SOLVED EXAMPLES

- $f(x) = 2x^3 21x^2 + 36x + 7$ has a maxima at -Ex.1 (A) x = 2 (B) x = 1 (C) x = 6 (D) x = 3 $f'(x) = 6x^2 - 42x + 36$ Sol. f''(x) = 12 x - 42Now f'(x) = $0 \implies 6(x^2 - 7x + 6) = 0$ \Rightarrow x =1.6 Also f " (1) = 12 - 42 = -30 < 0 \therefore f(x) has a maxima at x = 1 Ans.[B] Ex.2 The minimum value of the function x^{x} (x > 0) is at -(B) x = e(A) x = 1(C) $x = e^{-1}$ (D) None of these Let $y = x^x \implies \log y = x \log x$ Sol. $\Rightarrow \frac{d}{dx} (\log y) = 1 + \log x$ and $\frac{d^2}{dx^2}$ (log y) = $\frac{1}{x} = x^{-1}$ Now for minimum value of y or log y $\frac{d}{dx}(\log y) = 0 \Longrightarrow 1 + \log x = 0$ \Rightarrow x = e⁻¹ Again for x = e⁻¹ $\frac{\mathrm{d}^2}{\mathrm{d}x^2} \ (\log y) = \mathrm{e} > 0$ \Rightarrow y is minimum at x = e⁻¹ Ans.[C] Ex.3 If x = p and x = q are respectively the maximum and minimum points of the function $x^5 - 5x^4 + 5x^3 - 10$, then -(A) p = 0, q = 1(B) p = 1, q = 0(C) p = 1, q = 3(D) p = 3, q = 1Let $f(x) = x^5 - 5x^4 + 5x^3 - 10$, then Sol. $f'(x) = 5x^4 - 20x^3 + 15x^2$ $= 5x^{2}(x-1)(x-3)$ and $f''(x) = 20x^3 - 60x^2 + 30x$ For maxima and minima $f'(x) = 0 \Longrightarrow 5x^2 (x-1) (x-3) = 0$ \Rightarrow x = 0, 1,3 Also f'' (1) = -10 < 0 \Rightarrow x = 1 is a point of maxima \Rightarrow p = 1 and f''(3) = 90 > 0 \Rightarrow x = 3 is a point of minima \Rightarrow q = 3.**Ans.**[C]
- Ex.4 Let x, y be two variables and x > 0, xy = 1. Then minimum value of x + y is -(A) 1 **(B)** 2 (C) 3 (D) 4 Sol. Let A = x + y = x + 1/x (:: xy = 1) $\Rightarrow \frac{dA}{dx} = 1 - \frac{1}{x^2}, \frac{d^2A}{dx^2} = \frac{2}{x^3}$ Now $\frac{dA}{dx} = 0 \Rightarrow x = 1, -1$ Also at x = 1, $\frac{d^2 A}{dx^2} = 2 > 0$ x = 1 is a minimum point of A. So minimum value of A = 1 + 1/1 = 2. Ans.[B] Ex.5 The maximum value of function $\sin x (1 + \cos x)$ occurs at -
 - (A) $x = \pi/4$ (B) $x = \pi/2$ (C) $x = \pi/3$ (D) $x = \pi/6$

Sol. Let $f(x) = \sin x (1 + \cos x) = \sin x + \frac{1}{2} \sin 2x$,

then f'(x) = cos x + cos 2x and f"(x) = - sin x - 2 sin 2x For maximum value f'(x) = 0 $\Rightarrow \cos x + \cos 2x = 0$ $\Rightarrow \cos x = -\cos 2x$ $\Rightarrow \cos x = \cos (\pi - 2x)$ $\Rightarrow x = \pi - 2x \Rightarrow x = \pi/3$ Again f"($\pi/3$) = - sin($\pi/3$) - 2 sin($2\pi/3$) $= -\frac{3\sqrt{3}}{2} < 0$

 $\Rightarrow Maximum value of function occurs at$ $x = <math>\pi/3$ Ans.[C]

Ex.6 The maximum value of $3 \sin x + 4 \cos x$ is -(A) 3 (B) 4 (D) 5 (D) 7 **Sol.** Let $f(x) = 3 \sin x + 4 \cos x$ $\Rightarrow f'(x) = 3 \cos x - 4 \sin x$ $f''(x) = -3 \sin x - 4 \cos x$ Now $f'(x) = 0 \Rightarrow 3 \cos x - 4 \sin x = 0$ $\Rightarrow \tan x = 3/4$ Also then $\sin x = 3/5$, $\cos x = 4/5$ and so at $x = \tan^{-1}(3/4)$ f " (x) = -3(3/5) - 4(4/5) < 0 \Rightarrow f(x) has a maxima at tan x = 3/4. Also its maximum value = 3(3/5) + 4(4/5) = 5 Ans.[C]

Ex.7 If x = -1 and x = 2 are extreme points of the function $y = a \log x + bx^2 + x$, then-(A) a = 2, b = 1/2 (B) a = 2, b = -1/2(C) a = -2, b = 1/2 (D) a = -2, b = -1/2Sol. $\frac{dy}{dx} = \frac{a}{x} + 2 bx + 1$ Since x = -1 and x = 2 are extreme points so dy/dx at these points must be zero. So -a - 2b + 1 = 0 and a/2 + 4b + 1 = 0

$$\Rightarrow a + 2b - 1 = 0 \text{ and } a + 8b + 2 = 0$$
$$\Rightarrow a = 2, b = -1/2$$
Ans.[B]

Ex.8 In $[0, 2\pi]$ one maximum value of $x + \sin 2x$ is -

Sol.

Sol.

(A) $\frac{2\pi}{3} + \frac{\sqrt{3}}{2}$ (B) $\frac{2\pi}{3} - \frac{\sqrt{3}}{2}$

(A)
$$\frac{\pi}{3} + \frac{\sqrt{3}}{2}$$
 (B) $\frac{\pi}{3} - \frac{\sqrt{3}}{2}$
(C) $\frac{\pi}{3} + \frac{\sqrt{3}}{2}$ (D) $\frac{\pi}{3} - \frac{\sqrt{3}}{2}$
Let f (x) = x + sin 2x

 $\Rightarrow f'(x) = 1 + 2 \cos 2x$ f''(x) = -4 sin 2x Now f'(x) = 0 $\Rightarrow \cos 2x = -1/2$ $\Rightarrow 2x = 2\pi/3, 4\pi/3,...$ $\Rightarrow x = \pi/3, 2\pi/3$

But f " $(\pi/3) = -4(\sqrt{3}/2) < 0$

 \therefore f(x) is maximum at x = $\pi/3$ and its one maximum value

$$= \pi/3 + \sin (2\pi/3)$$

= $\pi/3 + \sqrt{3}/2$ Ans.[C]

Ex.9 The maximum and minimum values of $\sin 2x - x$ are-

(A) 1, -1
(B)
$$\frac{3\sqrt{3} - \pi}{6}, \frac{\pi - 3\sqrt{3}}{6}$$

(C) $\frac{\pi - 3\sqrt{3}}{6}, \frac{3\sqrt{3} - \pi}{6}$ (D) Do not exist
f(x) = sin 2x - x
f'(x) = 2 cos 2x - 1
f''(x) = -4 sin 2x

Now f'(x) = 0 \Rightarrow 2 cos 2x - 1 = 0 \Rightarrow x = n $\pi \pm \pi/6$ n = 0, 1,2, \Rightarrow x = $\pi/6$, 5 $\pi/6$, 7 $\pi/6$, - $\pi/6$,..... But f"($\pi/6$) = -2 $\sqrt{3} < 0$ \Rightarrow x = $\pi/6$ is a max. point Also f"($5\pi/6$) = $2\sqrt{3} > 0$ \Rightarrow x = $5\pi/6$ is a min. point Hence one max. value = f($\pi/6$) = $\frac{3\sqrt{3} - \pi}{6}$ one min. value = f($5\pi/6$) = $-\frac{3\sqrt{3} - 5\pi}{6}$

But it is not there in given alternatives. Hence by alternate position another min. point is $-\pi/6$ so one min. value

= f (-
$$\pi/6$$
) = $\frac{\pi - 3\sqrt{3}}{6}$ Ans.[B]

Ex.10 For what values of x, the function sinx + cos 2x (x>0) is minimum -

(A)
$$\frac{n\pi}{2}$$
 (B) $\frac{3(n+1)\pi}{2}$
(C) $\frac{(2n+1)\pi}{2}$ (D) None of these

Sol. Let
$$f(x) = \sin x + \cos 2x$$
, then
 $f'(x) = \cos x - 2 \sin 2x$
and $f''(x) = -\sin x - 4 \cos 2x$
For minimum $f(x) = 0 \Rightarrow \cos x - 4 \sin x \cos x = 0$
 $\Rightarrow \cos x (1 - 4 \sin x) = 0$
 $\Rightarrow \cos x = 0 \text{ or } 1 - 4 \sin x = 0 \Rightarrow x = (2n + 1) \pi / 2 \text{ or}$
 $x = n\pi + (-1)^n \sin^{-1} \left(\frac{1}{4}\right), n \in \mathbb{Z}$
Now $f''\left\{(2n + 1)\frac{\pi}{2}\right\}$
 $= -\sin\left\{(2n + 1)\frac{\pi}{2}\right\} - 4\cos(2n + 1)\pi$
 $= -(-1)^n - 4(-1)^{2n+1} > 0$
The function is minimum at $x = \frac{(2n + 1)\pi}{2}$
Ans.[C]

Ex.11 The minimum value of 64 sec x + 27 cosec x, $0 < x < \pi/2$ is-(A) 91 (B) 25

(C) 125 (D) None of these Let $y = 64 \sec x + 27 \csc x$ Sol. $\Rightarrow \frac{dy}{dx} = 64 \sec x \tan x - 27 \csc x \cot x$ $\frac{d^2y}{dx^2} = 64 \sec^3 x + 64 \sec x \tan^2 x + 27 \csc^3 x$ $+ 27 \operatorname{cosec} x \operatorname{cot}^2 x$ Now $\frac{dy}{dx} = 0 \Rightarrow 64 \sec x \tan x = 27 \csc x \cot x$ $\Rightarrow \tan^3 x = 27/64$ $\Rightarrow \tan x = 3/4$ Also then $\frac{d^2y}{dx^2} > 0$ (:: 0 < x < /2)So y is minimum when $x = \tan^{-1}(3/4)$ and its min. value = 64(5/4) + 27(5/3) = 125 Ans.[C] **Ex.12** If $0 \le c \le 5$, then the minimum distance of the point (0, c) from parabola $y = x^2$ is-(A) $\sqrt{c-4}$ (B) $\sqrt{c-1/4}$ (C) $\sqrt{c+1/4}$ (D) None of these Let (\sqrt{t}, t) be a point on the parabola whose Sol. distance from (0, c), be d. Then $z = d^2 = t + (t-c)^2 = t^2 + t(1-2c) + c^2$ $\Rightarrow \frac{dz}{dt} = 2t + 1 - 2c, \ \frac{d^2z}{dt^2} = 2 > 0$ Now $\frac{dz}{dt} = 0 \Longrightarrow t = c - 1/2$

which gives the minimum distance. So

min. distance =
$$\sqrt{(c-1/2) + (-1/2)^2}$$

= $\sqrt{c-1/4}$ Ans.[B]

Ex.13 The minimum value of the function

$$\frac{40}{3x^4 + 8x^3 - 18x^2 + 60}$$
 is -
(A) 2/3 (B) 3/2
(C) 40/53 (D) None of these

Sol. Let
$$y = \frac{1}{40} (3x^4 + 8x^3 - 18x^2 + 60)$$

 $\Rightarrow \frac{dy}{dx} = \frac{1}{40} (12x^3 + 24x^2 - 36x)$

and
$$\frac{d^2y}{dx^2} = \frac{1}{40} (36x^2 + 48x - 36)$$

Now $\frac{dy}{dx} = 0 \Rightarrow x^3 + 2x^2 - 3x = 0$
or $x(x - 1) (x + 3) = 0$
or $x = 0, 1, -3$
At $x = 0, \frac{d^2y}{dx^2} = -36 < 0$
 \therefore y is maximum at $x = 0$
 \Rightarrow the given function i.e. 1/y is minimum at $x = 0$
 \therefore minimum value of the function
 $\frac{40}{60} = \frac{2}{3}$
Ans.[A]

Ex.14 If
$$\frac{dy}{dx} = (x-1)^3 (x-2)^4$$
, then y is -
(A) maximum at x = 1
(B) maximum at x = 2
(C) minimum at x = 1
(D) minimum at x = 2

Sol.
$$\frac{dy}{dx} = 0 \Rightarrow x = 1, 2$$
. If $h > 0$ is very small

number, then

at x = 1-h,
$$\frac{dy}{dx} = (-)(+) = -ve$$

x = 1 + h, $\frac{dy}{dx} = (+)(+) = +ve$
at x = 1, $\frac{dy}{dx}$ changes its sign from -ve

which shows that x = 1 is a minimum. **Ans.**[C]

to + ve

Ex.15 The maximum area of a rectangle of perimeter 176 cms. is -

(A) 1936 sq.cms.	(B) 1854 sq.cms.
(C) 2110 sq.cms.	(D) None of these

Sol. Let sides of the rectangle be x, y ; then 2x + 2y = 176 ...(1) \therefore Its area A = xy = x (88-x) [form (1)] = 88x - x²

$$\Rightarrow \frac{dA}{dx} = 88 - 2x, \ \frac{d^2A}{dx^2} = -2 < 0$$

Now $\frac{dA}{dx} = 0 \Rightarrow x = 44$;
Also then $\frac{d^2A}{dx^2} < 0$. So area will be maximum
when x = 44 and maximum area
= 44 x 44 = 1936 sq. cms. **Ans.[A]**

Ex.16 The semivertical angle of a right circular cone of given slant height and maximum volume is-

(A)
$$\tan^{-1} 2$$
 (B) $\tan^{-1} (\sqrt{2})$
(C) $\tan^{-1} \left(\frac{1}{2}\right)$ (D) $\tan^{-1} \left(\frac{1}{\sqrt{2}}\right)$

Sol. Let ℓ be the slant height and α be the semivertical angle of the right circular cone. Also suppose that h and r are its height and radius of the base.

Then h = $\ell \cos \alpha$, r = $\ell \sin \alpha$ Now volume V = $\frac{1}{3} \pi r^2 h$ = $\frac{1}{3} \pi \ell^3 \sin^2 \alpha \cos \alpha$ $\therefore \frac{dV}{d\alpha} = \frac{1}{3} = \pi \ell^3 [-\sin^3 \alpha + 2 \sin \alpha \cos^2 \alpha]$ = $\frac{1}{3} \pi \ell^3 [-\sin^3 \alpha + 2 \sin \alpha (1 - \sin^2 \alpha)]$ = $\frac{1}{3} \pi \ell^3 [2 \sin \alpha - 3 \sin^3 \alpha]$ $\therefore \frac{d^2 V}{d\alpha^2} = \frac{1}{3} \pi \ell^3 [2 \cos \alpha - 9 \sin^2 \alpha \cos \alpha]$ Now $\frac{dV}{d\alpha} = 0 \Rightarrow \sin \alpha = 0 \text{ or } 2-3 \sin^2 \alpha = 0$ Now $\alpha \neq 0 \therefore 2 = 3 \sin^2 \alpha$ or $2 \sin^2 \alpha + 2 \cos^2 \alpha = 3 \sin^2 \alpha$ or $\tan^2 \alpha = 2 \Rightarrow \tan \alpha = \sqrt{2}$ When $\tan \alpha = \sqrt{2}$, $\frac{d^2 V}{d\alpha^2} < 0$ Thus when $\alpha = \tan^{-1} \sqrt{2}$, volume will be maximum. **Ans. [B]**

Ex.17 Two parts of 10 such that the sum of the twice of first with the square of second is minimum, are-

(A) 9, 1 (B) 5, 5 (C) 4, 6 (D) 1, 9
Sol. Let two parts be x and (10-x). If

$$y = 2x + (10-x)^2$$

Then $\frac{dy}{dx} = 2 - 2(10-x) = 2x - 18$
Now $\frac{dy}{dx} = 0 = 9$
Also then $\frac{d^2y}{dx} = 2 \ge 0$. Hence when $x = 0$, $y = 0$

Also then $\frac{d^2 y}{dx^2} = 2 > 0$. Hence when x = 9, value

of y is minimum. So required two parts of 10 are 9 and 1. Ans.[A]

- **Ex.18** For the curve $y = xe^x$ -
 - (A) x = 0 is a point of maxima
 - (B) x = 0 is a point of minima
 - (C) x = -1 is a point of minima
 - (D) x = -1 is a point of maxima

Sol.
$$y = xe^x \Rightarrow \frac{dy}{dx} = xe^x + e^x$$

and $\frac{d^2y}{dx^2} = xe^x + 2e^x$

now
$$\frac{dy}{dx} = 0 \Rightarrow e^x (x + 1) = 0$$

 $\Rightarrow x = -1$ [$\because e^x > 0, \forall x$]
and at $x = -1, \frac{d^2y}{dx^2} = e^{-x} (-1+2) > 0$

Therefore x = -1 is a point of minima. **Ans.**[C]

Ex.19 If $\sin x - x \cos x$ is maximum at $x = n\pi$, then-

- (A) n is an odd positive integer
- (B) n is an even negative integer
- (C) n is an even positive integer
- (D) n is an odd positive or even negative integer

Sol. Let $f(x) = \sin x - x \cos x$, then $\Rightarrow f'(x) = \cos x - \cos x + x \sin x = x \sin x$ $f''(x) = x \cos x - \sin x$ Now $f'(x) = 0 \Rightarrow x \sin x = 0$ $\Rightarrow x = 0, n\pi n = 0, 1, 2, ...$ Also $f''(n\pi) = n\pi \cos n\pi - \sin n\pi$ $= (-1)^n n\pi$ But f(x) is maximum at x = n π when f " (n π) < 0 \Rightarrow (-1)ⁿ n π < 0 \Rightarrow (-1)ⁿ n < 0 \Rightarrow either n is an odd positive or even negative integer. **Ans.[D]**

- Ex.20 x $(1-x^2)$, $0 \le x \le 2$ is maximum at -(A) x = 0 (B) x = 1(C) $x = 1/\sqrt{3}$ (D) Nowhere Sol. Let $y = x (1 - x^2)$ $\Rightarrow \frac{dy}{dx} = (1-x^2) - 2x^2 = 1 - 3x^2$ and $\frac{d^2y}{dx^2} = -6x$ Now $dy/dx = 0 \Rightarrow x = \pm \frac{1}{\sqrt{3}}$ Now at $x = \frac{1}{\sqrt{3}}$, $\frac{d^2y}{dx^2} < 0$. Therefore y is maximum at $x = \frac{1}{\sqrt{3}}$ Ans.[C] Ex.21 A curve whose slope at (x,y) is $x^2 - 2x$, passes
- **Ex.21** A curve whose slope at (x,y) is $x^2 2x$, passes through the point (2,0). The point with greatest ordinate on the curve is-
 - $\begin{array}{ll} (A) \ (0, 0) & (B) \ (0, 4) \\ (C) \ (0, 4/3) & (D) \ (0, 3/4) \end{array}$
- Sol. Here $\frac{dy}{dx} = x^2 2x$ $\Rightarrow y = \frac{1}{2}x^3 - x^2 + c$

Since the curve passes through the point (2,0), therefore $0 = (8/3) - 4 + c \Rightarrow c = 4/3$

 $\therefore \text{ equation of curve } y = \frac{1}{3}x^3 - x^2 + \frac{4}{3} \text{ and}$ $\frac{dy}{dx} = x^2 - 2x. \frac{d^2y}{dx^2} = 2x - 2$ $\text{Now } \frac{dy}{dx} = 0 \Rightarrow x = 0, 2$ $\text{But at } x = 0, \frac{d^2y}{dx^2} = -2 < 0$

Thus at x = 0, y = 4/3 is maximum. **Ans.**[C]

Ex.22 $f(x) = 1 + 2 \sin x + 3 \cos^2 x \ (0 \le x \le 2\pi/3)$ is-(A) minimum at $x = \pi/2$ (B) maximum at $x = \sin^{-1} (1/\sqrt{3})$ (C) minimum at $x = \pi/3$ (D) minimum at $x = \sin^{-1}(1/3)$ $f'(x) = 2\cos x - 6\cos x \sin x$ Sol. $f''(x) = -2 \sin x + 6 \sin^2 x - 6 \cos^2 x$ $= -2 \sin x + 12 \sin^2 x - 6$ Now f'(x) = 0 \Rightarrow cos x = 0 and sin x = 1/3 or $x = \pi/2$ & $x = \sin^{-1}(1/3)$ so f " $(\pi/2) = -2 + 12 - 6 > 0$ $f''\left(\sin^{-1}\frac{1}{3}\right) = \frac{-2}{3} + \frac{4}{3} - 6 < 0$ \therefore f(x) is minimum at x = $\pi/2$. Ans.[A] The minimum value of $e^{(2x^2-2x-1)\sin^2 x}$ is -Ex.23 (A) e (B) 1/e (C) 1 (D) 0 Let $v = e^{(2x^2 - 2x - 1)\sin^2 x}$ Sol. and $u = (2x^2 - 2x - 1) \sin^2 x$ Now $\frac{du}{dx}$ $= (2x^2 - 2x - 1) 2\sin x \cos x + (4x - 2) \sin^2 x$ $= \sin x \left[2(2x^2 - 2x) \cos x + (4x - 2) \sin x \right]$ $\frac{\mathrm{d}u}{\mathrm{d}x} = 0 \Rightarrow \sin x = 0 \Rightarrow x = n\pi$ $\frac{d^2 u}{dx^2} = \sin x \frac{d}{dx} [2(2x^2 - 2x - 1) \cos x]$ $+(4x-2) \sin x + \cos x (2 \cos x(2x^2-2x-1))$ $+ (4x-2) \sin x$] At $x = n\pi$, $\frac{d^2 u}{dr^2} = 0 + 2\cos^2 n\pi (2n^2\pi^2 - 2n\pi - 1) > 0$ Hence at $x = n\pi$, the value of u and so its

Hence at $x = n\pi$, the value of u and so its corresponding the value of y is minimum and minimum value = $e^0 = 1$. **Ans.**[C]