SOLVED EXAMPLES

Ex. $1 \quad f(x)=2 x^{3}-21 x^{2}+36 x+7$ has a maxima at -
(A) $x=2$
(B) $x=1$
(C) $x=6$
(D) $x=3$

Sol. $\quad f^{\prime}(x)=6 x^{2}-42 x+36$
$\mathrm{f}^{\prime \prime}(\mathrm{x})=12 \mathrm{x}-42$
Now $f^{\prime}(x)=0 \Rightarrow 6\left(x^{2}-7 x+6\right)=0$

$$
\Rightarrow x=1,6
$$

Also $\mathrm{f}^{\prime \prime}(1)=12-42=-30<0$
$\therefore \mathrm{f}(\mathrm{x})$ has a maxima at $\mathrm{x}=1$
Ans.[B]
Ex. 2 The minimum value of the function $x^{x}(x>0)$ is at -
(A) $x=1$
(B) $\mathrm{x}=\mathrm{e}$
(C) $x=e^{-1}$
(D) None of these

Sol. Let $\mathrm{y}=\mathrm{x}^{\mathrm{x}} \Rightarrow \log \mathrm{y}=\mathrm{x} \log \mathrm{x}$
$\Rightarrow \frac{\mathrm{d}}{\mathrm{dx}}(\log \mathrm{y})=1+\log \mathrm{x}$
and $\frac{d^{2}}{{d x^{2}}_{2}}(\log y)=\frac{1}{x}=x^{-1}$
Now for minimum value of y or $\log \mathrm{y}$
$\frac{d}{d x}(\log y)=0 \Rightarrow 1+\log x=0$
$\Rightarrow \mathrm{x}=\mathrm{e}^{-1}$ Again for $\mathrm{x}=\mathrm{e}^{-1}$
$\frac{d^{2}}{d^{2}}(\log y)=e>0$
$\Rightarrow \mathrm{y}$ is minimum at $\mathrm{x}=\mathrm{e}^{-1}$
Ans.[C]
Ex. 3 If $\mathrm{x}=\mathrm{p}$ and $\mathrm{x}=\mathrm{q}$ are respectively the maximum and minimum points of the function $x^{5}-5 x^{4}+5 x^{3}-10$, then -
(A) $p=0, q=1$
(B) $p=1, q=0$
(C) $\mathrm{p}=1, \mathrm{q}=3$
(D) $\mathrm{p}=3, \mathrm{q}=1$

Sol. Let $f(x)=x^{5}-5 x^{4}+5 x^{3}-10$, then

$$
\begin{aligned}
\mathrm{f}^{\prime}(\mathrm{x}) & =5 \mathrm{x}^{4}-20 \mathrm{x}^{3}+15 \mathrm{x}^{2} \\
& =5 \mathrm{x}^{2}(\mathrm{x}-1)(\mathrm{x}-3)
\end{aligned}
$$

and $f^{\prime \prime}(x)=20 x^{3}-60 x^{2}+30 x$
For maxima and minima

$$
\mathrm{f}^{\prime}(\mathrm{x})=0 \Rightarrow 5 \mathrm{x}^{2}(\mathrm{x}-1)(\mathrm{x}-3)=0
$$

$\Rightarrow \mathrm{x}=0,1,3 \quad$ Also $\mathrm{f}^{\prime \prime}(1)=-10<0$
$\Rightarrow \mathrm{x}=1$ is a point of maxima $\Rightarrow \mathrm{p}=1$
and $\mathrm{f}^{\prime \prime}(3)=90>0$
$\Rightarrow x=3$ is a point of minima $\Rightarrow q=3$.Ans.[C]

Ex. 4 Let x, y be two variables and $\mathrm{x}>0, \mathrm{xy}=1$. Then minimum value of $x+y$ is -
(A) 1
(B) 2
(C) 3
(D) 4

Sol. Let $A=x+y=x+1 / x(\because x y=1)$
$\Rightarrow \frac{\mathrm{dA}}{\mathrm{dx}}=1-\frac{1}{\mathrm{x}^{2}}, \frac{\mathrm{~d}^{2} \mathrm{~A}}{\mathrm{dx}^{2}}=\frac{2}{\mathrm{x}^{3}}$
Now $\frac{d A}{d x}=0 \Rightarrow x=1,-1$
Also at $\mathrm{x}=1, \frac{\mathrm{~d}^{2} \mathrm{~A}}{\mathrm{dx}^{2}}=2>0$
$x=1$ is a minimum point of A. So minimum value of $\mathrm{A}=1+1 / 1=2$.

Ans.[B]

Ex. 5 The maximum value of function $\sin x(1+\cos x)$ occurs at -
(A) $x=\pi / 4$
(B) $x=\pi / 2$
(C) $x=\pi / 3$
(D) $x=\pi / 6$

Sol. Let $f(x)=\sin x(1+\cos x)=\sin x+\frac{1}{2} \sin 2 x$, then $\mathrm{f}^{\prime}(\mathrm{x})=\cos \mathrm{x}+\cos 2 \mathrm{x}$
and $f^{\prime \prime}(x)=-\sin x-2 \sin 2 x$
For maximum value $f^{\prime}(x)=0$
$\Rightarrow \cos x+\cos 2 x=0$
$\Rightarrow \cos \mathrm{x}=-\cos 2 \mathrm{x}$
$\Rightarrow \cos x=\cos (\pi-2 x)$
$\Rightarrow \mathrm{x}=\pi-2 \mathrm{x} \Rightarrow \mathrm{x}=\pi / 3$
Again f " $(\pi / 3)=-\sin (\pi / 3)-2 \sin (2 \pi / 3)$

$$
=-\frac{3 \sqrt{3}}{2}<0
$$

\Rightarrow Maximum value of function occurs at $\mathrm{x}=\pi / 3$

Ans.[C]

Ex. 6 The maximum value of $3 \sin x+4 \cos x$ is -
(A) 3
(B) 4
(D) 5
(D) 7

Sol. Let $f(x)=3 \sin x+4 \cos x$
$\Rightarrow f^{\prime}(x)=3 \cos x-4 \sin x$
$f^{\prime \prime}(x)=-3 \sin x-4 \cos x$
Now $f^{\prime}(x)=0 \Rightarrow 3 \cos x-4 \sin x=0$
$\Rightarrow \tan x=3 / 4$
Also then $\sin x=3 / 5, \cos x=4 / 5$ and so at $x=\tan ^{-1}(3 / 4)$
$\mathrm{f}^{\prime \prime}(\mathrm{x})=-3(3 / 5)-4(4 / 5)<0$
$\Rightarrow \mathrm{f}(\mathrm{x})$ has a maxima at $\tan \mathrm{x}=3 / 4$. Also its maximum value
$=3(3 / 5)+4(4 / 5)=5$
Ans.[C]

Ex. 7 If $x=-1$ and $x=2$ are extreme points of the function $y=a \log x+b x^{2}+x$, then-
(A) $\mathrm{a}=2, \mathrm{~b}=1 / 2$
(B) $\mathrm{a}=2, \mathrm{~b}=-1 / 2$
(C) $a=-2, b=1 / 2$
(D) $a=-2, b=-1 / 2$

Sol. $\quad \frac{d y}{d x}=\frac{a}{x}+2 b x+1$
Since $x=-1$ and $x=2$ are extreme points so $d y / d x$ at these points must be zero. So
$-\mathrm{a}-2 \mathrm{~b}+1=0$ and $\mathrm{a} / 2+4 \mathrm{~b}+1=0$
$\Rightarrow \mathrm{a}+2 \mathrm{~b}-1=0$ and $\mathrm{a}+8 \mathrm{~b}+2=0$
$\Rightarrow \mathrm{a}=2, \mathrm{~b}=-1 / 2$
Ans.[B]

Ex. 8 In $[0,2 \pi]$ one maximum value of $x+\sin 2 x$ is -
(A) $\frac{2 \pi}{3}+\frac{\sqrt{3}}{2}$
(B) $\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}$
(C) $\frac{\pi}{3}+\frac{\sqrt{3}}{2}$
(D) $\frac{\pi}{3}-\frac{\sqrt{3}}{2}$

Sol. Let $f(x)=x+\sin 2 x$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=1+2 \cos 2 \mathrm{x}$
$f^{\prime \prime}(x)=-4 \sin 2 x$
Now $f^{\prime}(x)=0 \Rightarrow \cos 2 x=-1 / 2$

$$
\begin{aligned}
& \Rightarrow 2 \mathrm{x}=2 \pi / 3,4 \pi / 3, \ldots \ldots \\
& \Rightarrow \mathrm{x}=\pi / 3,2 \pi / 3
\end{aligned}
$$

But $\mathrm{f}^{\prime \prime}(\pi / 3)=-4(\sqrt{3} / 2)<0$
$\therefore \mathrm{f}(\mathrm{x})$ is maximum at $\mathrm{x}=\pi / 3$ and its one maximum value

$$
\begin{aligned}
& =\pi / 3+\sin (2 \pi / 3) \\
& =\pi / 3+\sqrt{3} / 2
\end{aligned}
$$

Ans.[C]
Ex. 9 The maximum and minimum values of $\sin 2 x-x$ are-
(A) $1,-1$
(B) $\frac{3 \sqrt{3}-\pi}{6}, \frac{\pi-3 \sqrt{3}}{6}$
(C) $\frac{\pi-3 \sqrt{3}}{6}, \frac{3 \sqrt{3}-\pi}{6}$
(D) Do not exist

Sol. $\quad f(x)=\sin 2 x-x$
$f^{\prime}(x)=2 \cos 2 x-1$
$f^{\prime \prime}(x)=-4 \sin 2 x$

Now $\mathrm{f}^{\prime}(\mathrm{x})=0 \Rightarrow 2 \cos 2 \mathrm{x}-1=0$
$\Rightarrow \mathrm{x}=\mathrm{n} \pi \pm \pi / 6 \mathrm{n}=0,1,2, \ldots$.
$\Rightarrow \mathrm{x}=\pi / 6,5 \pi / 6,7 \pi / 6,-\pi / 6, \ldots .$.
But $\mathrm{f}^{\prime \prime}(\pi / 6)=-2 \sqrt{3}<0$
$\Rightarrow \mathrm{x}=\pi / 6$ is a max. point
Also f " $(5 \pi / 6)=2 \sqrt{3}>0$
$\Rightarrow \mathrm{x}=5 \pi / 6$ is a min. point
Hence one max. value $=f(\pi / 6)=\frac{3 \sqrt{3}-\pi}{6}$
one min. value $=f(5 \pi / 6)=-\frac{3 \sqrt{3}-5 \pi}{6}$
But it is not there in given alternatives. Hence by alternate position another min. point is $-\pi / 6$ so one min. value

$$
=\mathrm{f}(-\pi / 6)=\frac{\pi-3 \sqrt{3}}{6}
$$

Ans.[B]

Ex. 10 For what values of x, the function $\sin x+\cos 2 x(x>0)$ is minimum -
(A) $\frac{\mathrm{n} \pi}{2}$
(B) $\frac{3(\mathrm{n}+1) \pi}{2}$
(C) $\frac{(2 n+1) \pi}{2}$
(D) None of these

Sol. Let $f(x)=\sin x+\cos 2 x$, then
$f^{\prime}(x)=\cos x-2 \sin 2 x$
and $\mathrm{f}^{\prime \prime}(\mathrm{x})=-\sin \mathrm{x}-4 \cos 2 \mathrm{x}$
For minimum $f^{\prime}(x)=0 \Rightarrow \cos x-4 \sin x \cos x=0$ $\Rightarrow \cos x(1-4 \sin x)=0$
$\Rightarrow \cos x=0$ or $1-4 \sin x=0 \Rightarrow x=(2 n+1) \pi / 2$ or

$$
\mathrm{x}=\mathrm{n} \pi+(-1)^{\mathrm{n}} \sin ^{-1}\left(\frac{1}{4}\right), \mathrm{n} \in \mathrm{Z}
$$

Now f " $\left\{(2 \mathrm{n}+1) \frac{\pi}{2}\right\}$
$=-\sin \left\{(2 n+1) \frac{\pi}{2}\right\}-4 \cos (2 n+1) \pi$
$=-(-1)^{\mathrm{n}}-4(-1)^{2 \mathrm{n}+1}>0$
The function is minimum at $x=\frac{(2 n+1) \pi}{2}$

Ans.[C]

Ex. 11 The minimum value of
$64 \sec x+27 \operatorname{cosec} x, 0<x<\pi / 2$ is-
(A) 91
(B) 25
(C) 125
(D) None of these

Sol. Let $y=64 \sec x+27 \operatorname{cosec} x$
$\Rightarrow \frac{d y}{d x}=64 \sec x \tan x-27 \operatorname{cosec} x \cot x$
$\frac{d^{2} y}{d x^{2}}=64 \sec ^{3} x+64 \sec x \tan ^{2} x+27 \operatorname{cosec}^{3} x$ $+27 \operatorname{cosec} x \cot ^{2} x$

Now $\frac{d y}{d x}=0 \Rightarrow 64 \sec x \tan x=27 \operatorname{cosec} x \cot x$

$$
\Rightarrow \tan ^{3} x=27 / 64
$$

$$
\Rightarrow \tan x=3 / 4
$$

Also then $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}>0 \quad(\because 0<\mathrm{x}</ 2)$
So y is minimum when
$x=\tan ^{-1}(3 / 4)$ and its
min. value $=64(5 / 4)+27(5 / 3)=125$ Ans.[C]

Ex. 12 If $0 \leq \mathrm{c} \leq 5$, then the minimum distance of the point $(0, c)$ from parabola $y=x^{2}$ is-
(A) $\sqrt{\mathrm{c}-4}$
(B) $\sqrt{\mathrm{c}-1 / 4}$
(C) $\sqrt{\mathrm{c}+1 / 4}$
(D) None of these

Sol. Let $(\sqrt{\mathrm{t}}, \mathrm{t})$ be a point on the parabola whose distance from $(0, \mathrm{c})$, be d. Then
$\mathrm{z}=\mathrm{d}^{2}=\mathrm{t}+(\mathrm{t}-\mathrm{c})^{2}=\mathrm{t}^{2}+\mathrm{t}(1-2 \mathrm{c})+\mathrm{c}^{2}$
$\Rightarrow \frac{\mathrm{dz}}{\mathrm{dt}}=2 \mathrm{t}+1-2 \mathrm{c}, \frac{\mathrm{d}^{2} \mathrm{z}}{\mathrm{dt}^{2}}=2>0$
Now $\frac{\mathrm{dz}}{\mathrm{dt}}=0 \Rightarrow \mathrm{t}=\mathrm{c}-1 / 2$
which gives the minimum distance. So
min. distance $=\sqrt{(c-1 / 2)+(-1 / 2)^{2}}$

$$
=\sqrt{c-1 / 4}
$$

Ans.[B]

Ex. 13 The minimum value of the function $\frac{40}{3 x^{4}+8 x^{3}-18 x^{2}+60}$ is -
(A) $2 / 3$
(B) $3 / 2$
(C) $40 / 53$
(D) None of these

Sol. Let $\mathrm{y}=\frac{1}{40}\left(3 \mathrm{x}^{4}+8 \mathrm{x}^{3}-18 \mathrm{x}^{2}+60\right)$
$\Rightarrow \frac{d y}{d x}=\frac{1}{40}\left(12 x^{3}+24 x^{2}-36 x\right)$
and $\frac{d^{2} y}{d x^{2}}=\frac{1}{40}\left(36 x^{2}+48 x-36\right)$
Now $\frac{d y}{d x}=0 \Rightarrow x^{3}+2 x^{2}-3 x=0$
or $x(x-1)(x+3)=0$
or $x=0,1,-3$
At $x=0, \frac{d^{2} y}{d^{2}}=-36<0$
$\therefore \mathrm{y}$ is maximum at $\mathrm{x}=0$
\Rightarrow the given function i.e. $1 / y$ is minimum at $\mathrm{x}=0$
\therefore minimum value of the function
$\frac{40}{60}=\frac{2}{3}$
Ans.[A]

Ex. 14 If $\frac{d y}{d x}=(x-1)^{3}(x-2)^{4}$, then y is -
(A) maximum at $x=1$
(B) maximum at $x=2$
(C) minimum at $x=1$
(D) minimum at $x=2$

Sol. $\frac{d y}{d x}=0 \Rightarrow x=1$, 2. If $h>0$ is very small number, then
at $x=1-h, \frac{d y}{d x}=(-)(+)=-v e$ $\mathrm{x}=1+\mathrm{h}, \frac{\mathrm{dy}}{\mathrm{dx}}=(+)(+)=+\mathrm{ve}$
at $x=1, \frac{d y}{d x}$ changes its sign from $-v e$ to $+v e$ which shows that $x=1$ is a minimum. Ans.[C]

Ex. 15 The maximum area of a rectangle of perimeter 176 cms . is -
(A) 1936 sq.cms.
(B) $1854 \mathrm{sq} . \mathrm{cms}$.
(C) 2110 sq.cms.
(D) None of these

Sol. Let sides of the rectangle be x, y; then

$$
\begin{equation*}
2 x+2 y=176 \tag{1}
\end{equation*}
$$

\therefore Its area $A=x y=x(88-x)$
[form (1)] $=88 \mathrm{x}-\mathrm{x}^{2}$
$\Rightarrow \frac{\mathrm{dA}}{\mathrm{dx}}=88-2 \mathrm{x}, \frac{\mathrm{d}^{2} \mathrm{~A}}{\mathrm{dx}^{2}}=-2<0$
Now $\frac{\mathrm{dA}}{\mathrm{dx}}=0 \Rightarrow \mathrm{x}=44$;
Also then $\frac{d^{2} A}{d x^{2}}<0$. So area will be maximum when $x=44$ and maximum area $=44 \times 44=1936$ sq. cms.

Ans.[A]

Ex. 16 The semivertical angle of a right circular cone of given slant height and maximum volume is-
(A) $\tan ^{-1} 2$
(B) $\tan ^{-1}(\sqrt{2})$
(C) $\tan ^{-1}\left(\frac{1}{2}\right)$
(D) $\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$

Sol. Let ℓ be the slant height and α be the semivertical angle of the right circular cone. Also suppose that h and r are its height and radius of the base.

Then $h=\ell \cos \alpha, r=\ell \sin \alpha$
Now volume $V=\frac{1}{3} \pi r^{2} h$

$$
=\frac{1}{3} \pi \ell^{3} \sin ^{2} \alpha \cos \alpha
$$

$\therefore \frac{\mathrm{dV}}{\mathrm{d} \alpha}=\frac{1}{3}=\pi \ell^{3}\left[-\sin ^{3} \alpha+2 \sin \alpha \cos ^{2} \alpha\right]$
$=\frac{1}{3} \pi \ell^{3}\left[-\sin ^{3} \alpha+2 \sin \alpha\left(1-\sin ^{2} \alpha\right)\right]$
$=\frac{1}{3} \pi \ell^{3}\left[2 \sin \alpha-3 \sin ^{3} \alpha\right]$
$\therefore \frac{\mathrm{d}^{2} \mathrm{~V}}{\mathrm{~d} \alpha^{2}}=\frac{1}{3} \pi \ell^{3}\left[2 \cos \alpha-9 \sin ^{2} \alpha \cos \alpha\right]$
Now $\frac{\mathrm{dV}}{\mathrm{d} \alpha}=0 \Rightarrow \sin \alpha=0$ or $2-3 \sin ^{2} \alpha=0$
Now $\alpha \neq 0 \quad \therefore 2=3 \sin ^{2} \alpha$
or $2 \sin ^{2} \alpha+2 \cos ^{2} \alpha=3 \sin ^{2} \alpha$
or $\tan ^{2} \alpha=2 \Rightarrow \tan \alpha=\sqrt{2}$
When $\tan \alpha=\sqrt{2}, \frac{\mathrm{~d}^{2} \mathrm{~V}}{\mathrm{~d} \alpha^{2}}<0$

Thus when $\alpha=\tan ^{-1} \sqrt{2}$, volume will be maximum.

Ans. [B]
Ex. 17 Two parts of 10 such that the sum of the twice of first with the square of second is minimum, are-
(A) 9,1
(B) 5,5
(C) 4,6
(D) 1,9

Sol. Let two parts be x and $(10-x)$. If
$y=2 x+(10-x)^{2}$
Then $\frac{d y}{d x}=2-2(10-x)=2 x-18$
Now $\frac{d y}{d x}=0 x=9$
Also then $\frac{d^{2} y}{d x^{2}}=2>0$. Hence when $x=9$, value of y is minimum. So required two parts of 10 are 9 and 1 .

Ans.[A]
Ex. 18 For the curve $y=x e^{x}$ -
(A) $x=0$ is a point of maxima
(B) $x=0$ is a point of minima
(C) $x=-1$ is a point of minima
(D) $x=-1$ is a point of maxima

Sol. $y=x e^{x} \Rightarrow \frac{d y}{d x}=x e^{x}+e^{x}$
and $\frac{d^{2} y}{d x^{2}}=x e^{x}+2 e^{x}$
now $\frac{d y}{d x}=0 \Rightarrow e^{x}(x+1)=0$
$\Rightarrow \mathrm{x}=-1 \quad\left[\because \mathrm{e}^{\mathrm{x}}>0, \forall \mathrm{x}\right]$
and at $\mathrm{x}=-1, \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\mathrm{e}^{-\mathrm{x}}(-1+2)>0$
Therefore $x=-1$ is a point of minima.Ans.[C]
Ex. 19 If $\sin x-x \cos x$ is maximum at $x=n \pi$, then-
(A) n is an odd positive integer
(B) n is an even negative integer
(C) n is an even positive integer
(D) n is an odd positive or even negative integer

Sol. Let $f(x)=\sin x-x \cos x$, then
$\Rightarrow f^{\prime}(x)=\cos x-\cos x+x \sin x=x \sin x$
$f^{\prime \prime}(x)=x \cos x-\sin x$
Now $f^{\prime}(x)=0 \Rightarrow x \sin x=0$
$\Rightarrow \mathrm{x}=0, \mathrm{n} \pi \mathrm{n}=0,1,2, \ldots$.
Also f " $(n \pi)=n \pi \cos n \pi-\sin n \pi$

$$
=(-1)^{\mathrm{n}} \mathrm{n} \pi
$$

But $f(x)$ is maximum at $x=n \pi$ when $f^{\prime \prime}(n \pi)<0$
$\Rightarrow(-1)^{\mathrm{n}} \mathrm{n} \pi<0 \Rightarrow(-1)^{\mathrm{n}} \mathrm{n}<0$
\Rightarrow either n is an odd positive or even negative integer.

Ans.[D]
Ex. $20 \mathrm{x}\left(1-\mathrm{x}^{2}\right), 0 \leq \mathrm{x} \leq 2$ is maximum at -
(A) $x=0$
(B) $\mathrm{x}=1$
(C) $x=1 / \sqrt{3}$
(D) Nowhere

Sol. Let $\mathrm{y}=\mathrm{x}\left(1-\mathrm{x}^{2}\right)$
$\Rightarrow \frac{d y}{d x}=\left(1-x^{2}\right)-2 x^{2}=1-3 x^{2}$
and $\frac{d^{2} y}{d x^{2}}=-6 x$
Now dy/dx $=0 \Rightarrow x= \pm \frac{1}{\sqrt{3}}$
Now at $\mathrm{x}=\frac{1}{\sqrt{3}}, \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}<0$.
Therefore y is maximum at $x=\frac{1}{\sqrt{3}}$ Ans.[C]
Ex. 21 A curve whose slope at (x, y) is $x^{2}-2 x$, passes through the point $(2,0)$. The point with greatest ordinate on the curve is-
(A) $(0,0)$
(B) $(0,4)$
(C) $(0,4 / 3)$
(D) $(0,3 / 4)$

Sol. Here $\frac{d y}{d x}=x^{2}-2 x$
$\Rightarrow \mathrm{y}=\frac{1}{3} \mathrm{x}^{3}-\mathrm{x}^{2}+\mathrm{c}$
Since the curve passes through the point $(2,0)$, therefore
$0=(8 / 3)-4+c \Rightarrow c=4 / 3$
\therefore equation of curve $y=\frac{1}{3} x^{3}-x^{2}+\frac{4}{3}$ and
$\frac{d y}{d x}=x^{2}-2 x \cdot \frac{d^{2} y}{d x^{2}}=2 x-2$
Now $\frac{d y}{d x}=0 \Rightarrow x=0,2$
But at $x=0, \frac{d^{2} y}{d x^{2}}=-2<0$
Thus at $x=0, y=4 / 3$ is maximum.Ans.[C]

Ex. $22 f(x)=1+2 \sin x+3 \cos ^{2} x(0 \leq x \leq 2 \pi / 3)$ is-
(A) minimum at $\mathrm{x}=\pi / 2$
(B) maximum at $x=\sin ^{-1}(1 / \sqrt{3})$
(C) minimum at $\mathrm{x}=\pi / 3$
(D) minimum at $x=\sin ^{-1}(1 / 3)$

Sol. $\quad f^{\prime}(x)=2 \cos x-6 \cos x \sin x$
$f^{\prime \prime}(x)=-2 \sin x+6 \sin ^{2} x-6 \cos ^{2} x$
$=-2 \sin x+12 \sin ^{2} x-6$
Now $f^{\prime}(x)=0 \Rightarrow \cos x=0$ and $\sin x=1 / 3$
or $x=\pi / 2 \& x=\sin ^{-1}(1 / 3)$
so $\mathrm{f}^{\prime \prime}(\pi / 2)=-2+12-6>0$
f" $\left(\sin ^{-1} \frac{1}{3}\right)=\frac{-2}{3}+\frac{4}{3}-6<0$
$\therefore \mathrm{f}(\mathrm{x})$ is minimum at $\mathrm{x}=\pi / 2$. Ans.[A]
Ex. 23 The minimum value of $e^{\left(2 x^{2}-2 x-1\right) \sin ^{2} x}$ is -
(A) e
(B) $1 / \mathrm{e}$
(C) 1
(D) 0

Sol. Let $y=e^{\left(2 x^{2}-2 x-1\right) \sin ^{2} x}$
and $u=\left(2 x^{2}-2 x-1\right) \sin ^{2} x$
Now $\frac{\mathrm{du}}{\mathrm{dx}}$
$=\left(2 \mathrm{x}^{2}-2 \mathrm{x}-1\right) 2 \sin \mathrm{x} \cos \mathrm{x}+(4 \mathrm{x}-2) \sin ^{2} \mathrm{x}$
$=\sin x\left[2\left(2 x^{2}-2 x\right) \cos x+(4 x-2) \sin x\right]$
$\frac{\mathrm{du}}{\mathrm{dx}}=0 \Rightarrow \sin \mathrm{x}=0 \Rightarrow \mathrm{x}=\mathrm{n} \pi$
$\frac{d^{2} u}{d x^{2}}=\sin x \frac{d}{d x}\left[2\left(2 x^{2}-2 x-1\right) \cos x\right.$
$+(4 x-2) \sin x]+\cos x\left[2 \cos x\left(2 x^{2}-2 x-1\right)\right.$
$+(4 x-2) \sin x]$
At $x=n \pi$,
$\frac{d^{2} u}{d x^{2}}=0+2 \cos ^{2} n \pi\left(2 n^{2} \pi^{2}-2 n \pi-1\right)>0$
Hence at $x=n \pi$, the value of u and so its corresponding the value of y is minimum and minimum value $=\mathrm{e}^{0}=1$.

Ans.[C]

