}\right|-0}{h-0}=0$
$\mathrm{f}^{\prime}(0-\mathrm{h})=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{~h}^{2}\left|\cos \frac{\pi}{\mathrm{~h}}\right|-0}{-\mathrm{h}}=0$
$\because \mathrm{f}^{\prime}\left(0^{+}\right)=\mathrm{f}^{\prime}\left(0^{-}\right)=0=$ finite
So $f(x)$ is differentiable at $x=0$
$f^{\prime}(2+h)=\lim _{h \rightarrow 0} \frac{(2+h)^{2}\left|\cos \left(\frac{\pi}{2+h}\right)\right|-0}{h}=\pi$
$f^{\prime}(2-h)=\lim _{h \rightarrow 0} \frac{(2-h)^{2}\left|\cos \left(\frac{\pi}{2-h}\right)\right|-0}{-h}=-\pi$
$\because \mathrm{f}^{\prime}\left(2^{+}\right) \neq \mathrm{f}^{\prime}\left(2^{-}\right)$but both are finite so $\mathrm{f}(\mathrm{x})$ is not differentiable at $\mathrm{x}=2$ but continuous at $\mathrm{x}=2$

