DIFFERENTIATION

(KEY CONCEPTS + SOLVED EXAMPLES)

DIFFERENTIATION

1. Differential Coefficient

2. Differential Coefficients of some standard function
3. Theorems on Differentiation
4. Methods of Differentiation

KEY CONCEPTS

1. Introduction

The rate of change of one quantity with respect to some another quantity has a great importance. For example the rate of change of displacement of a particle with respect to time is called its velocity and the rate of change of velocity is called its acceleration.

The rate of change of a quantity ' y ' with respect to another quantity ' x ' is called the derivative or differential coefficient of y with respect to x.

2. Differential Coefficient

Let $y=f(x)$ be a continuous function of a variable quantity x, where x is independent and y is dependent variable quantity. Let δx be an arbitrary small change in the value of x and δy be the corresponding change in y then $\lim _{\delta x \rightarrow 0} \frac{\delta y}{\delta x}$ if it exists, is called the derivative or differential coefficient of y with respect to x and it is denoted by $\frac{d y}{d x} \cdot y^{\prime}, y_{1}$ or $D y$.

So, $\frac{d y}{d x}=\lim _{\delta x \rightarrow 0} \frac{\delta y}{\delta x}$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\lim _{\delta \mathrm{x} \rightarrow 0} \frac{\mathrm{f}(\mathrm{x}+\delta \mathrm{x})-\mathrm{f}(\mathrm{x})}{\delta \mathrm{x}}$
The process of finding derivative of a function is called differentiation.
If we again differentiate ($d y / d x$) with respect to x then the new derivative so obtained is called second derivative of y with respect to x and it is denoted by $\left(\frac{d^{2} y}{d x^{2}}\right)$ or $y^{\prime \prime}$ or y_{2} or $D^{2} y$. Similarly, we can find successive derivatives of y which may be denoted by

$$
\frac{d^{3} y}{d x^{3}}, \frac{d^{4} y}{d x^{4}}, \ldots \ldots, \frac{d^{n} y}{d x^{n}} \ldots \ldots
$$

Note : (i) $\frac{\delta y}{\delta x}$ is a ratio of two quantities δy and δx where as $\frac{d y}{d x}$ is not a ratio, it is a single quantity i.e. $\frac{d y}{d x} \neq d y \div$ dx
(ii) $\frac{d y}{d x}$ is $\frac{d}{d x}(y)$ in which $d / d x$ is simply a symbol of operation and not ' d ' divided by $d x$.

3. Differential Coefficient of Some Standard Function

The following results can easily be established using the above definition of the derivative-
(i) $\frac{d}{d x}($ constant $)=0$
(ii) $\frac{d}{d x}(a x)=a$
(iii) $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
(iv) $\frac{d}{d x} e^{x}=e^{x}$
(v) $\frac{d}{d x} \quad\left(a^{x}\right)=a^{x} \log _{e} a$
(vi) $\frac{d}{d x}\left(\log _{e} x\right)=1 / x$
(vii) $\frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \log a}$
(viii) $\frac{d}{d x}(\sin x)=\cos x$
(ix) $\frac{d}{d x}(\cos x)=-\sin x$
(x) $\frac{d}{d x}(\tan x)=\sec ^{2} x$
(xi) $\frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x$
(xii) $\frac{d}{d x}(\sec x)=\sec x \tan x$
(xiii) $\frac{d}{d x}(\operatorname{cosec} x)=-\operatorname{cosec} x \cot x$
(xiv) $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}},-1<x<1$
(xv) $\frac{\mathrm{d}}{\mathrm{dx}}\left(\cos ^{-1} \mathrm{x}\right)=-\frac{1}{\sqrt{1-\mathrm{x}^{2}}},-1<\mathrm{x}<1$
$(x v i) \frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$
(xvii) $\frac{d}{d x}\left(\cot ^{-1} x\right)=-\frac{1}{1+x^{2}}$
(xviii) $\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{x \sqrt{x^{2}-1}}|x|>1$
(xix) $\frac{d}{d x}\left(\operatorname{cosec}^{-1} x\right)=-\frac{1}{x \sqrt{x^{2}-1}}$
$(x x) \frac{d}{d x}(\sinh x)=\cosh x$
$(x x i) \frac{d}{d x}(\cosh x)=\sinh x$
(xxii) $\frac{d}{d x}(\tanh x)=\operatorname{sech}^{2} x$
$\left(\right.$ xxiii) $\frac{d}{d x}(\operatorname{coth} x)=-\operatorname{cosec}^{2} x$
(xxiv) $\frac{d}{d x}(\operatorname{sech} x)=-\operatorname{sech} x \tanh x$
$(x x v) \frac{d}{d x}(\operatorname{cosech} x)=-\operatorname{cosec} h x \operatorname{coth} x$
$(x x v i) \frac{d}{d x}\left(\sin h^{-1} x\right)=\frac{1}{\sqrt{1+\mathrm{x}^{2}}}$
$(x x v i i) \frac{d}{d x}\left(\cosh ^{-1} x\right)=\frac{1}{\sqrt{\mathrm{x}^{2}-1}}, x>1$
(xxviii) $\frac{d}{d x}\left(\tanh ^{-1} x\right)=\frac{1}{1-x^{2}}$
$(x x i x) \frac{d}{d x}\left(\operatorname{coth}^{-1} x\right)=\frac{1}{x^{2}-1},|x|>1$
$(x x x) \frac{d}{d x}\left(\operatorname{sech}^{-1} x\right)=-\frac{1}{x \sqrt{1-x^{2}}},(0<x<1)$
$($ xxxi $) \frac{d}{d x}\left(\operatorname{cosech}^{-1} x\right)=-\frac{1}{|x| \sqrt{x^{2}+1}}, x \neq 0$
($x x x i i) \frac{d}{d x}\left(e^{a x} \sin b x\right)=e^{a x}(a \sin b x+b \cos b x)$

$$
=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}} \mathrm{e}^{\mathrm{ax}} \sin \left(\mathrm{bx}+\tan ^{-1} \mathrm{~b} / \mathrm{a}\right)
$$

(xxxiii) $\frac{d}{d x}\left(e^{a x} \cos b x\right)=e^{a x}(a \cos b x-b \sin b x) \quad=\sqrt{a^{2}+b^{2}} e^{a x} \cos \left(b x+\tan ^{-1} b / a\right)$

4. Some Theorems on Differentiation

Theorem I $\frac{\mathrm{d}}{\mathrm{dx}}[\mathrm{kf}(\mathrm{x})]=\mathrm{k} \mathrm{d} / \mathrm{dx}[\mathrm{f}(\mathrm{x})]$, where k is a constant
Theorem II $\frac{d}{d x}\left[f_{1}(x) \pm f_{2}(x) \pm f_{3}(x) \pm \ldots.\right]$

$$
=\mathrm{d} / \mathrm{dx}\left[\mathrm{f}_{1}(\mathrm{x})\right] \pm \mathrm{d} / \mathrm{dx}\left[\mathrm{f}_{2}(\mathrm{x})\right] \pm \ldots . .
$$

Theorem III $\frac{d}{d x}[f(x) . g(x)]$

$$
=f(x) d / d x[g(x)]+g(x) d / d x[f(x)]
$$

Theorem IV

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) d / d x[f(x)]-f(x) d / d x[g(x)]}{[g(x)]^{2}}
$$

Theorem V Derivative of the function of the function. If ' y ' is a function of ' t ' and t ' is a function of ' x ' then

$$
\frac{d y}{d x}=\frac{d y}{d t} \cdot \frac{d t}{d x}
$$

Theorem VI Derivative of parametric equations

$$
\begin{aligned}
& \text { If } x=\phi(t), y=\psi(t) \text { then } \\
& \frac{d y}{d x}=\frac{d y / d t}{d x / d t}
\end{aligned}
$$

Theorem VII Derivative of a function with respect to another function If $f(x)$ and $g(x)$ are two functions of a variables x, then

$$
\frac{\mathrm{d}[\mathrm{f}(\mathrm{x})]}{\mathrm{d}[\mathrm{~g}(\mathrm{x})]}=\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{f}(\mathrm{x}) / \frac{\mathrm{d}}{\mathrm{dx}}[\mathrm{~g}(\mathrm{x})]
$$

Theorem VIII $\frac{d y}{d x} \cdot \frac{d x}{d y}=1$

5. Method of Differentiation

5.1 Differentiation of Implicit functions

If in an equation, x and y both occurs together i.e. $\mathrm{f}(\mathrm{x}, \mathrm{y})=0$ and this equation can not be solved either for y or x , then $y($ or x) is called the implicit function of x (or y).

For example $x^{3}+y^{3}+3 a x y+c=0, x^{y}+y^{x}=a^{b}$ etc.

Working rule for finding the derivative

First Method:
(i) Differentiate every term of $f(x, y)=0$ with
respect to x .
(ii) Collect the coefficients of dy/dx and obtain the value of $d y / d x$.

Second Method : If $\mathrm{f}(\mathrm{x}, \mathrm{y})=$ constant, then
$\frac{d y}{d x}=\frac{-\partial f / \partial x}{\partial f / \partial y}$
Where $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are partial differential coefficients of $f(x, y)$ with respect to x and y respectively.
Note : Partial differential coefficient of $f(x, y)$ with respect to x means the ordinary differential coeffcient of $f(x, y)$ with respect to x keeping y constant.

5.2 Differentiation of logarithmic functions

In differentiation of an expression or an equation is done after taking \log on both sides, then it is called logarithmic differentiation. This method is useful for the function having following forms-
(i) When base and power both are the functions of x i.e. the function is of the form $[\mathrm{f}(\mathrm{x})]^{g^{(x)}}$.

$$
\begin{aligned}
& y=[f(x)]^{g(x)} \\
& \log y=g(x) \log [f(x)] \\
& \frac{1}{y} \cdot \frac{d y}{d x}=\frac{d}{d x} g(x) \cdot \log [f(x)]
\end{aligned}
$$

$$
\frac{d y}{d x}=[f(x)]^{g(x)} \cdot\left\{\frac{d}{d x}[g(x) \log f(x)]\right\}
$$

5.3 Differentiation by trigonometrical substitutions

Some times before differentiation, we reduce the given function in a simple form using suitable trigonometrical or algebric transformations. This method saves a lot of energy and time. For this following formulae and substitutions should be remembered.

Formulae

(i) $\quad \sin ^{-1} x+\cos ^{-1} x=\pi / 2$
(ii) $\tan ^{-1} \mathrm{x}+\cot ^{-1} \mathrm{x}=\pi / 2$
(iii) $\sec ^{-1} x+\operatorname{cosec}^{-1} x=\pi / 2$
(iv) $\sin ^{-1} x \pm \sin ^{-1} y$

$$
=\sin ^{-1}\left[x \sqrt{1-y^{2}} \pm y \sqrt{1-x^{2}}\right]
$$

(v) $\cos ^{-1} x \cos ^{-1} y$

$$
=\cos ^{-1}\left[x y \mp \sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)}\right]
$$

(vi)

$$
\tan ^{-1} x \pm \tan ^{-1} y=\tan ^{-1}\left[\frac{x \pm y}{1 \mp x y}\right]
$$

(vii) $2 \sin ^{-1} x=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$
(viii) $2 \cos ^{-1} x=\cos ^{-1}\left(2 x^{2}-1\right)$
(ix) $2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$

$$
=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)
$$

(x) $\quad 3 \sin ^{-1} x=\sin ^{-1}\left(3 x-4 x^{3}\right)$
(xi) $3 \cos ^{-1} x=\cos ^{-1}\left(4 x^{3}-3 x\right)$
(xii) $3 \tan ^{-1} x=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)$
(xiii) $\tan ^{-1} \mathrm{x}+\tan ^{-1} \mathrm{y}+\tan ^{-1} \mathrm{z}$

$$
=\tan ^{-1}\left(\frac{x+y+z-x y z}{1-x y-y z-z x}\right)
$$

(xiv) $\sin ^{-1}(-x)=-\sin ^{-1} x$.
(xv) $\quad \cos ^{-1}(-x)=\pi-\cos ^{-1} x$.
(xvi) $\tan ^{-1}(-x)=-\tan ^{-1} x$ or $\pi-\tan ^{-1} x$.
(xvii) $\quad \pi / 4-\tan ^{-1} x=\tan ^{-1}\left(\frac{1-x}{1+x}\right)$

Some suitable substitutions

Function

(i) $\sqrt{\mathrm{a}^{2}-\mathrm{x}^{2}}$

Substitution

(ii) $\sqrt{\mathrm{x}^{2}+\mathrm{a}^{2}}$
$x=a \sin \theta$ or $a \cos \theta$
(iii) $\sqrt{\mathrm{x}^{2}-\mathrm{a}^{2}}$
$\mathrm{x}=\mathrm{a} \tan \theta$ or $\mathrm{a} \cot \theta$
(iii) $\sqrt{\mathrm{x}^{2}-\mathrm{a}^{2}} \quad \mathrm{x}=\mathrm{a} \sec \theta$ or $\mathrm{a} \operatorname{cosec} \theta$
(vi) $\sqrt{\frac{a-x}{a+x}} \quad x=a \cos 2 \theta$
(v) $\sqrt{\frac{a^{2}-x^{2}}{a^{2}+x^{2}}} \quad x^{2}=a^{2} \cos 2 \theta$
(vi) $\sqrt{a x-x^{2}}$
$x=a \sin ^{2} \theta$
(vii) $\sqrt{\frac{x}{a+x}}$
$\mathrm{x}=\mathrm{a} \tan ^{2} \theta$
(viii) $\sqrt{\frac{x}{a-x}}$
$x=a \sin ^{2} \theta$
(ix) $\sqrt{(x-a)(x-b)}$
$\mathrm{x}=\mathrm{a} \sec ^{2} \theta-\mathrm{b} \tan ^{2} \theta$
(x) $\sqrt{(x-a)(b-x)}$
$x=a \cos ^{2} \theta+b \sin ^{2} \theta$

5.4 Differentiation of infinite series

If y is given in the form of infinite series of x and we have to find out dy/dx then we remove one or more terms, it does not affect the series
(i) If $y=\sqrt{f(x)+\sqrt{f(x)+\sqrt{f(x)+\ldots . \infty}}}$ then
$\Rightarrow \mathrm{y}=\sqrt{\mathrm{f}(\mathrm{x})+\mathrm{y}} \Rightarrow \mathrm{y}^{2}=\mathrm{f}(\mathrm{x})+\mathrm{y}$
$2 y \frac{d y}{d x}=f^{\prime}(x)+\frac{d y}{d x}$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{f}^{\prime}(\mathrm{x})}{2 \mathrm{y}-1}$
(ii) If $y=f(x)^{f(x)^{f(x) \ldots \infty}}$ then $y=f(x)^{y}$.
$\therefore \log y=y \log [f(x)]$
$\frac{1}{y} \frac{d y}{d x}=\frac{y \cdot f^{\prime}(x)}{f(x)}+\log f(x) \cdot\left(\frac{d y}{d x}\right)$
$\therefore \frac{d y}{d x}=\frac{y^{2} f^{\prime}(x)}{f(x)[1-y \log f(x)]}$
(iii) If $y=f(x)^{+\frac{1}{f(x)^{+}}+\frac{1}{f(x)}+\frac{1}{f(x) \ldots}}$
then $\frac{d y}{d x}=\frac{\mathrm{yf}^{\prime}(x)}{2 y-f(x)}$

Ex. 1 If $y=\left(1+x^{1 / 4}\right)\left(1+x^{1 / 2}\right)\left(1-x^{1 / 4}\right)$, then $d y / d x$ equals-
(A) -1
(B) 1
(C) x
(D)
\sqrt{x}

Sol. $\quad y=\left(1+x^{1 / 2}\right)\left(1-x^{1 / 2}\right)=1-x$

$$
\therefore \quad d y / d x=-1
$$

Ans.[A]

Ex. 2 If $\mathrm{x}=\mathrm{a}(\theta+\sin \theta), \mathrm{y}=\mathrm{a}(1-\cos \theta), \frac{\mathrm{dx}}{\mathrm{d} \theta}$ then dy/dx equals -
(A) $\tan \theta$
(B) $\cot \theta$
(C) $\tan \frac{1}{2} \theta$
(D) $\cot \frac{1}{2} \theta$

Sol. $\frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}(1+\cos), \frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a} \sin \theta$
$\therefore \frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{a \sin \theta}{a(1+\cos \theta)}=\tan \frac{1}{2} \theta$
Ans.[C]
Ex. 3 If $y=\log \left(\frac{e^{x}}{e^{x}+1}\right)$, then $d y / d x$ equals -
(A) $\frac{1}{\mathrm{e}^{\mathrm{x}}+1}$
(B) $\frac{1}{\left(\mathrm{e}^{\mathrm{x}}+1\right)^{2}}$
(C) $\frac{\mathrm{e}^{\mathrm{x}}-1}{\mathrm{e}^{\mathrm{x}}+1}$
(D) None of these

Sol. $\quad \mathrm{y}=\log \mathrm{e}^{\mathrm{x}}-\log \left(\mathrm{e}^{\mathrm{x}}+1\right)$
$=x-\log \left(e^{x}+1\right)$

$$
\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=1-\frac{\mathrm{e}^{\mathrm{x}}}{\mathrm{e}^{\mathrm{x}}+1}=\frac{1}{\mathrm{e}^{\mathrm{x}}+1}
$$

Ans.[A]

Ex. 4 If $y=\frac{1}{x^{2}-a^{2}}$, then $\frac{d^{2} y}{d x^{2}}$ equals -
(A) $\frac{3 x^{2}+a^{2}}{\left(x^{2}-a^{2}\right)^{3}}$
(B) $\frac{3 x^{2}+a^{2}}{\left(x^{2}-a^{2}\right)^{4}}$
(C) $\frac{2\left(3 x^{2}+a^{2}\right)}{\left(x^{2}-a^{2}\right)^{3}}$
(D) $\frac{2\left(3 \mathrm{x}^{2}+\mathrm{a}^{2}\right)}{\left(\mathrm{x}^{2}-\mathrm{a}^{2}\right)^{4}}$

Sol. $\quad \frac{d y}{d x}=\frac{-2 x}{\left(x^{2}-a^{2}\right)^{2}} \Rightarrow \frac{d^{2} y}{d x^{2}}$
$=-\frac{\left(x^{2}-a^{2}\right)^{2} \cdot 2-2 x \cdot 2\left(x^{2}-a^{2}\right) \cdot 2 x}{\left(x^{2}-a^{2}\right)^{4}}$
$=\frac{2\left(3 \mathrm{x}^{2}+\mathrm{a}^{2}\right)}{\left(\mathrm{x}^{2}-\mathrm{a}^{2}\right)^{3}}$

Ans.[C]

Ex. 5 If $y=\frac{\sec x-\tan x}{\sec x+\tan x}$, then $\frac{d y}{d x}$ equals -
(A) $2 \sec x(\sec x-\tan x)^{2}$
(B) $-2 \sec x(\sec x-\tan x)^{2}$
(C) $2 \sec x(\sec x+\tan x)^{2}$
(D) $-2 \sec x(\sec x+\tan x)^{2}$

Sol. $y=\frac{\sec x-\tan x}{\sec x+\tan x} \cdot \frac{\sec x-\tan x}{\sec x-\tan x}$

$$
=(\sec x-\tan x)^{2} / 1
$$

$\therefore \frac{d y}{d x}=2(\sec x-\tan x)\left(\sec x \tan x-\sec ^{2} x\right)$ $=-2 \sec x(\sec x-\tan x)^{2}$

Ans.[B]

Ex. 6 If $x \sqrt{1+y}+y \sqrt{1+x}=0$, then $\frac{d y}{d x}$ equals -
(A) $\frac{1}{(1+x)^{2}}$
(B) $-\frac{1}{(1+x)^{2}}$
(C) $\frac{1}{1+x^{2}}$
(D) None of these

Sol. Let us first express y in terms of x because all alternatives are in terms of x. So
$\mathrm{x} \sqrt{1+\mathrm{y}}=-\mathrm{y} \sqrt{1+\mathrm{x}}$
$\Rightarrow \mathrm{x}^{2}(1+\mathrm{y})=\mathrm{y}^{2}(1+\mathrm{x})$
$\Rightarrow x^{2}-y^{2}+x^{2} y-y^{2} x=0$
$\Rightarrow(x-y)(x+y+x y)=0$
$\Rightarrow x+y+x y=0$
$(\because \mathrm{x} \neq \mathrm{y})$
$\Rightarrow \mathrm{y}=-\frac{\mathrm{x}}{1-\mathrm{x}}$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{(1+\mathrm{x}) 1-\mathrm{x} \cdot 1}{(1+\mathrm{x})^{2}}=-\frac{1}{(1+\mathrm{x})^{2}}$
Ans.[B]
$\therefore \frac{d y}{d x}=-\frac{-y \sin (x y)-1}{-x \sin (x y)}=-\frac{y+\operatorname{cosec}(x y)}{x}$
Ans.[D]

Ex. 7 If $y=\sin ^{-1} \sqrt{\sin x}$, then $\frac{d y}{d x}$ equals -
(A) $\frac{2 \sqrt{\sin x}}{\sqrt{1+\sin x}}$
(B) $\frac{\sqrt{\sin x}}{\sqrt{1-\sin x}}$
(C) $\frac{1}{2} \sqrt{1+\operatorname{cosec} \mathrm{x}}$
(D) $\frac{1}{2} \sqrt{1-\operatorname{cosec} \mathrm{x}}$

Sol. $\quad \frac{d y}{d x}=\frac{1}{\sqrt{1-\sin x}} \cdot \frac{1}{2 \sqrt{\sin x}} \cdot \cos x$

$$
=\frac{\sqrt{1+\sin x}}{2 \sqrt{\sin x}}=\frac{1}{2} \sqrt{1+\operatorname{cosec} x}
$$

Ans.[C]

Ex. 8 If $y=\log _{x} 10$, then the value of $d y / d x$ equals-
(A) $1 / x$
(B) $10 / \mathrm{x}$
(C) $-\frac{\left(\log _{x} 10\right)^{2}}{x \log _{e} 10}$
(D) $\frac{1}{\left(\mathrm{x} \log _{\mathrm{e}} 10\right)}$

Sol. $y=\log _{x} 10=\frac{\log _{e} 10}{\log _{e} x}$

$$
\begin{aligned}
& \therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\log _{\mathrm{e}} 10\left\{-\frac{1}{\left(\log _{\mathrm{e}} \mathrm{x}\right)^{2}} \cdot \frac{1}{\mathrm{x}}\right\} \\
& =-\frac{1}{\mathrm{x} \log _{\mathrm{e}} 10} \cdot \frac{\left(\log _{\mathrm{e}} 10\right)^{2}}{\left(\log _{\mathrm{e}} \mathrm{x}\right)^{2}} \\
& =-\frac{\left(\log _{\mathrm{e}} 10\right)^{2}}{\mathrm{x} \log _{\mathrm{e}} 10}
\end{aligned}
$$

Ans.[C]

Ex. 9 If $\cos (x y)=x$, then $\frac{d y}{d x}$ is equal to -
(A) $\frac{y+\operatorname{cosec}(x y)}{x}$
(B) $\frac{y+\sin (x y)}{x}$
(C) $\frac{y+\cos (x y)}{x}$
(D) $-\frac{y+\operatorname{cosec}(x y)}{x}$

Sol. $\quad \because \cos (x y)-x=0$

Ex. 10 If $x^{2} e^{y}+2 x^{\prime} e^{x}+13=0$, then $d y / d x$ equals -
(A) $-\frac{2 \mathrm{xe}^{\mathrm{y}-\mathrm{x}}+2 \mathrm{y}(\mathrm{x}+1)}{\mathrm{x}\left(\mathrm{xe}^{\mathrm{y}-\mathrm{x}}+2\right)}$
(B) $\frac{2 \mathrm{xe}^{\mathrm{y}-\mathrm{x}}+2 \mathrm{y}(\mathrm{x}+1)}{\mathrm{x}\left(\mathrm{xe}^{\mathrm{y}-\mathrm{x}}+2\right)}$
(C) $-\frac{2 \mathrm{xe}^{\mathrm{x}-\mathrm{y}}+2 \mathrm{y}(\mathrm{x}+1)}{\mathrm{x}\left(\mathrm{xe}^{\mathrm{x}-\mathrm{y}}+2\right)}$
(D) None of these

Sol. Let $f(x, y)=x^{2} e^{y}+2 x y e^{x}+13$

$$
\begin{aligned}
\therefore \frac{\mathrm{dy}}{\mathrm{dx}} & =-\frac{\partial \mathrm{f}}{\partial \mathrm{x}} / \frac{\partial \mathrm{f}}{\partial \mathrm{y}} \\
& =-\frac{2 \mathrm{xe}^{\mathrm{y}}+2 \mathrm{ye}^{\mathrm{x}}+2 \mathrm{xye}^{\mathrm{x}}}{\mathrm{x}^{2} \mathrm{e}^{\mathrm{y}}+2 \mathrm{xe}^{\mathrm{x}}}
\end{aligned}
$$

Dividing Num ${ }^{r}$ and Den ${ }^{r}$ by e^{x}

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{2 \mathrm{xe}^{\mathrm{y}-\mathrm{x}}+2 \mathrm{y}(\mathrm{x}+1)}{\mathrm{x}\left(\mathrm{xe}^{\mathrm{y}-\mathrm{x}}+2\right)}
$$

Ans.[A]

Ex. 11 If $x^{y} y^{x}=1$, then $\frac{d y}{d x}$ equals -
(A) $\frac{x(y+x \log y)}{y(x+y \log x)}$
(B) $-\frac{x(x+y \log y)}{y(y+x \log x)}$
(C) $\frac{y(y+x \log y)}{x(x+y \log x)}$
(D) $-\frac{y(y+x \log y)}{x(x+y \log x)}$

Sol. Taking log on both sides, we have

$$
y \log x+x \log y=0
$$

Now using partial derivatives, we have

$$
\frac{d y}{d x}=-\frac{y / x+\log y}{\log x+x / y}=-\frac{y(y+x \log y)}{x(x+y \log x)}
$$

Ans [D]

Ex. 12 If $\mathrm{x}=\mathrm{e}^{\tan ^{-1}}\left(\frac{\mathrm{y}-\mathrm{x}^{2}}{\mathrm{x}^{2}}\right)$, then $\mathrm{dy} / \mathrm{dx}$ equals-
(A) $x[1+\tan (\log x)]+\sec ^{2}(\log x)$
(B) $2 x[1+\tan (\log x)]+x \sec ^{2}(\log x)$
(C) $2 \mathrm{x}[1+\tan (\log \mathrm{x})]+\mathrm{x} \sec (\log \mathrm{x})$
(D) None of these

Sol. $x=e^{\tan ^{-1}}\left(\frac{y-x^{2}}{x^{2}}\right)$
Taking logarithm of both the sides, we get
$\log x=\tan ^{-1}\left(\frac{y-x^{2}}{x^{2}}\right)$
$\Rightarrow \mathrm{y}=\mathrm{x}^{2}+\mathrm{x}^{2} \tan (\log \mathrm{x})$
$d y / d x=2 x+2 x \tan (\log x)+x^{2} \sec ^{2}(\log x) \cdot \frac{1}{x}$
$=2 \mathrm{x}[1+\tan (\log \mathrm{x})]+\mathrm{x} \sec ^{2}(\log \mathrm{x})$.

Ans.[B]

Ex. 13 If $y=\tan ^{-1} \frac{3 x-x^{3}}{1-3 x^{2}}$, then dy/dx equals-
(A) $3 x$
(B) $\tan 3 x$
(C) $\frac{3}{1+\mathrm{x}^{2}}$
(D) $3 \tan ^{-1} x$

Sol. $y=\tan ^{-1} \frac{3 x-x^{3}}{1-3 x^{2}}=3 \tan ^{-1} x$

$$
\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{3}{1+\mathrm{x}^{2}}
$$

Ans.[C]

Ex. 14 If $y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$, then $\frac{d y}{d x}$ equals -
(A) $\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}$
(B) $\frac{2}{1+\mathrm{x}^{2}}$
(C) $-\frac{2 x}{1+x^{2}}$
(D) $-\frac{2}{1+\mathrm{x}^{2}}$

Sol. $y=2 \tan ^{-1} x$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2}{1+\mathrm{x}^{2}}$

Ans.[B]

Ex. 15 If $\mathrm{y}=\tan ^{-1} \frac{\sqrt{1+\mathrm{x}^{2}}+\sqrt{1-\mathrm{x}^{2}}}{\sqrt{1+\mathrm{x}^{2}}-\sqrt{1-\mathrm{x}^{2}}}$, then $\frac{\mathrm{dy}}{\mathrm{dx}}$ equals
(A) $-\frac{1}{2 \sqrt{1-x^{2}}}$
(B) $-\frac{1}{\sqrt{1-x^{4}}}$
(C) $-\frac{x}{\sqrt{1-x^{4}}}$
(D) $-\frac{x}{2 \sqrt{1-x^{4}}}$

Sol. $y=\tan ^{-1}\left(\frac{\sqrt{1+\cos \theta}+\sqrt{1-\cos \theta}}{\sqrt{1+\cos \theta}-\sqrt{1-\cos \theta}}\right)$, where
$\mathrm{x}^{2}=\cos \theta$
$=\tan ^{-1}\left(\frac{\cos \theta / 2+\sin \theta / 2}{\cos \theta / 2-\sin \theta / 2}\right)$
$=\tan ^{-1}\left(\frac{1+\tan \theta / 2}{1-\tan \theta / 2}\right)$
$=\tan ^{-1}[\tan (\pi / 4+\theta / 2)]=\pi / 4+\theta / 2$
$=\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} \mathrm{x}^{2}$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{1}{2} \frac{1}{\sqrt{1-\mathrm{x}^{4}}} \cdot 2 \mathrm{x}=-\frac{\mathrm{x}}{\sqrt{1-\mathrm{x}^{4}}}$
Ans.[C]

Ex. 16 If $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$, then the value of $d y / d x$ is -
(A) $\frac{\sqrt{1-\mathrm{x}^{2}}}{\sqrt{1-\mathrm{y}^{2}}}$
(B) $\frac{\sqrt{1-\mathrm{y}^{2}}}{\sqrt{1-\mathrm{x}^{2}}}$
(C) $-\frac{\sqrt{1-\mathrm{x}^{2}}}{\sqrt{1-\mathrm{y}^{2}}}$
(D) $-\frac{\sqrt{1-\mathrm{y}^{2}}}{\sqrt{1-\mathrm{x}^{2}}}$

Sol. Substituting $x=\sin \theta$ and $y=\sin \phi$ in the given equation, we get $\cos \theta+\cos \phi=\mathrm{a}(\sin \theta-\sin \phi)$

$$
\begin{aligned}
& \Rightarrow 2 \cos \frac{\theta+\phi}{2} \cdot \cos \frac{\theta-\phi}{2}=2 \mathrm{a} \cos \frac{\theta+\phi}{2} \cdot \sin \frac{\theta-\phi}{2} \\
& \Rightarrow \cot \frac{\theta-\phi}{2}=\mathrm{a} \Rightarrow \theta-\phi=2 \cot ^{-1} \mathrm{a} \\
& \Rightarrow \sin ^{-1} \mathrm{x}-\sin ^{-1} \mathrm{y}=2 \cot ^{-1} \mathrm{a}
\end{aligned}
$$

Differentiating with respect to x, we get

$$
\begin{aligned}
& \frac{1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-y^{2}}} \frac{d y}{d x}=0 \\
& \Rightarrow \frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Ans.[B]

Ex. 17 If $y=\sin ^{-1} \frac{2 x}{1+x^{2}}, z=\tan ^{-1} x$, then the value of $\mathrm{dy} / \mathrm{dz}$ is -
(A) $\frac{1}{1+x^{2}}$
(B) $\frac{2}{1+x^{2}}$
(C) 2
(D) None of these

Sol. $y=\sin ^{-1} \frac{2 x}{1+x^{2}}=2 \tan ^{-1} x$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}$
and $\mathrm{z}=\tan ^{-1} \mathrm{x} \Rightarrow \frac{\mathrm{dz}}{\mathrm{dx}}=\frac{1}{1+\mathrm{x}^{2}}$
$\therefore \frac{\mathrm{dz}}{\mathrm{dx}}=\frac{\mathrm{dy} / \mathrm{dx}}{\mathrm{dz} / \mathrm{dx}}=\frac{2}{1+\mathrm{x}^{2}} \cdot \frac{1+\mathrm{x}^{2}}{1} 2$
Ans.[C]

Ex. 18 If $y=\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+\ldots \ldots \infty}}}$, then dy/dx equals -
(A) $\frac{\sin x}{2 y+1}$
(B) $\frac{\cos x}{2 y-1}$
(C) $\frac{\cos x}{2 y+1}$
(D) None of these

Sol. Here $y=\sqrt{\sin x+y} \quad \Rightarrow y^{2}=\sin x+y$

$$
\therefore 2 y \frac{d y}{d x}=\cos x+\frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{\cos x}{2 y-1}
$$

Ans.[B]

Ex. 19 If $y=\frac{x}{a+\frac{x}{b+\frac{x}{a+\frac{x}{b+\ldots \ldots \infty}}}} \ldots . \infty$, then equals -
(A) $\frac{b}{a(b+2 y)}$
(B) $\frac{a}{b(a+2 y)}$
(C) $\frac{a}{b(b+2 y)}$
(D) None of these

Sol. Here $y=\frac{x}{a+\frac{x}{b+y}}=\frac{x(b+y)}{a(b+y)+x}$
$\Rightarrow a b y+a y^{2}+x y=b x+x y$
$\Rightarrow \mathrm{ay}^{2}+\mathrm{aby}=\mathrm{bx}$
$\Rightarrow 2 a y \frac{d y}{d x}+a b \frac{d y}{d x}=b$
$\Rightarrow \frac{d y}{d x}=\frac{b}{a(b+2 y)}$
Ans.[A]

Ex. 20 If $e^{x+e^{x+e^{x+\ldots . \infty} \infty}}$, then $d y / d x$ is -
(A) $\frac{y}{1+y}$
(B) $\frac{y}{y-1}$
(C) $\frac{y}{1-y}$
(D) None of these

Sol. $y=e^{x+y}$

$$
\Rightarrow \log y=x+y \quad \Rightarrow \frac{1}{y} \frac{d y}{d x}=1+\frac{d y}{d x}
$$

$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{y}}{1-\mathrm{y}}$

Ans.[C]

Ex. 21 If $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$, then $\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$ equals -
(A) $\tan ^{2} \theta$
(B) $\sec ^{2} \theta$
(C) $\sec \theta$
(D) $|\sec \theta|$

Sol. $\frac{d y}{d x}=\left(\frac{d y}{d \theta}\right) /\left(\frac{d x}{d \theta}\right)$
$=\frac{3 a \sin ^{2} \theta \cdot \cos \theta}{-3 a \cos ^{2} \theta \sin \theta}=-\tan \theta$
\therefore exp. $=\sqrt{1+\tan ^{2} \theta}=\sec \theta$
Ans.[D]
Ex. 22 If $y=\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}$, then $\left(1-x^{2}\right) \frac{d y}{d x}$ equals -
(A) $x+y$
(B) $1+x y$
(C) $1-x y$
(D) $x y-2$

Sol. From the given equation, we have

$$
\begin{aligned}
& y^{2}\left(1-x^{2}\right)=\left(\sin ^{-1} x\right)^{2} \\
\Rightarrow & \left(1-x^{2}\right) 2 y \frac{d y}{d x}-2 x y^{2}=2 \frac{\sin ^{-1} x}{\sqrt{1-x^{2}}} \\
\Rightarrow & 2\left(1-x^{2}\right) y \frac{d y}{d x}-2 x y^{2}=2 y \\
\Rightarrow & \left(1-x^{2}\right) \frac{d y}{d x}=1+x y
\end{aligned}
$$

Ans.[B]

Ex. 23 If $(a+b x) e^{y / x}=x$, then the value of $x^{3} \frac{d^{2} y}{d x^{2}}$ is -
(A) $\left(y \frac{d y}{d x}-x\right)^{2}$
(B) $\left(x \frac{d y}{d x}-y\right)^{2}$
(C) $x \frac{d y}{d x}-y$
(D) None of these

Sol. Taking logarithm of both the sides

$$
\log (a+b x)+y / x=\log x
$$

Now differentiating with respect to x, we get

$$
\begin{aligned}
& \frac{b}{a+b x}+\frac{x \frac{d y}{d x}-y}{x^{2}}=\frac{1}{x} \\
& \Rightarrow x \frac{d y}{d x}-y=x^{2}\left(\frac{a+b x-b x}{x(a+b x)}\right)=\frac{a x}{(a+b x)}
\end{aligned}
$$

Again differentiating with respect to x, we get

$$
\begin{aligned}
& x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-\frac{d y}{d x}=\frac{(a+b x) a-a x(b)}{(a+b x)^{2}} \\
& x^{3} \frac{d^{2} y}{d x^{2}}=\left(\frac{a x}{a+b x}\right)^{2}=\left(x \frac{d y}{d x}-y\right)^{2}
\end{aligned}
$$

Ex. $24 \frac{d}{d x}\left[\log \left\{e^{x}\left(\frac{x-2}{x+2}\right)^{3 / 4}\right\}\right]$ equals -
(A) $\frac{x^{2}-1}{x^{2}-4}$
(B) 1
(C) $\frac{x^{2}+1}{x^{2}-4}$
(D) $\mathrm{e}^{\mathrm{x}} \frac{\mathrm{x}^{2}-1}{\mathrm{x}^{2}-4}$

Sol. Derivative
$=\frac{d}{d x}\left[\log \mathrm{e}^{\mathrm{x}}+\frac{3}{4}\{\log (\mathrm{x}-2)-\log (\mathrm{x}+2)\}\right]$
$=\frac{d}{d x}\left[x+\frac{3}{4}\{\log (x-2)-\log (x+2)\}\right]$
$=1+\frac{3}{4}\left(\frac{1}{x-2}-\frac{1}{x+2}\right)$
$=1+\frac{3}{4} \frac{4}{x^{2}-4}=\frac{x^{2}-1}{x^{2}-4}$
Ans. [A]

Ex. 25 If $y=f\left(\frac{2 x-1}{x^{2}+1}\right)$ and $f^{\prime}(x)=\sin ^{2} x$, then $d y / d x$ equals -
(A) $\frac{2\left(1+x-x^{2}\right)}{\left(1+x^{2}\right)^{2}} \sin ^{2}\left(\frac{2 x-1}{x^{2}+1}\right)$
(B) $\frac{2\left(1+x-x^{2}\right)}{\left(1+x^{2}\right)^{2}} \sin \left(\frac{2 x-1}{x^{2}+1}\right)^{2}$
(C) $\sin ^{2}\left(\frac{2 x-1}{x^{2}+1}\right)$
(D) $\sin \left(\frac{2 x-1}{x^{2}+1}\right)^{2}$

Sol. $\frac{d y}{d x}=f^{\prime}\left(\frac{2 x-1}{x^{2}+1}\right) \frac{d}{d x}\left(\frac{2 x-1}{x^{2}+1}\right)$
$=\sin ^{2}\left(\frac{2 \mathrm{x}-1}{\mathrm{x}^{2}+1}\right) \cdot \frac{\left(\mathrm{x}^{2}+1\right) 2-(2 \mathrm{x}-1) 2 \mathrm{x}}{\left(\mathrm{x}^{2}+1\right)^{2}}$

Ans.[A]

Ex. 26 If $f(x)=|x-2|$ and $g(x)=f[f(x)]$, then for
$x>20, g^{\prime}(x)$ is equal to -
(A) 1
(B) -1
(C) 0
(D) None of these

Sol. $\quad \because \mathrm{g}(\mathrm{x})=\mathrm{f}[\mathrm{f}(\mathrm{x})]$
$=\mathrm{f}\{|\mathrm{x}-2|\}$

But $x>20 \Rightarrow|x-2|=x-2$
$\Rightarrow \mathrm{g}(\mathrm{x})=|\mathrm{x}-2-2|=\mathrm{x}-4$
$\therefore \mathrm{g}^{\prime}(\mathrm{x})=1$
Ans.[A]

Ex. $27 f(x)$ is a function such that $f^{\prime \prime}(x)=-f(x)$ and $f^{\prime}(x)=g(x)$ and $h(x)$ is a function such that $\mathrm{h}(\mathrm{x})=[\mathrm{f}(\mathrm{x})]^{2}+[\mathrm{g}(\mathrm{x})]^{2}$ and $\mathrm{h}(5)=11$, then the value of $h(10)$ is -
(A) 0
(B) 1
(C) 10
(D) None of these

Sol. $\quad h^{\prime}(x)=2 f(x) f^{\prime}(x)+2 g(x) g^{\prime}(x)$

$$
\begin{aligned}
& =2 f(x) g(x)+2 g(x) f^{\prime \prime}(x) \\
& =2 f(x) g(x)-2 f(x) g(x) \\
& =0 \\
& \Rightarrow h(x)=c \\
& \Rightarrow h(10)=h(5)=11 \quad\left[\because f^{\prime \prime}(x)=-f(x)\right] \\
&
\end{aligned}
$$

Ex. 28 If $x=(\sec \theta-\cos \theta)$ and $y=\sec ^{n} \theta-\cos ^{n} \theta$, then $\left(\frac{d y}{d x}\right)^{2}$ equals -
(A) $\frac{\mathrm{y}^{2}+4}{\mathrm{n}^{2}\left(\mathrm{x}^{2}+4\right)}$
(B) $\frac{\mathrm{y}^{2}+4}{\mathrm{n}\left(\mathrm{x}^{2}+4\right)}$
(C) $\frac{n^{2}\left(y^{2}+4\right)}{x^{2}+4}$
(D) None of these

Sol. Here $\frac{d x}{d \theta}=\sec \theta \tan \theta+\sin \theta$

$$
=\tan \theta(\sec \theta+\cos \theta)
$$

$$
\begin{aligned}
& =\tan \theta \sqrt{(\sec \theta-\cos \theta)^{2}+4} \\
& =\tan \theta \sqrt{\mathrm{x}^{2}+4}
\end{aligned}
$$

and $\frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{n} \sec ^{\mathrm{n}} \theta \tan \theta+\mathrm{n} \cos ^{\mathrm{n}-1} \theta \sin \theta$

$$
=n \tan \theta\left(\sec ^{\mathrm{n}} \theta+\cos ^{\mathrm{n}} \theta\right)
$$

$$
=\mathrm{n} \tan \theta \sqrt{\left(\sec ^{\mathrm{n}} \theta-\cos ^{\mathrm{n}} \theta\right)^{2}+4}
$$

$$
=\mathrm{n} \tan \theta \sqrt{\mathrm{y}^{2}+4}
$$

$$
\therefore \frac{d y}{d x}=\frac{n \tan \theta \sqrt{y^{2}+4}}{\tan \theta \sqrt{x^{2}+4}}
$$

$$
\Rightarrow\left(\frac{d y}{d x}\right)^{2}=\frac{n^{2}\left(y^{2}+4\right)}{x^{2}+4}
$$

Ans.[C]

Ex. 29 The value of the derivative of $|x-1|+|x-3|$ at $x=2$ is -
(A) -2
(B) 0
(C) 2
(D) Not defined

Sol. When $1<x \leq 3$,
$f(x)=(x-1)-(x-3)=2$
$\Rightarrow \mathrm{f}^{\prime}(2-0)=0, \mathrm{f}^{\prime}(2+0)=0$
$\therefore \mathrm{f}^{\prime}(2)=0$
Ans.[B]

Ex. 30 If $f(x)=\log _{x}(\ell n)$, then at $x=e, f^{\prime}(x)$ equals-
(A) 0
(B) 1
(C) e
(D) $1 / \mathrm{e}$

Sol. $\quad \because \ell \mathrm{n} \mathrm{x}=\log _{\mathrm{e}} \mathrm{x}$, so
$f(x)=\log _{x}\left(\log _{e} x\right)=\frac{\log (\log x)}{\log x}$
$\Rightarrow f^{\prime}(x)=\frac{\log x\left(\frac{1}{x \log x}\right)-\log (\log x) \frac{1}{x}}{(\log x)^{2}}$
$\therefore \mathrm{f}^{\prime}(\mathrm{e})=\frac{1 / \mathrm{e}-0}{(1)^{2}}=\frac{1}{\mathrm{e}} \quad$ Ans. $[\mathrm{D}] \quad=\frac{1}{4}[\sin 7 \mathrm{x}+\sin \mathrm{x}]+\mathrm{x}+3$

Ex. 31 The first derivative of the function $\left(\sin 2 \mathrm{x} \cos 2 \mathrm{x} \cos 3 \mathrm{x}+\log _{2} 2^{\mathrm{x}+3}\right.$) w.r.t. x at $\mathrm{x}=\pi$ is -
(A) 2
(B) -1
(C) $-2+2 \pi \log _{\mathrm{e}} 2$
(D) $-2+\log _{e} 2$
$\therefore\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\mathrm{x}=\pi}=\frac{1}{4}[7 \cos 7 \pi+\cos \pi]+1$
$=\frac{1}{4}[-8]+1=-1$
Ans.[B]

Sol. Let $\mathrm{y}=\sin 2 \mathrm{x} \cos 2 \mathrm{x} \cos 3 \mathrm{x}+\log _{2} 2^{\mathrm{x}+3}$
$=\frac{1}{2} \sin 4 \mathrm{x} \cos 3 \mathrm{x}+(\mathrm{x}+3) \log _{2} 2$

