JEE MAIN + ADVANCED MATHEMATICS

TOPIC NAME
CONTINUITY

DIFFERENTIABILITY

(PRACTICE SHEET)

LEVEL-1

Continuity of a function at a point

- Function $f(x) = \begin{cases} 1+x, & \text{when } x < 2 \\ 5-x, & \text{when } x > 2 \end{cases}$; x = 2 is **Q.1** continuous at x = 2, if f(2) equals -
 - (A) 0
- (B) 1
- (C) 2
- (D) 3
- If $f(x) = \begin{cases} x \cos \frac{1}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$ is continuous at **Q.2**
 - x = 0, then
 - (A) k > 0
- (B) k < 0
- (C) k = 0
- (D) $k \ge 0$
- If function $f(x) = \begin{cases} x^2 + 2, & x > 1 \\ 2x + 1, & x = 1 \end{cases}$ is continuous **Q.3**
 - at x = 1, then value of f(x) for x < 1 is-
 - (A)3
- (B) 1-2x
- (C) 1-4x
- (D) None of these
- **Q.4** Which of the following function is continuous at x = 0-
 - (A) $f(x) = \begin{cases} \sin \frac{2x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$
 - (B) $f(x) = \begin{cases} (1+x)^{1/x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$
 - (C) $f(x) = \begin{cases} e^{-1/x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$
 - (D) None of these
- If $f(x) = \begin{cases} 6 \times 5^x, & x \le 0 \\ 2a + x, & x > 0 \end{cases}$ is continuous at Q.5
 - x = 0, then the value of a is -
 - (A) 1
- (B) 2
- (C) 3
- (D) None of these

- If $f(x) = \begin{cases} \frac{x^2 (a+2)x + a}{x-2} & x \neq 2 \\ 2. & x = 2 \end{cases}$ is continuous **Q.6**
 - at x = 2, then a is equal to-
 - (A) 0
- (B) 1
- (C) -1
- (D) 2
- If $f(x) = \begin{cases} \frac{\sin^{-1} ax}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$ is continuous at
 - x = 0, then k is equal to-
 - (A) 0
- (C) a
- (D) None of these
- What is the value of $(\cos x)^{1/x}$ at x = 0 so that it **Q.8** becomes continuous at x = 0-
 - (A) 0
- (B) 1
- (C) -1
- (D) e
- If $f(x) = \begin{cases} \frac{k \cos x}{\pi 2x}, & x \neq \pi/2 \\ 1, & x = \pi/2 \end{cases}$ is a continuous Q.9
 - function at $x = \pi/2$, then the value of k is-
 - (A) -1
- (B) 1
- (C) -2
- If function $f(x) = \frac{x^3 a^3}{x a}$, is continuous at Q.10
 - x = a, then the value of f(a) is -
 - (A) 2a
- (B) $2a^2$ (C) 3a
- (D) $3a^2$
- **Q.11** If $f(x) = \begin{cases} \sin \frac{1}{x}, & x \neq 0 \\ k & x = 0 \end{cases}$ is continuous at
 - x = 0, then k is equal to -
 - (A) 8
- (B) 1
- (C) -1
- (D) None of these
- Function $f(x) = \left(1 + \frac{x}{a}\right)^{1/x}$ is continuous at Q.12
 - x = 0 if f(0) equals-
 - (A) e^a
- (B) e^{-a}
- (C) 0
- (D) $e^{1/a}$

Q.13 If $f(x) = \frac{1 - \cos 7(x - \pi)}{x - \pi}$, $(x \ne \pi)$ is continuous at

 $x = \pi$, then $f(\pi)$ equals-

- (A) 0
- (B) 1
- (C) -1
- (D) 7
- **Q.14** If $f(x) = \begin{cases} \frac{\tan x}{\sin x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$, then f(x) is -
 - (A) continuous everywhere
 - (B) continuous nowhere
 - (C) continuous at x = 0
 - (D) continuous only at x = 0
- If $f(x) = \frac{2x + \tan x}{x}$ is continuous at x = 0, then Q.15
 - f(0) equals-
 - (A) 0
- (B) 1
- (C) 2
- (D) 3
- **Q.16** If $f(x) = \frac{\sqrt{1+x} \sqrt[3]{1+x}}{x}$, $(x \neq 0)$ is continuous

at x = 0, then the value of f(0) is-

- (A) 1/6 (B) 1/4 (C) 2
- (D) 1/3
- If $f(x) = \begin{cases} ax^2 b & \text{when } 0 \le x < 1 \\ 2 & \text{when } x = 1 \\ x + 1 & \text{when } 1 < x \le 2 \end{cases}$ Q.17

continuous at x = 1, then the most suitable values of a, b are-

- (A) a = 2, b = 0
- (B) a = 1, b = -1
- (C) a = 4, b = 2 (D) All the above
- If $f(x) = \begin{cases} |x|, & \text{when} \quad x < 0 \\ x, & \text{when} \quad 0 \le x < 1 \text{ then f is -} \\ 1, & \text{when} \quad x > 1 \end{cases}$ **Q.18**
 - (A) continuous for every real number x
 - (B) discontinuous at x = 0
 - (C) discontinuous at x = 1
 - (D) discontinuous at x = 0 and x = 1
- **Q.19** If $f(x) = \begin{cases} \sin(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases}$, then it is

discontinuous at -

- (A) x = 0
- (B) All points
- (C) No point
- (D) None of these

- Q.20 Function f(x) = x - |x| is-
 - (A) discontinuous at x = 0
 - (B) discontinuous at x = 1
 - (C) continuous at all points
 - (D) discontinuous at all points
- Q.21 Function $f(x) = \tan x$, is discontinuous at-
 - (A) x = 0
- (B) $x = \pi/2$
- (C) $x = \pi$
- (D) $x = -\pi$
- **Q.22** Function f(x) = [x] is discontinuous at-
 - (A) every real number
 - (B) every natural number
 - (C) every integer
 - (D) No where
- Function $f(x) = 3x^2 x$ is-**O.23**
 - (A) discontinuous at x = 1
 - (B) discontinuous at x = 0
 - (C) continuous only at x = 0
 - (D) continuous at x = 0
- If $f(x) = \begin{cases} x^2, & \text{when} \quad x \le 0\\ 1, & \text{when} \quad 0 < x < 1 \text{, then } f(x) \text{ is-}\\ 1/x, & \text{when} \quad x \ge 1 \end{cases}$ Q.24
 - (A) continuous at x = 0 but not at x = 1
 - (B) continuous at x = 1 but not at x = 0
 - (C) continuous at x = 0 and x = 1
 - (D) discontinuous at x = 0 and x = 1
- Function $f(x) = \begin{cases} -1, & x \in Q \\ 1, & x \notin Q \end{cases}$ is-Q.25
 - (A) continuous at x = 0
 - (B) continuous at x = 1
 - (C) every where continuous
 - (D) every where discontinuous
- Q.26 If $f(x) = \begin{cases} -x^2, & x \le 0 \\ 5x 4, & 0 < x \le 1 \\ 4x^2 3x, & 1 < x < 2 \end{cases}$, then f(x) is-
 - (A) continuous at x = 0 but not at x = 1
 - (B) continuous at x = 2 but not at x = 0
 - (C) continuous at x = 0.1, 2
 - (D) discontinuous at x = 0,1, 2

Q.27 Function
$$f(x) = \begin{cases} \frac{x^2 - 4x + 3}{x^2 - 1}, & x \neq 1 \\ 2, & x = 1 \end{cases}$$
 is-

- (A) continuous at x = 1
- (B) continuous at x = -1
- (C) continuous at x = 1 and x = -1
- (D) discontinuous at x = 1 and x = -1
- **Q.28** Let $f(x) = 3 |\sin x|$, then f(x) is-
 - (A) Everywhere continuous
 - (B) Everywhere discontinuous
 - (C) Continuous only at x = 0
 - (D) Discontinuous only at x = 0
- **Q.29** The function $f(x) = \begin{cases} x-1, & x<2\\ 2x-3, & x \ge 2 \end{cases}$ is a

continuous function for-

- (A) all real values of x
- (B) only x = 2
- (C) all real values of $x \neq 2$
- (D) only all integral values of x

Q.30 If
$$f(x) = \begin{cases} x \sin x, & 0 < x \le \pi/2 \\ \frac{\pi}{2} \sin(\pi + x), & \frac{\pi}{2} < x < \pi \end{cases}$$
, then -

- (A) f(x) is discontinuous at $x = \pi/2$
- (B) f(x) is continuous at $x = \pi/2$
- (C) f(x) is continuous at x = 0
- (D) None of these
- **Q.31** The value of k so that

$$f(x) = \begin{cases} k(2x - x^2) & \text{when } x < 0\\ \cos x, & \text{when } x \ge 0 \end{cases}$$

continuous at x = 0 is-

- (A) 1
- (B) 2
- (C) 4
- (D) None of these

Q.32 If
$$f(x) = \frac{(a+x)^2 \sin(a+x) - a^2 \sin a}{x}$$
, $x \neq 0$;

then the value of f(0) so that f is continuous at x = 0 is-

- (A) $a^2 \cos a + a \sin a$ (B) $a^2 \cos a + 2a \sin a$
- (C) $2a^2 \cos a + a \sin a$ (D) None of these

- **Q.33** Let f(x) = |x| + |x-1|, then-
 - (A) f(x) is continuous at x = 0 and x = 1
 - (B) f(x) is continuous at x = 0 but not at x = 1
 - (C) f(x) is continuous at x = 1 but not at x = 0
 - (D) None of these
- **Q.34** Consider the following statements:
 - I. A function f is continuous at a point $x_0 \in Dom (f) \ if \ \lim_{x \to x_0} f(x) = f(x_0).$
 - II. f is continuous in [a, b] if f is continuous in (a, b) and f(a) = f(b).
 - III. A constant function is continuous in an interval.

Out of these correct statements are

- (A) I and II
- (B) II and III
- (C) I and III
- (D) All the above

Q.35 If
$$f(x) = \begin{cases} x+2, & \text{when } x < 1 \\ 4x-1, & \text{when } 1 \le x \le 3, \text{ then correct } \\ x^2+5, & \text{when } x > 3 \end{cases}$$

statement is-

- (A) $\lim_{x \to 1} f(x) = \lim_{x \to 3} f(x)$
- (B) f(x) is continuous at x = 3
- (C) f(x) is continuous at x = 1
- (D) f(x) is continuous at x = 1 and 3
- **Q.36** Let f(x) and $\phi(x)$ be defined by f(x) = [x] and

$$\phi(x) = \begin{cases} 0, & x \in I \\ x^2, & x \in R - I \end{cases} [.] = G.I.F.$$

- (A) $\lim_{x \to 1} \phi(x)$ exist but ϕ is not continuous at x = 1
- (B) $\lim_{x\to 1} f(x)$ does not exist and f is continuous at x=1
- (C) ϕ is continuous for all x
- (D) None of these

Q.37
$$f(x) = \begin{cases} \frac{x-4}{|x-4|} + a, & x < 4 \\ a+b, & x = 4 \\ \frac{x-4}{|x-4|} + b, & x > 4 \end{cases}$$
 is continuous at

x = 4, if-

- (A) a = 0, b = 0
- (B) a = 1, b = 1
- (C) a = 1, b = -1
- (D) a = -1, b = 1

The function $f(x) = \frac{\cos x - \sin x}{\cos^2 x}$ is continuous 0.38

everywhere then f $(\pi/4)$ =

- (A) 1
- (B) -1
- (C) $\sqrt{2}$
- (D) $1/\sqrt{2}$
- If $f(x) = \frac{\tan\left(\frac{\pi}{4} x\right)}{\cot^{2}x}$, $x \neq \pi/4$ is every where Q.39

continuous, then $f(\pi/4)$ equals-

- (A) 0
- (B) 1
- (C) -1
- (D) 1/2

Continuity from left and right

Q.40 If
$$f(x) = \begin{cases} \frac{x}{e^{1/x} + 1}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, then -

- (A) $\lim_{x \to 0} f(x) = 1$
- (B) $\lim_{x \to 0} f(x) = 1$
- (C) f(x) is continuous at x = 0
- (D) None of these
- Q.41 If f(x) = [x], where $[x] = \text{greatest integer} \le x$, then at x = 1, f is-
 - (A) continuous
- (B) left continuous
- (C) right continuous (D) None of these

Continuity of a function in an interval

Q.42 If
$$f(x) = \begin{cases} \frac{\sqrt{1+px} - \sqrt{1-px}}{x}, & -1 \le x < 0 \\ \frac{2x+1}{x-2}, & 0 \le x \le 1 \end{cases}$$
 is

continuous in the interval [-1,1] then p equals -

- (A) -1
- (B) 1
- (C) 1/2
- (D) -1/2

Q.43 If
$$f(x) = \begin{cases} \frac{x^2}{a}, & 0 \le x < 1 \\ a, & 1 \le x < \sqrt{2} \\ \frac{(2b^2 - 4b)}{x^2}, & \sqrt{2} \le x < \infty \end{cases}$$

 $[0, \infty)$, then values of a and b are respectively -

- (A) 1, -1
- (B) -1, $1+\sqrt{2}$
- (C) -1, 1
- (D) None of these

- Q.44 Which of the following function is not continuous in the interval $(0, \pi)$
 - (A) x sin $\frac{1}{x}$
 - (B) $\begin{cases} 1, & 0 < x \le \frac{3\pi}{4} \\ 2\sin\left(\frac{2x}{9}\right), & \frac{3\pi}{4} < x < \pi \end{cases}$
 - (C) tan x
 - (D) None of these

Continuous and discontinuous function

- **Q.45** Function f(x) = |x| is-
 - (A) discontinuous at x = 0
 - (B) discontinuous at x = 1
 - (C) continuous at all point
 - (D) discontinuous at all points
- 0.46 Point of discontinuity for sec x is -
 - (A) $x = -\pi/2$
- (B) $x = 3 \pi/2$
- (C) $x = -5 \pi / 2$
- (D) All of these
- Function $f(x) = \frac{1}{\log |x|}$ is discontinuous at -**Q.47**
 - (A) one point
 - (B) two points
 - (C) three points
 - (D) infinite number of points
- 0.48 If f(x) = x - [x], then f is discontinuous at -
 - (A) every natural number
 - (B) every integer
 - (C) origin
 - (D) Nowhere
- Q.49 Which one is the discontinuous function at any point -
 - (A) sin x
- (B) x^2
- (C) 1/(1-2x)
- (D) $1/(1+x^2)$
- Q.50 The point of discontinuity of cosec x is -
 - (A) $x = \pi$
- (B) $x = \pi / 2$
- (C) $x = 3 \pi / 2$
- (D) None of these
- Q.51 In the following, continuous function is-

- (A) tan x
- (B) sec x
- (C) sin 1/x
- (D) None of these
- Q.52 In the following, discontinuous function is-
 - (A) sin x
- (B) cos x
- (C) tan x
- (D) e^x
- Q.53 Which of the following functions is every where continuous-
 - (A) |x + |x|
- (B) x |x|
- $(C) \times |x|$
- (D) All above
- **Q.54** Which of the following functions is discontinuous at x = a-
 - (A) tan(x-a)
- (B) $\sin(x-a)$
- (C) cosec(x a)
- (D) $\sec(x-a)$
- **Q.55** If f(x) is continuous and g(x) is discontinuous function, then f(x) + g(x) is-
 - (A) continuous function
 - (B) discontinuous function
 - (C) constant function
 - (D) identity function
- **Q.56** Function f(x) = |x-2| -2| |x-4| is discontinuous at
 - (A) x = 2, 4
- (B) x = 2
- (C) Nowhere
- (D) Except x = 2, 4
- **Q.57** Function $f(x) = |\sin x| + |\cos x| + |x|$ is discontinuous at-
 - (A) x = 0
- (B) $x = \pi/2$
- (C) $x = \pi$
- (D) No where
- **Q.58** Function $f(x) = 1 + |\sin x|$ is-
 - (A) continuous only at x = 0
 - (B) discontinuous at all points
 - (C) continuous at all points
 - (D) None of these
- **Q.59** If function is f(x) = |x| + |x 1| + |x 2|, then it is -
 - (A) discontinuous at x = 0
 - (B) discontinuous at x = 0, 1
 - (C) discontinuous at x = 0, 1, 2
 - (D) everywhere continuous

- **Q.60** Function $f(x) = \frac{x^3 1}{x^2 3x + 2}$ is discontinuous at -
 - (A) x = 1
- (B) x = 2
- (C) x = 1, 2
- (D) No where
- **Q.61** If $f(x) = \frac{1}{(1-x)}$ and $g(x) = f[f\{f(x)\}]$, then g(x)

is discontinuous at -

- (A) x = 3
- (B) x = 2
- (C) x = 0
- (D) x = 4
- **Q.62** The function $f(x) = \frac{|3x-4|}{3x-4}$ is discontinuous at
 - (A) x = 4
- (B) x = 3/4
- (C) x = 4/3
- (D) No where
- **Q.63** The function $f(x) = \left(\frac{\pi}{2} x\right) \tan x$ is discontinuous

at-

- (A) $x = \pi$
- (B) x = 0
- $(C) x = \frac{\pi}{2}$
- (D) None of these
- **Q.64** Which of the following function has finite number of points of discontinuity-
 - (A) $\sin [\pi x]$
- (B) |x|/x
- (C) tan x
- (D) x + [x]
- Q.65 The points of discontinuity of

$$f(x) = tan\left(\frac{\pi x}{x+1}\right) \text{ other than } x = -1 \text{ are-}$$

- (A) $x = \pi$
- (B) x = 0
- (C) $x = \frac{2m-1}{2m+1}$
- (D) $x = \frac{2m+1}{1-2m}$, m is any integer
- Q.66 In the following continuous function is-
 - (A)[x]
- (B) x [x]
- $(C) \sin [x]$
- (D) $e^x + e^{-x}$
- **Q.67** In the following, discontinuous function is-
 - (A) $\sin^2 x + \cos^2 x$
- (B) $e^{x} + e^{-x}$
- $(C) e^{x^2}$
- (D) $e^{1/x}$

- Q.68 If f(x) is continuous function and g(x) is discontinuous function, then correct statement is -
 - (A) f(x) + g(x) is a continuous function
 - (B) f(x) g(x) is a continuous function
 - (C) f(x) + g(x) is a discontinuous function
 - (D) f(x) g(x) is a continuous function

Differentiability of function

- Q.69 Which of the following functions is not differentiable at x = 0-
 - $(A) \times |x|$
- (B) x^3
- $(C) e^{-x}$
- (D) x + |x|
- **Q.70** Which of the following is differentiable function-
 - (A) $x^2 \sin \frac{1}{x}$
- (B) x |x|
- (C) cosh x
- (D) all above
- Q.71 The function $f(x) = \sin |x|$ is-
 - (A) continuous for all x
 - (B) continuous only at certain points
 - (C) differentiable at all points
 - (D) None of these
- Q.72If f(x) = |x-3|, then f is-
 - (A) discontinuous at x = 2
 - (B) not differentiable at x = 2
 - (C) differentiable at x = 3
 - (D) continuous but not differentiable at x = 3
- If $f(x) = \frac{|x-1|}{|x-1|}$, $x \ne 1$, and f(1) = 1, then the Q.73

correct statement is-

- (A) discontinuous at x = 1
- (B) continuous at x = 1
- (C) differentiable at x = 1
- (D) discontinuous for x > 1
- Q.74 If $f(x) = \begin{cases} x+1, & x>1\\ 0, & x=1, \text{ then } f'(0) \text{ equals-}\\ 7-3x, & x<1 \end{cases}$
 - (A) 1
- (B) 2 (C) 0
- (D) -3

- 0.75The function f(x) = |x| + |x - 1| is not differential at -
 - (A) x = 0.1
- (B) x = 0, -1
- (C) x = -1, 1
- (D) x = 1, 2
- **Q.76** If $f(x) = \begin{cases} e^{1/x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, then which one is

correct-

- (A) f(x) is differentiable at x = 0
- (B) f(x) is discontinuous at x = 0
- (C) f(x) is continuous no where
- (D) None of these
- **Q.77** Function [x] is not differentiable at -
 - (A) every rational number
 - (B) every integer
 - (C) origin
 - (D) every where
- If $f(x) = \begin{cases} |x-3|, & \text{when } x \ge 1\\ \frac{x^2}{4} \frac{3x}{2} + \frac{13}{4}, & \text{when } x < 1 \end{cases}$, then Q.78

correct statement is-

- (A) f is discontinuous at x = 1
- (B) f is discontinuous at x = 3
- (C) f is differentiable at x = 1
- (D) f is differentiable at x = 3
- Function $f(x) = \frac{|x|}{|x|}$ is-0.79
 - (A) continuous every where
 - (B) differentiable every where
 - (C) differentiable every where except at x = 0
 - (D) None of these
- 0.80 Let f(x) = |x - a| + |x - b|, then-
 - (A) f(x) is continuous for all $x \in R$
 - (B) f(x) is differential for $\forall x \in R$
 - (C) f(x) is continuous except at x = a and b
 - (D) None of these
- Function f(x) = |x 1| + |x 2| is differentiable **Q.81** in [0, 3], except at-
 - (A) x = 0 and x = 3 (B) x = 1
 - (C) x = 2
- (D) x = 1 and x = 2

Q.82 If
$$f(x) = \begin{cases} 1, & \text{when } x < 0 \\ 1 + \sin x, & \text{when } 0 \le x \le \pi/2 \end{cases}$$
, then at

x = 0, f'(x) equals-

- (A) 1
- (B) 0
- $(C) \infty$
- (D) Does not exist

Q.83 If
$$f(x) = \begin{cases} \frac{x}{1+e^{1/x}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, then the function

f(x) is differentiable for -

- $(A) x \in R_+$
- (B) $x \in R$
- (C) $x \in R_0$
- (D) None of these

Q.84 If
$$f(x) = \begin{cases} x^{\alpha} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 is differentiable at

x = 0, then-

- (A) $\alpha > 0$
- (B) $\alpha > 1$
- (C) $\alpha \ge 1$
- (D) $\alpha \ge 0$

Q.85 If
$$f(x) = \begin{cases} e^x, & x \le 0 \\ |1-x|, & x > 0 \end{cases}$$
, then $f(x)$ is-

- (A) continuous at x = 0
- (B) differentiable at x = 0
- (C) differentiable at x = 1
- (D) differentiable both at x = 0 and 1

Q.86 The function
$$f(x) = x - |x|$$
 is not differentiable at

- (A) x = 1
- (B) x = -1
- (C) x = 0
- (D) Nowhere

Q.87 Which of the following function is not differentiable at
$$x = 1$$

- $(A) \sin^{-1} x$
- (B) tan x
- (C) a^x
- (D) sin x

Q.88 If
$$f(x) = \begin{cases} \frac{x-1}{2x^2 - 7x + 5}, & x \neq 1 \\ -\frac{1}{3}, & x = 1 \end{cases}$$
, then f'(1)

equals -

- (A) $\frac{2}{9}$
 - (B) $-\frac{2}{9}$
- (C) 0
- (D) Does not exist

Q.89 If
$$f(x) = \begin{cases} \frac{\sin x^2}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, then at $x = 0$, $f(x)$ is

- (A) continuous and differentiable
- (B) neither continuous nor differentiable
- (C) continuous but not differentiable
- (D) None of these

Q.90 Function
$$f(x) = 1 + |\sin x| \text{ is}-$$

- (A) continuous no where
 - (B) differentiable no where
 - (C) everywhere continuous
 - (D) None of these

Q.91 Function
$$f(x) = \begin{cases} x^2, & x \le 0 \\ 1, & 0 < x \le 1 \text{ is} -1 \\ 1/x, & x > 1 \end{cases}$$

- (A) differentiable at x = 0, 1
- (B) differentiable only at x = 0
- (C) differentiable at only x = 1
- (D) Not differentiable at x = 0, 1

LEVEL-2

- Q.1 If [.] denotes G.I.F. then, in the following, continuous function is-
 - $(A) \cos [x]$
- (B) $\sin \pi[x]$
- (C) $\sin \frac{\pi}{2}$ [x]
- (D) All above
- If $f(x) = \frac{1 \cos(1 \cos x)}{x^4}$, $(x \ne 0)$ is continuous **Q.2**

everywhere, then f(0) equals-

- (A) 1/8
- (B) 1/2
- (C) 1/4
- (D) None of these
- For function $f(x) = \begin{cases} \left(1 + \frac{4x}{5}\right)^{1/x}, & x \neq 0 \\ e^{4/5}, & x = 0 \end{cases}$, the **Q.3**

correct statement is-

- (A) f(0+0) and f(0-0) do not exist
- (B) $f(0+0) \neq f(0-0)$
- (C) f(x) continuous at x = 0
- (D) $\lim_{x\to 0} f(x) \neq f(0)$
- If $f(x) = \begin{cases} \frac{\sin(a+1)x + \sin x}{x}, & x < 0 \\ c, & x = 0, \text{ is} \end{cases}$ **Q.4**

continuous at x = 0, then

- (A) a = 3/2, c = 1/2, b is any real number
- (B) a = -3/2, c = 1/2, b is $R \{0\}$
- (C) a = 3/2, c = -1/2, $b \in R \{0\}$
- (D) None of these
- Function $f(x) = 4x^3 + 3x^2 + e^{\cos x} + |x-3| +$ **Q.5** $\log (a^x - 1) + x^{1/3} (a > 1)$ is discontinuous at-
 - (A) x = 0
- (B) x = 1
- (C) x = 2
- (D) $x = \frac{\pi}{2}$

If $f(x) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a^2 - ax + x^2}}$ is (a > 0)**Q.6**

> continuous for all values of x, then f(0) is equal to-

- (A) a \sqrt{a}
- $(C) \sqrt{a}$
- (D) $-a\sqrt{a}$
- Function $f(x) = \begin{cases} \frac{(b^2 a^2)}{2}, & 0 \le x \le a \\ \frac{b^2}{2} \frac{x^2}{6} \frac{a^3}{3x}, & a < x \le b, is \end{cases}$ **Q.7** $\frac{1}{2} \left(\frac{b^3 - a^3}{x} \right), \qquad x > b$
 - (A) continue at x = a
 - (B) continue at x = b
 - (C) discontinue on both x = a, x = b
 - (D) continue at both x = a, x = b
- The function $f(x) = \begin{cases} \frac{e^{1/x}-1}{e^{1/x}+1}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ **Q.8**
 - (A) is continuous at x = 0
 - (B) is not continuous at x = 0
 - (C) is continuous at x = 2
 - (D) None of these
- If function $f(x) = \left(\frac{\sin x}{\sin \alpha}\right)^{1/x-\alpha}$ where, $\alpha \neq m\pi$ **Q.9**

 $(m \in I)$ is continuous then -

- (A) $f(\alpha) = e^{\tan \alpha}$ (B) $f(\alpha) = e^{\cot \alpha}$
- (C) $f(\alpha) = e^{2 \cot \alpha}$ (D) $f(\alpha) = \cot \alpha$
- $\text{If } f(x) \ = \begin{cases} -2\sin x, & x \le -\pi/2 \\ a\sin x + b, & -\pi/2 < x < \pi/2 \ , \text{ is a} \end{cases}$ 0.10

continuous function for every value x, then-

- (A) a = b = 1
- (B) a = b = -1
- (C) a = 1, b = -1
 - (D) a = -1, b = 1

- **Q.11** If function $f(x) = x |x x^2|, -1 \le x \le 1$ then f is-
 - (A) continuous at x = 0
 - (B) continuous at x = 1
 - (C) continuous at x = -1
 - (D) everywhere continuous
- **Q.12** $f(x) = 1 + 2^{1/x}$ is-
 - (A) continuous everywhere
 - (B) continuous nowhere
 - (C) discontinuous at x = 0
 - (D) None of these
- Q.13 Let [.] denotes G.I.F. and f(x) = [x] + [-x] and m is any integer, then correct statement is -
 - (A) $\lim_{x\to m} f(x)$ does not exist
 - (B) f(x) is continuous at x = m
 - (C) $\lim_{x\to m} f(x)$ exists
 - (D) None of these
- **Q.14** If $f(x) = (\tan x \cot \alpha)^{1/(x-\alpha)}$ is continuous at $x = \alpha$, then the value of $f(\alpha)$ is -
 - (A) $e^{2 \sin 2\alpha}$
- (B) $e^{2\cos c 2}$ α
- (C) $e^{\cos c 2 \alpha}$ (D) $e^{\sin 2 \alpha}$
- **Q.15** Let [.] denotes G.I.F. for the function
 - $f(x) = \frac{\tan(\pi[x \pi])}{1 + [x]^2}$ the wrong statement is -
 - (A) f(x) is discontinuous at x = 0
 - (B) f(x) is continuous for all values of x
 - (C) f(x) is continuous at x = 0
 - (D) f(x) is a constant function
- Q.16 The point of discontinuity of the function

$$f(x) = \frac{1 + \cos 5x}{1 - \cos 4x} \text{ is-}$$

- (A) x = 0
- (B) $x = \pi$
- (C) $x = \pi / 2$
- (D) All the above
- **Q.17** Let $f(x) = \frac{\sqrt{1+\sin x} \sqrt{1-\sin x}}{x}$. The value

which should be assigned to f at x = 0 so that it is continuous everywhere is-

- (A) 1
- (B) 2
- (C) -2
- (D) 1/2

Q.18 If the function

$$f(x) = \begin{cases} \frac{\sin((k+1)x + \sin x)}{x}, & \text{when } x < 0\\ 1/2, & \text{when } x = 0 \text{ is}\\ \frac{(x+2x^2)^{1/2}}{2x^{3/2}}, & \text{when } x > 0 \end{cases}$$

continuous at x = 0, then the value of k is-

- (A) 1/2
- (B) -1/2
- (C) -3/2
- (D) 1
- **Q.19** If $f(x) = \begin{cases} 3, & x < 0 \\ 2x + 1, & x \ge 0 \end{cases}$ then -
 - (A) both f(x) and $f(\mid x\mid)$ are differentiable at x=0
 - (B) f(|x|) is differentiable but f(x) is not differentiable at x=0
 - (C) f(x) is differentiable but f(|x|) is not differentiable at x=0
 - (D) both f(x) and f(|x|) are not differentiable at x = 0
- **Q.20** The number of points in the interval (0, 2) where the derivative of the function
 - $f(x) = |x 1/2| + |x 1| + \tan x$ does not exist is-
 - (A) 1
- (B) 2
- (C) 3
- (D) 4
- **Q.21** Function $f(x) = \sin(\pi[x])$ is-
 - (A) differentiable every where
 - (B) differentiable no where
 - (C) not differentiable at x = 1 and -1
 - (D) None of these
- **Q.22** Function $f(x) = \begin{cases} x \tan^{-1}(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases}$ at x = 0
 - is-
 - (A) discontinuous
- (B) continuous
- (C) differentiable
- (D) None of these
- Q.23 Function $f(x) = \frac{\cos x \sin x}{\sin 4x}$ is not defined at
 - $x = \frac{\pi}{4}$. The value which should be assigned to
 - f at $x = \frac{\pi}{4}$, so that it is continuous there, is-
 - (A) 0 (B) $\frac{1}{2\sqrt{2}}$ (C) $-\frac{1}{\sqrt{2}}$ (D) None

Q.24 Let $f(x) = \max \{2 \sin x, 1 - \cos x\}, x \in (0, \pi)$. Then set of points of non-differentiability is -

- (A)
- (B) $\{\pi/2\}$
- (C) $\{\pi \cos^{-1} 3/5\}$ (D) $\{\cos^{-1} 3/5\}$

$$\mathbf{Q.25} \quad \ \ \, \text{If} \ \ \, f(x) \ \, = \begin{cases} x \, \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}}, & x \neq 0 \\ 0 & , & x = 0 \end{cases}, \ \, \text{then correct}$$

statement is-

- (A) f is continuous at all points except x = 0
- (B) f is continuous at every point but not differentiable
- (C) f is differentiable at every point
- (D) f is differentiable only at the origin
- Q.26 Consider the following statements-
 - (I) If a function is differentiable at some point then it must be continuous at that point
 - (II) If a function continuous at some point then it is not necessary that it is differentiable at that point.
 - (III) Differentiability of a function at some point is the necessary and sufficient condition for continuity at that point.

From above, correct statements are-

- (A) I, II, III
- (B) I, III
- (C) I, II
- (D) II, III

- Q.27 State which of the following is a false statement -
 - (A) If f(x) is continuous at x = a then $f(a) = \lim_{x \to a} f(x)$
 - (B) If $\lim_{x \to \infty} f(x)$ exists, then f(x) is continuous at x = a
 - (C) If f(x) is differentiable at x = a, then it is continuous at x = a
 - (D) If f(x) is continuous at x = a, then $\lim_{x \to a} f(x)$ exists

LEVEL- 3

Q.1 If the derivative of the function -

$$f(x) = \begin{cases} ax^2 + b, & x < -1 \\ bx^2 + ax + 4, & x \ge -1 \end{cases}$$

is everywhere continuous, then

- (A) a = 2, b = 3
- (B) a = 3, b = 2
- (C) a = -2, b = -3 (D) a = -3, b = -2
- **Q.2** The value of f(0), so that the function

$$f(x) = \frac{(27-2x)^{1/3}-3}{9-3(243+5x)^{1/5}}$$
, $(x \ne 0)$ is continuous,

is given by -

- (A) 2/3
- (B) 6
- (C) 2
- (D) 4
- If $f(x) = \begin{cases} |x-4|, & \text{for } x \ge 1 \\ (x^3/2) x^2 + 3x + (1/2), & \text{for } x < 1 \end{cases}$, then **Q.3**
 - (A) f(x) is continuous at x = 1 and at x = 4
 - (B) f(x) is differentiable at x = 4
 - (C) f(x) is continuous and differentiable at x = 1
 - (D) f(x) is only continuous at x = 1
- Let f(x) = |x| and $g(x) = |x^3|$, then **Q.4**
 - (A) f(x) & g(x) both are continuous at x = 0
 - (B) f(x) & g(x) both are differentiable at x = 0
 - (C) f(x) is differentiable but g(x) is not differentiable at x = 0
 - (D) f(x) & g(x) both are not differentiable at x = 0
- Let $f(x) = \begin{cases} x^n \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$. Then f(x) is **Q.5**

continuous but not differentiable at x = 0 if -

- $(A) n \in (0, 1]$
- (B) $n \in [0, \infty)$
- (C) $n \in (-\infty, 0)$
- (D) n = 0
- If $f(x) = a |\sin x| + be^{|x|} + c |x|^3$ and if f(x) is **Q.6** differentiable at x = 0,

then -

- (A) a = b = c = 0
- (B) $a = 0, b = 0; c \in R$
- (C) b = c = 0; $a \in R$
- (D) c = 0, a = 0; $b \in R$

- **Q.7** The set of points where function
 - $f(x) = \sqrt{1 e^{-x^2}}$ is differentiable is -
 - $(A) (-\infty, \infty)$
- (B) $(-\infty, 0) \cup (0, \infty)$
- (C) $(-1, \infty)$
- (D) none of these
- Let $f(x) = \begin{cases} \sin 2x, & 0 < x \le \pi/6 \\ ax + b, & \pi/6 < x < 1 \end{cases}$; If f(x) and **Q.8**

f'(x) are continuous, then -

(A)
$$a = 1$$
, $b = \frac{1}{\sqrt{2}} + \frac{\pi}{6}$

- (B) $a = \frac{1}{\sqrt{2}}$, $b = \frac{1}{\sqrt{2}}$
- (C) $a = 1, b = \frac{\sqrt{3}}{2} \frac{\pi}{6}$
- (D) none of these
- Let $f(x) = \lim_{n \to \infty} (\sin x)^{2n}$; then f is -**Q.9**
 - (A) discontinuous at $x = 3\pi/2$
 - (B) discontinuous at $x = \pi/2$
 - (C) discontinuous at $x = -\pi/2$
 - (D) All the above
- Q.10 Let [.] denotes G.I.F. and if function

$$f(x) = \left(\frac{x}{2} - 1\right)$$
 then in the interval $[0, \pi]$

- (A) tan [f(x)] is discontinuous but 1/f(x) is continuous
- (B) $\tan [f(x)]$ is continuous but $\frac{1}{f(x)}$ is
- (C) $\tan [f(x)]$ and $f^{-1}(x)$ is continuous
- (D) $\tan [f(x)]$ and 1/f(x) both are discontinuous
- The function $f(x) = \frac{4-x^2}{4x-x^3}$ is equal to -**Q.11**

discontinuous

- (A) discontinuous at only one point
- (B) discontinuous exactly at two points
- (C) discontinuous exactly at three points
- (D) none of these

- **Q.12** The function $f(x) = \sin^{-1}(\cos x)$ is -
 - (A) discontinuous at x = 0
 - (B) continuous at x = 0
 - (C) differentiable at x = 0
 - (D) none of these
- **Q.13** The function $f(x) = e^{-|x|}$ is -
 - (A) continuous everywhere but not differentiable at x = 0
 - (B) continuous and differentiable everywhere
 - (C) not continuous at x = 0
 - (D) none of these
- Q.14 If x + 4 |y| = 6 y, then y as a function of x is -(A) continuous at x = 0 (B) derivable at x = 0

(C)
$$\frac{dy}{dx} = \frac{1}{2}$$
 for all x (D) none of these

- **Q.15** Let f(x + y) = f(x) + f(y) and $f(x) = x^2$ g(x) for all x, y, \in R, where g(x) is continuous function. Then f'(x) is equal to -
 - (A) g'
- (B) g(x)
- (C) f(x)
- (D) none of these
- **Q.16** Let f(x + y) = f(x) f(y) for all $x, y, \in R$, Suppose that f(3) = 3 and f'(0) = 11 then f'(3) is equal to-
 - (A) 22
- (B) 44
- (C) 28
- (D) none of these

> Statement type Questions

All questions are Assertion & Reason type questions. Each of these questions contains two statements: Statement-1 (Assertion) and Statement-2 (Reason). Answer these questions from the following four option.

- (A) Statement-I and Statement-II are true Statement-II is the correct explanation of Statement-I
- (B) Statement-I Statement-II are true but Statement-II is not the correct explanation of Statement-I.
- (C) Statement-I is true but Statement-II is false
- (D) Statement-I is false but Statement-II is true.
- Q.17 Statement-1:

$$f(x) = \frac{1}{x - [x]}$$
 is discontinuous for integral

values of x

Statement-2: For integral values of x, f(x) is undefined.

Q.18 Statement-1:

If
$$f(x) = \frac{(e^{kx} - 1)\sin kx}{4x^2} (x \neq 0)$$
 and $f(0) = 9$ is

continuous at x = 0 then $k = \pm 6$.

Statement-2: For continuous function

$$\lim_{x \to 0} f(x) = f(0)$$

Q.19 Statement I:

$$y = \frac{x}{1+|x|}$$
, $x \in R$, $f(x)$ is differentiable

every where.

Statement II:

$$f(x) = \frac{x}{1 + |x|}, x \in R \text{ then } f'(x) = \begin{cases} \frac{1}{(1+x)^2}, x \ge 0\\ \frac{1}{(1-x)^2}, x < 0 \end{cases}$$

Q.20 Statement-1: If $f(x) = \lim_{n \to \infty} (\sin x)^{2n}$, then the

set of points discontinuities of f is
$$\left\{(2n+1)\frac{\pi}{2},\ n\in I\right\}$$

Statement-2 : Since $-1 < \sin x < 1$, as $n \to \infty$, $(\sin x)^{2n} \to 0$, $\sin x = \pm 1 \Rightarrow \pm (1)^{2n} \to 1$, $n \to \infty$

Q.21 Statement I:

f(x) = |x - 2| is differentiable at x = 2.

Statement II:

f(x) = |x - 2| is continuous at x = 2.

Q.22 Statement-1: The function

 $y = \sin^{-1}(\cos x)$ is not differentiable at

 $x = n\pi$, $n \in Z$ is particular at $x = \pi$

Statement-2: $\frac{dy}{dx} = \frac{-\sin x}{|\sin x|}$ so the function is

not differentiable at the points where $\sin x = 0$.

Q.23 Statement-1:

The function $f(x) = |x^3|$ is differentiable at x = 0

Statement-2: at x = 0, f'(x) = 0

Q.24 Statement I: $f(x) = \sin x$ and $g(x) = \operatorname{sgn}(x)$ then f(x) g(x) is differentiable at x = 1.

Statement II : Product of two differentiable function is differentiable function

> Passage Based Questions

Let
$$f(x) = \begin{cases} \frac{a(1-x\sin x) + b\cos x + 5}{x^2}, & x < 0 \\ 3, & x = 0 \end{cases}$$

$$\begin{cases} 1 + \left(\frac{cx + dx^3}{x^2}\right) \end{cases}^{1/x}, & x > 0 \end{cases}$$

If f is continuous at x = 0

On the basis of above information, answer the following questions: -

- Q.25 The value of a is -
 - (A) 1
- (B) ln 3
- (C) 0
- (D) -4
- Q.26 The value of b is -
 - (A) 1
- (B) ln 3
- (C) 0
- (D) 4
- The value of c is Q.27
 - (A) 2
- (B) 3
- (C) 0
- (D) none of these
- Q.28 The value of e^d is -
 - (A) 0
- (B) 1
- (C) 2
- (D) 3

▶ Column Matching Questions

Match the entry in Column I with the entry in Column II.

0.29 Column-I

Column-II

- (A) $f(x) = x^2 \sin(1/x), x \neq 0$ (P) continuous but f(0) = 0
 - not derivable
- (B) $f(x) = \frac{1}{1 e^{-1/x}}$, $x \neq 0$, (Q) f is differentiable

 - and f(0) = 0
- f'is not continuous
- (C) $f(x) = x \sin 1/x, x \ne 0$ f(0) = 0
- (R) f is not continuous
- (D) $f(x) = x^3 \sin 1/x, x \ne 0$ (S) f'is continuous f(0) = 0
 - but not derivable

Q.30 Column I

Column II

- (A) $f(x) = |x^3|$ is
- (P) continuous in (-1, 1)
- (B) $f(x) = \sqrt{|x|}$
- (Q) differentiable in (-1, 1)
- (C) $f(x) = |\sin^{-1} x|$ is (R) differentiable in (0, 1)
- (D) f(x) = |x| is
- (S) not differentiable

atleast at one point in

LEVEL- 4

(Question asked in previous AIEEE and IIT-JEE)

SECTION -A

 $\textbf{Q.1} \qquad \text{If } f(x) = \begin{cases} x & x \in Q \\ -x & x \not\in Q \end{cases} \text{, then } f \text{ is continuous at-}$

[AIEEE-2002]

- (A) only at zero
- (B) only at 0, 1
- (C) all real numbers
- (D) all rational numbers
- Q.2 If for all values of x & y; f(x + y) = f(x) . f(y)and f(5) = 2 f'(0) = 3, then f'(5) is-

[AIEEE- 2002]

- (A) 3
- (B) 4
- (C) 5
- (D) 6
- Q.3 If $f(x) = \begin{cases} x e^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)}, & x \neq 0 \text{ then } f(x) \text{ is } \\ 0, & x = 0 \end{cases}$

[AIEEE- 2003]

- (A) discontinuous everywhere
- (B) continuous as well as differentiable for all x
- (C) continuous for all x but not differentiable at x = 0
- (D) neither differentiable nor continuous at x = 0
- **Q.4** Let $f(x) = \frac{1 \tan x}{4x \pi}$, $x \neq \frac{\pi}{4}$, $x \in \left[0, \frac{\pi}{2}\right]$. If f(x)

is continuous in $\left[0,\frac{\pi}{2}\right]$, then $f\left(\frac{\pi}{4}\right)$ is-

[AIEEE- 2004]

- (A) 1
- (B) 1/2
- (C) 1/2
- (D) -1
- Q.5 If f is a real-valued differentiable function satisfying $| f(x) f(y) | \le (x y)^2$, $x, y \in R$ and f(0) = 0, then f(1) equals- [AIEEE-2005]
 - (A) -1
- (B) 0
- (C) 2
- (D) 1

Q.6 Suppose f(x) is differentiable at x = 1 and

 $\lim_{h\to 0} \frac{1}{h} f(1+h) = 5, \text{ then } f'(1) \text{ equals } -$

[AIEEE-2005]

- (A) 3
- (B) 4
- (C) 5
- (D) 6
- **Q.7** The set of points where $f(x) = \frac{x}{1 + |x|}$

is differentiable is -

[AIEEE- 2006]

- $(A) (-\infty, -1) \cup (-1, \infty)$
- (B) $(-\infty, \infty)$
- $(C) (0, \infty)$
- (D) $(-\infty, 0) \cup (0, \infty)$
- **Q.8** The function $f : R \setminus \{0\} \to R$ given by $f(x) = \frac{1}{x} \frac{2}{e^{2x} 1}$ can be made continuous at

x = 0 by defining f(0) as - [AIEEE- 2007]

- (A) 2
- (B) -1
- (C) 0

Q.10

- (D) 1
- **Q.9** Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = \text{Min } \{x + 1, |x| + 1\}$. Then which of the following is true? **[AIEEE 2007]**
 - (A) $f(x) \ge 1$ for all $x \in R$
 - (B) f(x) is not differentiable at x = 1
 - (C) f(x) is differentiable everywhere
 - (D) f(x) is not differentiable at x = 0
 - Let $f(x) = \begin{cases} (x-1)\sin\frac{1}{x-1}, & \text{if } x \neq 1\\ 0, & \text{if } x = 1 \end{cases}$

Then which one of the following is true?

[AIEEE 2008]

- (A) f is differentiable at x = 0 and at x = 1
- (B) f is differentiable at x = 0 but not at x = 1
- (C) f is differentiable at x = 1 but not at x = 0
- (D) f is neither differentiable at x = 0 nor at x = 1

Statement Based Question : (Q.11 to Q.12)

- (A) Statement -1 is true, Statement -2 is true; Statement -2 is a correct explanation for Statement -1
- (B) Statement -1 is true, Statement -2 is true; Statement -2 is *not* a correct explanation for Statement -1
- (C) Statement -1 is true, Statement -2 is false.
- (D) Statement -1 is false, Statement -2 is true.
- Let $f(x) = x \mid x \mid$ and $g(x) = \sin x$. Q.11

Statement - 1:

gof is differentiable at x = 0 and its derivative is continuous at that point.

Statement - 2:

gof is twice differentiable at x = 0.

[AIEEE 2009]

Let $f : R \to R$ be a continuous function defined 0.12 by $f(x) = \frac{1}{e^x + 2e^{-x}}$

Statement-1: $f(c) = \frac{1}{3}$, for some $c \in R$.

Statement-2: $0 < f(x) \le \frac{1}{2\sqrt{2}}$, for all $x \in R$

[AIEEE 2010]

Q.13 The value of p and q for which the function

$$f(x) = \begin{cases} \frac{\sin(p+1)x + \sin x}{x} &, & x < 0 \\ \frac{q}{\sqrt{x + x^2} - \sqrt{x}} &, & x > 0 \end{cases}$$

is continuous for all x in R, are:

[AIEEE 2011]

(A)
$$p = \frac{1}{2}, q = -\frac{3}{2}$$
 (B) $p = \frac{5}{2}, q = \frac{1}{2}$

(B)
$$p = \frac{5}{2}, q = \frac{1}{2}$$

(C)
$$p = -\frac{3}{2}, q = \frac{1}{2}$$
 (D) $p = \frac{1}{2}, q = \frac{3}{2}$

(D)
$$p = \frac{1}{2}, q = \frac{3}{2}$$

0.14 If f: $R \rightarrow R$ is a function defined by

$$f(x) = [x] \cos \left(\frac{2x-1}{2}\right)\pi$$
, where [x] denotes the

greatest integer function, then f is: [AIEEE 2012]

- (A) discontinuous only at x = 0
- (B) discontinuous only at non-zero integral values
- (C) continuous only at x = 0
- (D) continuous for every real x

Q.15 Consider the function, f(x) = |x - 2| + |x - 5|, $x \in R$.

> **Statement 1 :** f'(4) = 0[AIEEE 2012]

Statement 2: f is continuous in [2, 5], differentiable in (2, 5) and f(2) = f(5).

- (A) Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for Statement 1.
- (B) Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation for Statement 1.
- (C) Statement 1 is true. Statement 2 is false.
- (D) Statement 1 is false, Statement 2 is true.

SECTION-B

Q.1 If
$$f(x) = \begin{cases} \frac{1-\cos 4x}{x^2}, & \text{when } x < 0 \\ a, & \text{when } x = 0 \end{cases}$$
 is
$$\frac{\sqrt{x}}{\sqrt{16 + \sqrt{x}} - 4}, & \text{when } x > 0 \end{cases}$$

continuous at x = 0, then the value of 'a' will be

[IIT-1990]

- (A) 8
- (B) 8
- (C)4
- (D) None
- **Q.2** The following functions are continuous on $(0, \pi)$ [IIT-1991]
 - (A) tan x

$$(B) \begin{cases} x \sin x \; ; & 0 < x \le \pi/2 \\ \frac{\pi}{2} \sin(\pi + x); & \frac{\pi}{2} < x < \pi \end{cases}$$

(C)
$$\begin{cases} 1, & 0 < x \le \frac{3\pi}{4} \\ 2\sin\frac{2}{9}x, & \frac{3\pi}{4} < x < \pi \end{cases}$$

(D) None of these

$$\textbf{Q.3} \qquad \text{If } f(x) = \begin{cases} x \sin x \text{ , when } 0 < x \leq \frac{\pi}{2} \\ \frac{\pi}{2} \sin(\pi + x) \text{ , when } \frac{\pi}{2} < x < \pi \end{cases} \text{, then -}$$

- (A) f(x) is discontinuous at $x = \frac{\pi}{2}$
- (B) f(x) is continuous at $x = \frac{\pi}{2}$
- (C) f(x) is continuous at x = 0
- (D) None of these

- **Q.4** The function $f(x) = [x] \cos \{(2x - 1)/2\}\pi$, [] denotes the greatest integer function, is discontinuous at [IIT-1995]
 - (A) all x
 - (B) all integer points
 - (C) no x
 - (D) x which is not an integer
- Q.5 Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfy $f\left(\frac{x}{v}\right) = f(x) - f(y)$

for all x, y & f(e) = 1. Then-[IIT Scr.95] (A) f(x) is bounded

- (B) $f\left(\frac{1}{x}\right) \to 0$ as $x \to 0$
- (C) $x f(x) \rightarrow 1 as x \rightarrow 0$
- (D) $f(x) = \log x$
- **Q.6** The function $f(x) = [x]^2 - [x^2]$ (where [y] is the greatest integer less than or equal to y), is [IIT-1999] discontinuous at -
 - (A) All integers
 - (B) All integers except 0 and 1
 - (C) All integers except 0
 - (D) All integers except 1
- **Q.7** Indicate the correct alternative:

Let [x] denote the greater integer $\leq x$ and $f(x) = [\tan^2 x]$, then [IIT-1993]

- (A) $\lim_{x \to a} f(x)$ does not exist
- (B) f(x) is continuous at x = 0
- (C) f(x) is not differentiable at x = 0
- (D) f'(0) = 1
- $g(x) = x f(x), \text{ where } f(x) = \begin{cases} x \sin(1/x), & x \neq 0 \\ 0 & x = 0 \end{cases}$ **Q.8**

at x = 0

IIIT-19941

- (A) g is differentiable but g' is not continuous
- (B) both f and g are differentiable
- (C) g is differentiable but g' is continuous
- (D) None of these

- Q.9 Let $f\left(\frac{x+y}{2}\right) = \frac{f(x)+f(y)}{2}$ for all real x and y
 - and f'(0) = -1, f(0) = 1, then f'(2) =

[IIT-1995]

- (A) 1/2(B) 1
- (C) 1
- (D) 1/2
- 0.10 Let $h(x) = min \{x, x^2\}$, for every real number of [IIT-1998] x. Then -
 - (A) h is not differentiable at two values of x
 - (B) h is differentiable for all x
 - (C) h'(x) = 0, for all x > 1
 - (D) None of these
- The function $f(x) = (x^2 1)|x^2 3x + 2| + \cos(|x|)$ 0.11 is not differentiable at. [IIT-1999]
 - (A) -1
- (B) 0
- (C) 1
- (D) 2
- Let $f: R \to R$ is a function which is defined by Q.12 $f(x) = max \{x, x^3\}$ set of points on which f(x)is not differentiable is [IIT Scr. 2001]
 - $(A) \{-1, 1\}$
- (B) $\{-1, 0\}$
- $(C) \{0, 1\}$
- (D) $\{-1, 0, 1\}$
- Q.13 Find left hand derivative at $x = k, k \in I$.
 - $f(x) = [x] \sin(\pi x)$

[IIT Scr. 2001]

- $(A) (-1)^k (k-1)\pi$
- (B) $(-1)^{k-1} (k-1)\pi$
- (C) $(-1)^k (k-1)k\pi$ (D) $(-1)^{k-1} (k-1)k\pi$
- **Q.14** Which of the following functions differentiable at x = 0? [IIT Scr. 2001]
 - (A) $\cos(|x|) + |x|$
- (B) $\cos(|x|) |x|$
- (C) $\sin(|x|) + |x|$
- (D) $\sin (|x|) |x|$
- f(x) = |x| 1 is not differentiable at x =Q.15

[IIT Scr.2005]

- $(A) 0, \pm 1$
- $(B) \pm 1$
- (C) 0
- (D) 1
- Let $g(x) = \frac{(x-1)^n}{\log \cos^m(x-1)}$; 0 < x < 2, m and n 0.16

are integers, $m \ne 0$, n > 0, and let p be the left hand derivative of |x - 1| at x = 1. [IIT- 2008] If $\lim_{x \to 0} g(x) = p$, then

- (A) n = 1, m = 1
- (B) n = 1, m = -1
- (C) n = 2, m = 2
- (D) n > 2, m = n

Q.17 Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that

$$f(x + y) = f(x) + f(y), \forall x, y \in R$$

If f(x) is differentiable at x = 0, then

[IIT- 2011]

- (A) f(x) is differentiable only in a finite interval containing zero
- (B) f(x) is continuous $\forall x \in \mathbb{R}$
- (C) f'(x) is constant $\forall x \in \mathbb{R}$
- (D) f(x) is differentiable except at finitely many points

Q.18 If

$$f(x) = \begin{cases} -x - \frac{\pi}{2}, & x \le -\frac{\pi}{2} \\ -\cos x, & -\frac{\pi}{2} < x \le 0, \text{ then} \\ x - 1, & 0 < x \le 1 \\ \ln x, & x > 1 \end{cases}$$

[IIT- 2011]

- (A) f (x) is continuous at $x = -\frac{\pi}{2}$
- (B) f(x) is not differentiable at x = 0
- (C) f(x) is differentiable at x = 1
- (D) f (x) is differentiable at $x = -\frac{3}{2}$

Q.19 For every integer n, let a_n and b_n be real numbers.

Let function $f: IR \rightarrow IR$ be given by

$$f(x) \; = \; \begin{cases} a_n + \sin \pi \; x, & \text{for } x \in [2n, 2n+1] \\ b_n + \cos \pi \; x, & \text{for } x \in (2n-1, 2n) \end{cases}, \; \text{for} \;$$

all integers n. If f is continuous, then which of the following hold(s) for all n? [IIT- 2012]

- (A) $a_{n-1} b_{n-1} = 0$
- (B) $a_n b_n = 1$
- (C) $a_n b_{n+1} = 1$ (D) $a_{n-1} b_n = -1$

Q.20 Let $f(x) = \begin{cases} x^2 \left| \cos \frac{\pi}{x} \right|, & x \neq 0 \\ 0, & x = 0 \end{cases}$, $x \in IR$,

then f is

[IIT-2012]

- (A) differentiable both at x = 0 and at x = 2
- (B) differentiable at x = 0 but not differentiable at x = 2
- (C) not differentiable at x = 0 but differentiable at x = 2
- (D) differentiable neither at x = 0 nor at x = 2

ANSWER KEY

LEVEL-1

Que	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	D	С	Α	D	С	Α	С	В	D	D	D	D	Α	С	D	A	D	С	Α	С
Que	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans	В	C	D	В	D	В	D	Α	Α	Α	D	В	Α	C	C	A	C	D	D	C
Que	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	C	D	С	C	C	D	C	В	С	Α	D	С	D	C	В	С	D	C	D	C
Que	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	C	C	С	В	D	D	D	C	D	D	Α	D	Α	D	Α	В	В	C	C	Α
Que	81	82	83	84	85	86	87	88	89	90	91									
Ans.	D	D	С	В	Α	С	A	В	A	C	D									

LEVEL-2

Que	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	В	Α	C	В	Α	С	D	В	В	D	D	C	C	В	Α	D	A	C	D	C
Que	21	22	23	24	25	26	27													
Ans	A	В	В	С	В	С	В													

LEVEL-3

Que	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	A	С	A	A	A	В	В	С	D	D	C	В	A	A	D	D	A	A	A	Α
Que	21	22	23	24	25	26	27	28												
Ans	D	A	A	A	A	D	C	D												

29. $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow S$

30. A \rightarrow P,Q,R; B \rightarrow P,R,S; C \rightarrow P,R,S; D \rightarrow P,R,S

LEVEL-4

SECTION-A

Que	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	Α	D	С	C	В	С	В	D	С	В	С	Α	С	D	В

SECTION-B

1.[A]
$$f(x) = \begin{cases} \frac{1 - \cos 4x}{x^2} & : & x < 0 \\ \frac{a}{\sqrt{x}} & : & x = 0 \\ \frac{\sqrt{x}}{\sqrt{16 + \sqrt{x}} - 4} & & x > 0 \end{cases}$$

 \therefore f(x) is continuous at x = 0

$$\therefore \text{ R.H.L. } \lim_{h \rightarrow 0} \frac{1 - \cos(4(0-h))}{\left(0 - h\right)^2}$$

$$\lim_{h\to 0} \frac{1-\cos 4h}{h^2} \qquad \qquad \left(\frac{0}{0} \text{ form}\right)$$

$$= \lim_{h\to 0} \frac{0+4\sin 4h}{2h} \times \frac{2}{2}$$

$$= 8$$

$$\therefore \text{ L.H.L.} = f(0)$$

$$\Rightarrow 8 = a$$

2.[C]

(A) tan x is discontinuous at $\pi/2$ in $(0, \pi)$

(B)
$$f(x) = \begin{cases} x \sin x ; & 0 < x \le \pi/2 \\ \frac{\pi}{2} \sin(\pi + x); & \frac{\pi}{2} < x < \pi \end{cases}$$

at
$$x = \frac{\pi}{2}$$

$$L.H.L. \lim_{h\to 0} \left(\frac{\pi}{2} - h\right) sin\left(\frac{\pi}{2} - h\right)$$

$$= \pi/2 \sin \pi/2 = \pi/2$$

R.H.L.
$$\lim_{h\to 0} \pi/2 \sin (\pi + \pi/2 + h)$$

$$= \pi/2 \sin 3\pi/2$$

$$=-\pi/2$$

$$L.H.L. \neq R.H.L.$$

 \therefore f(x) is not continuous at x = $\pi/4$

(C)
$$f(x) = \begin{cases} 1, & 0 < x \le \frac{3\pi}{4} \\ 2\sin\frac{2}{9}x, & \frac{3\pi}{4} < x < \pi \end{cases}$$

at
$$x = 3\pi/4$$
 L.H.L. = 1

$$f(3\pi/4) = 1$$

R.H.L.
$$\lim_{h\to 0} 2\sin \frac{2}{9} (3\pi/4 + h)$$

$$2\sin\frac{2}{9} \frac{3\pi}{4}$$

$$= 2\sin \pi/6 = 2 \times \frac{1}{2} = 1$$

$$\therefore f(x) \text{ is continuous at } x = \frac{3\pi}{4}$$

3.[A]
$$f(x) = \begin{cases} x \sin x ; & 0 < x \le \pi/2 \\ \frac{\pi}{2} \sin(\pi + x); & \frac{\pi}{2} < x < \pi \end{cases}$$

at
$$x = \frac{\pi}{2}$$

L.H.L.
$$\lim_{h\to 0} \left(\frac{\pi}{2} - h\right) \sin\left(\frac{\pi}{2} - h\right)$$

$$= \pi/2 \sin \pi/2 = \pi/2$$

R.H.L.
$$\lim_{h\to 0} \pi/2 \sin (\pi + \pi/2 + h)$$

$$= \pi/2 \sin 3\pi/2$$

$$= - \pi/2$$

$$L.H.L. \neq R.H.L.$$

 \therefore f(x) is not continuous at x = $\pi/4$

4.[C]
$$f(x) = [x] \cos(2x-1) \times \pi/2$$

let
$$x = n, n \in I$$

$$f(n) = n \cos (2n - 1) \pi/2 = 0$$

$$f(n+) = n \cos (2n-1) \pi/2 = 0$$

$$f(n-) = (n-1) \cos (2n-1) \pi/2 = 0$$

$$\left(\because \cos(2n-1)\frac{\pi}{2}=0\right)$$

continuous for all x.

5.[D]
$$f(x) = k \ell n x$$

put
$$x = e$$

$$k = 1$$

$$f(x) = \ell n x$$

6.[D]
$$f(x) = [x]^2 - [x^2]$$

Let us check continuity at x = 0 & 1

L.H.L.
$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} [x]^2 - [x^2]$$

=
$$\lim [0-h]^2 - [(0-h)^2]$$

$$= +1 - 0 = 1$$

R.H.L.
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} [x]^2 - [x^2]$$

$$= \lim_{h \to 0} \ [0+h]^2 - [(0+h)]^2$$

$$0 - 0 = 0$$

$$L.H.L. \neq R.H.L.$$

 \therefore f(x) is not continuous at x = 0

at
$$x = 1$$

L.H.L.
$$\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0^{-}} [1-h]^{2} - [(1-h)^{2}]$$

$$0 - 0 = 0$$

R.H.L.
$$\lim_{x \to 1^+} f(x) = \lim_{h \to 0} [(1+h)]^2 - [(1+h)^2]$$

$$= 1 - 1 = 0$$

$$f(1) = [1]^2 - [1^2] = 0$$

 \therefore f(x) is continuous at x = 1

clearly f(x) is discontinuous at all other integers except 1

7.[B]
$$f(x) = [tan^2x]$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} [\tan^2 x]$$

for continuity at x = 0

$$f(0) = [tan^2 0] = [0] = 0$$

L.H.L.
$$\lim_{h\to 0} [\tan^2(0-h)]$$

=
$$\lim_{h \to 0} [\tan^2 h] = [\text{Value greater then 0 less then 1}]$$

$$= 0$$

R.H.L.
$$\lim_{h\to 0} [\tan^2(0-h)]$$

$$=\lim_{h\to 0} [\tan^2 h]$$

= [Value greater then 0 & less then 1] = 0

$$\therefore$$
 L.H.L. = R.H.L. = f(0)

 \therefore f(x) is continuous at x = 0

8.[A] g(x) = x f(x) &

$$f(x) = \begin{cases} x \sin 1/x, & x \neq 0 \\ 0 & x = 0 \end{cases}$$

$$g(x) = xf(x) = \begin{cases} x^2 \sin \frac{1}{x} : x \neq 0 \\ 0 & x = 0 \end{cases}$$

∴ we know function
$$\begin{cases} x^{\alpha} \sin \frac{1}{x} : x \neq 0 \\ 0 & x = 0 \end{cases}$$

differentiable when $\alpha > 1$

in $g(x) \alpha = 2$: it is differentiable

Now g'(x) =
$$\begin{cases} x^2 \cos \frac{1}{x} \left(-\frac{1}{x^2} \right) + \sin \frac{1}{x} . 2x ; x \neq 0 \\ 0 & x = 0 \end{cases}$$

$$= \begin{cases} -\cos\frac{1}{x} + 2x\sin\frac{1}{x}; x \neq 0\\ 0 & x = 0 \end{cases}$$

for continuity at x = 0

L.H.L.
$$\lim_{h\to 0} -\cos\frac{1}{0-h} + 2(0-h)\sin\frac{1}{0-h}$$

 $\lim_{h\to 0} -\cos\frac{1}{h} + 2h\sin\frac{1}{h}$
 $-\cos\frac{1}{0} + 2 \times 0 = -$ (value between -1 and 1) \neq unique
 $\Rightarrow g'(x)$ is discontinuous at $x = 0$

9.[C]
$$f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}$$

differentiating both side keeping y as constant

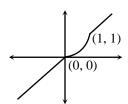
$$f\left(\frac{x+y}{2}\right)\left[\frac{1+0}{2}\right] = \frac{f'(x)+0}{2}$$

$$\Rightarrow \frac{1}{2}f'\left(\frac{x+y}{2}\right) = \frac{f'(x)}{2}$$
put $x = 0$

$$f'(y/2) = -1$$
put $y = 4$

$$f'(2) = -1$$

10.[A]



minimum (x, x^2) sharp point at x = 0, 1 \Rightarrow Not differentiable at x = 0, 1

11.[D]

$$(x + 1) (x - 1) | (x - 1) (x - 2) | + \cos x$$

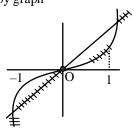
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$

 $D \qquad D \qquad N.D \text{ at } x = 2 \qquad D$

 $(\because \cos |x| = \cos x)$

 \Rightarrow Not differentiable at x = 2

12.[D] $f(x) = max. \{x, x^3\}$ by graph



$$\therefore f(x) = \begin{cases} x & ; & x \le -1 \\ x^3 & ; & -1 \le x \le 0 \\ x & ; & 0 \le x \le 1 \\ x^3 & ; & x \ge 1 \end{cases}$$

at x = 1, -1, 0 there is sharp point

 \therefore f(x) is not differentiable at these points

13.[A] $f(x) = [x] \sin \pi x$ at x = k we have to find out L.H.D.

∴ x is just less then k

 $\therefore [k-h] = k-1$

 \therefore f(x) = (k-1)sin π x

L.H.L. of
$$f(x) = \lim_{x \to k^{-}} \frac{f(x) - f(k)}{x - k}$$

$$= \lim_{h \to 0} \frac{f(k-h) - f(k)}{-h}$$

$$=\lim_{h\to 0}\frac{(k-1)\sin(\pi)(k-h)-k\sin\pi k}{-h}:|k\!\in\! I|$$

$$= \lim_{h \to 0} \frac{\frac{(k-1)\sin(kk-1)}{h}}{-h}$$

$$= \lim_{h \to 0} \frac{(k-1)(-1)^{k-1} \sin \pi h}{-h}$$

$$= \lim_{h \to 0} \frac{(k-1)\sin(\pi k - \pi h) - 0}{-h}$$

$$= \lim_{h \to 0} \frac{(k-1)(-1)^{k-1}\sin\pi h}{-h}$$

$$= \lim_{h \to 0} \frac{(k-1)(-1)^{k-1}\sin\pi h}{-\pi h} \times \pi$$

$$\therefore \text{ n is even } \sin(n\pi - \theta) = -\sin\theta$$
if n is odd
$$\sin(n\pi - \theta) = \sin\theta$$

$$= -(k-1)(-1)^{k-1}\pi$$

$$=(k-1)(-1)^k\pi$$

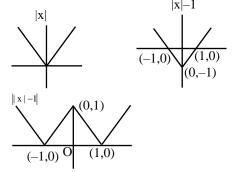
14.[D]
$$f(x) = \begin{bmatrix} \sin x - x, & x \ge 0 \\ -\sin x + x, & x < 0 \end{bmatrix}$$

$$f'(x) = \begin{bmatrix} \cos x - 1, & x > 0 \\ -\cos x + 1, & x < 0 \end{bmatrix}$$

$$f'(x) = \begin{bmatrix} \cos x - 1, & x > 0 \\ -\cos x + 1, & x < 0 \end{bmatrix}$$
$$f'(0+) = 1 - 1 = 0$$
$$f'(0-) = -1 + 1 = 0$$
$$\Rightarrow \text{ diff. at } x = 0$$

15.[A]
$$f(x) = ||x| - 1|$$

using graphical transformation



 \therefore f(x) is not differentiable at $x = 0, \pm 1$

16.[C]
$$g(x) = \frac{(x-1)^n}{\log \cos^m (x-1)}$$

Left hand derivative of |x - 1| at x = 1 is -1 = p (given)

$$\therefore \lim_{x \to 1^+} g(x) = p$$

$$\Rightarrow \lim_{h\to 0} \frac{h^n}{\log \cos^m h} = -1$$

$$\Rightarrow \lim_{h \to 0} \frac{n h^{n-1}}{m \cdot \frac{1}{\cosh}(-\sinh)} = -1 \text{ (applying D)}$$

$$= \lim_{h\to 0} \frac{n}{m} \cdot \frac{h^{n-1} \cosh}{\sinh} = 1$$

If n = 2 then

$$\lim_{h\to 0} \frac{2}{m} \cdot \frac{h}{\sinh} \cosh = 1$$

$$\Rightarrow \frac{2}{m} = 1$$

$$\Rightarrow$$
 m = 2

17.[**B,C**] $f : R \to R$

$$f(x + y) = f(x) + f(y)$$

$$\Rightarrow f(x) = \lambda x$$

Which of equation of straight line

Which is continuous & differentiable every where & $f'(x) = \lambda$ (constant function)

18.[A, B, C, D]

$$f(x) = \begin{cases} -x - \frac{\pi}{2}, & x \le -\frac{\pi}{2} \\ -\cos x, & -\frac{\pi}{2} < x \le 0 \\ x - 1, & 0 < x \le 1 \\ \ln x, & x > 1 \end{cases}$$

Option (A)

at
$$x = -\frac{\pi}{2}$$
 L.H.L. $\lim_{h\to 0} -\left(-\frac{\pi}{2} - h\right) - \frac{\pi}{2} = 0$

R.H.L.
$$\lim_{h\to 0} -\cos\left(-\frac{\pi}{2} - h\right) = 0$$

$$f\left(-\frac{\pi}{2}\right) = -\left(-\frac{\pi}{2}\right) - \frac{\pi}{2} = 0$$

$$\therefore$$
 f(x) is continuous at x = $-\frac{\pi}{2}$

Option (B)

LHD at x = 0 is zero

R.H.D. at x = 0 is 1

 \therefore not diff. at x = 0

Option (C)

L.H.D. at x = 1 is 1

R.H.D. at x = 1 is 1

differentiable at x = 1

Option (D)

$$f'\left(-\frac{3}{2}\right) = \sin\left(-\frac{3}{2}\right)$$
 differentiable

19.[**B**, **D**] At x = 2n

$$x \rightarrow 2n^+ a_n + \sin 2n\pi = a_n$$

$$x \rightarrow 2n^-b_n + \cos 2n\pi = b_n + 1$$

For continuous $a_n = b_n + 1$

At
$$x = 2n + 1$$

$$x \rightarrow 2n + 1^+ b_{n+1} + \cos(2n + 1) = b_{n+1} - 1$$

$$x \to 2n + 1^- a_n + \sin \pi (2n + 1) = a_n$$

for continuous $a_n = b_{n+1} - 1$

$$a_n - b_{n+1} = -1$$

for
$$n = n - 1a_{n-1} - b_n = -1$$

20.[B]
$$f'(0+h) = \lim_{h\to 0} \frac{h^2 \left|\cos\frac{\pi}{h}\right| - 0}{h-0} = 0$$

$$f'(0-h) = \lim_{h \to 0} \frac{h^2 \left| \cos \frac{\pi}{h} \right| - 0}{-h} = 0$$

:
$$f'(0^+) = f'(0^-) = 0 = finite$$

So f(x) is differentiable at x = 0

$$f'(2+h) = \lim_{h \to 0} \frac{(2+h)^2 \left| \cos\left(\frac{\pi}{2+h}\right) \right| - 0}{h} = \pi$$

$$f'(2-h) = \lim_{h\to 0} \frac{(2-h)^2 \left| \cos\left(\frac{\pi}{2-h}\right) \right| - 0}{-h} = -\pi$$

 $f'(2^+) \neq f'(2^-)$ but both are finite so f(x) is not differentiable at x = 2 but continuous at x = 2