JEE MAIN + ADVANCED

 MATHEMATICS
TOPIC NAME

(PRACTICE SHEET)

LEVEL-1

Question based on

Q. $1 \quad f(c)$ is a maximum value of $f(x)$ if -
(A) $\mathrm{f}^{\prime}(\mathrm{c})=0, \mathrm{f}^{\prime \prime}(\mathrm{c})>0$
(B) $\mathrm{f}^{\prime}(\mathrm{c})=0, \mathrm{f}^{\prime \prime}(\mathrm{c})<0$
(C) $\mathrm{f}^{\prime}(\mathrm{c}) \neq 0, \mathrm{f}^{\prime \prime}(\mathrm{c})=0$
(D) $\mathrm{f}^{\prime}(\mathrm{c})<0, \mathrm{f}^{\prime \prime}(\mathrm{c})>0$
Q. $2 f(c)$ is a minimum value of $f(x)$ if -
(A) $\mathrm{f}^{\prime}(\mathrm{c})=0, \mathrm{f}^{\prime \prime}(\mathrm{c})>0$
(B) $\mathrm{f}^{\prime}(\mathrm{c})=0, \mathrm{f}^{\prime \prime}(\mathrm{c})<0$
(C) $\mathrm{f}^{\prime}(\mathrm{c}) \neq 0, \mathrm{f}^{\prime \prime}(\mathrm{c})=0$
(D) $\mathrm{f}^{\prime}(\mathrm{c})<0, \mathrm{f}^{\prime \prime}(\mathrm{c})>0$
Q. $3 \quad f(c)$ is a maximum value of $f(x)$ when at $x=c$ -
(A) $f^{\prime}(x)$ changes sign from $+v e$ to $-v e$
(B) $\mathrm{f}^{\prime}(\mathrm{x})$ changes sign from -ve to +ve
(C) $f^{\prime}(x)$ does not change sign
(D) $\mathrm{f}^{\prime}(\mathrm{x})$ is zero
Q. $4 f(c)$ is a minimum value of $f(x)$ when at $x=c$ -
(A) $\mathrm{f}^{\prime}(\mathrm{x})$ changes sign +ve to -ve
(B) $\mathrm{f}^{\prime}(\mathrm{x})$ changes sign from -ve to +ve
(C) $\mathrm{f}^{\prime}(\mathrm{x})$ does not change sign
(D) $\mathrm{f}^{\prime}(\mathrm{x})$ is zero
Q. 5 The correct statement is -
(A) $f(c)$ is an extreme value of $f(x)$ if $f^{\prime}(c)=0$
(B) If $f(c)$ is an extreme value of $f(x)$ then $f^{\prime}(c)=0$
(C) If $f^{\prime}(\mathrm{c})=0$ then $\mathrm{f}(\mathrm{c})$ is an extreme value of $f(x)$
(D) All the above statements are incorrect
Q. 6 If for a function $f(x), f^{\prime}(a)=0=f^{\prime \prime}(a)=\ldots$. $=\mathrm{f}^{\mathrm{n}-1}(\mathrm{a})$ but $\mathrm{f}^{\mathrm{n}}(\mathrm{a}) \neq 0$ then at $\mathrm{x}=\mathrm{a}, \mathrm{f}(\mathrm{x})$ is minimum if -
(A) n is even and $\mathrm{f}^{\mathrm{n}}(\mathrm{a})>0$
(B) n is odd and $\mathrm{f}^{\mathrm{n}}(\mathrm{a})>0$
(C) n is even and $\mathrm{f}^{\mathrm{n}}(\mathrm{a})<0$
(D) n is odd and $f^{n}(a)<0$
Q. 7 The point of maxima of $\sec x$ is -
(A) $\mathrm{x}=0$
(B) $x=\pi / 2$
(C) $x=\pi$
(D) $x=3 \pi / 2$
Q. $8 \quad x^{3}-3 x+4$ is minimum at -
(A) $x=1$
(B) $x=-1$
(C) $x=0$
(D) No where
Q. 9 The maximum value of $2 x^{3}-9 x^{2}+100$ is -
(A) 0
(B) 100
(C) 3
(D) 30
Q. 10 If $f(x)=x^{3}-k x+7$ is maximum at $x=-1$, then the value of k is -
(A) 3
(B) 6
(C) -3
(D) -6
Q. 11 Which of the following function has no extreme point-
(A) 2^{x}
(B) $[x]$
(C) $\log _{10 x}$
(D) All these functions
Q. 12 If for a function $f(x), f^{\prime}(a)=0=f^{\prime \prime}(a)=\ldots$. $=\mathrm{f}^{\mathrm{n}-1}(\mathrm{a})$ but $\mathrm{f}^{\mathrm{n}}(\mathrm{a}) \neq 0$ then at $\mathrm{x}=\mathrm{a}, \mathrm{f}(\mathrm{x})$ is maximum if -
(A) n is even and $f^{n}(a)>0$
(B) n is odd and $\mathrm{f}^{\mathrm{n}}(\mathrm{a})>0$
(C) n is even and $f^{n}(a)<0$
(D) n is odd and $\mathrm{f}^{\mathrm{n}}(\mathrm{a})<0$
Q. 13 The maximum value of
$5 \cos \theta+3 \cos \left(\theta+\frac{\pi}{3}\right)+3$ is -
(A) 5
(B) 10
(C) 11
(D) -1
Q. 14 The function $f(x)=\sum_{K=1}^{5}(x-K)^{2}$ assumes minimum value for x given by
(A) 5
(B) 3
(C) $5 / 2$
(D) 2
Q. 15 If $f(x)=x^{3}-3 x^{2}+3 x+7$, then -
(A) $f(x)$ has a maximum at $x=1$
(B) $f(x)$ has a minimum at $x=1$
(C) $f(x)$ has a point of inflexion at $x=1$
(D) None of these
Q. 16 In [0, 2] the point of maxima of $3 x^{4}-2 x^{3}-6 x^{2}+6 x+1$ is -
(A) $x=0$
(B) $\mathrm{x}=1$
(C) $x=1 / 2$
(D) Does not exist
Q. 17 If f '(c) changes sign from negative to positive as x passes through c , then -
(A) $f(c)$ is neither a maximum nor a minimum value of $f(x)$
(B) $f(c)$ is a maximum value of $f(x)$
(C) $f(c)$ is a minimum value of $f(x)$
(D) $f(c)$ is either a maximum or a minimum value of $f(x)$
Q. 18 If $\mathrm{f}^{\prime}(\mathrm{c})$ changes sign from positive to negative as x passes through c , then,
(A) $f(c)$ is neither a maximum nor a minimum value of $f(x)$
(B) $f(c)$ is a maximum value of $f(x)$
(C) $f(c)$ is a minimum value of $f(x)$
(D) $f(c)$ is either a maximum or minimum value of $f(x)$
Q. 19 If $\mathrm{f}^{\prime}(\mathrm{c})<0$ and $\mathrm{f}^{\prime \prime}(\mathrm{c})>0$, then at $\mathrm{x}=\mathrm{c}, \mathrm{f}(\mathrm{x})$ is -
(A) maximum
(B) minimum
(C) neither maximum nor minimum
(D) either maximum or minimum
Q. 20 If for a function $f(x), f^{\prime}(b)=0, f^{\prime \prime}(b)=0$, $\mathrm{f}^{\prime \prime \prime}(\mathrm{b})>0$, then $\mathrm{x}=\mathrm{b}$ is -
(A) a maximum point (
(B) a minimum point
(C) an extreme point
(D) not an extreme point
Q. 21 The maximum height of the curve
$y=6 \cos x-8 \sin x$ above x axis is-
(A) 5
(B) 10
(C) 15
(D) None of these
Q. 22 The minimum value of $a \sec x+b \operatorname{cosec} x$, $0<a<b, 0<x<\pi / 2$ is $=$
(A) $a+b$
(B) $a^{2 / 3}+b^{2 / 3}$
(C) $\left(\mathrm{a}^{2 / 3}+\mathrm{b}^{2 / 3}\right)^{3 / 2}$
(D) None of these
Q. 23 The minimum value of $\frac{x}{\log x}(x>0)$ is -
(A) e
(B) $1 / \mathrm{e}$
(C) 0
(D) Does not exist
Q. 24 For what value of $x, x^{2} \log (1 / x)$ is maximum-
(A) $\mathrm{e}^{-1 / 2}$
(B) $\mathrm{e}^{1 / 2}$
(C) e
(D) e^{-1}
Q. 25 For what value of k, the function:
$f(x)=k x^{2}+\frac{2 k^{2}-81}{2} x-12$, is maximum at
$\mathrm{x}=9 / 4$
(A) $9 / 2$
(B) -9
(C) $-9 / 2$
(D) 9
Q. 26 The greatest value of the function
$f(x)=\cos \left[\mathrm{xe}^{[\mathrm{x}]}+2 \mathrm{x}^{2}-\mathrm{x}\right],-1<\mathrm{x}<\infty$ is-
(A) -1
(B) 1
(C) 0
(D) None of these
Q. 27 For $f(x)=\sqrt{3} \sin x+3 \cos x$, the point $x=\pi / 6$ is -
(A) a local maximum
(B) a local minimum
(C) None of these
(D) a point of inflexion
Q. 28 Which of the following functions has maximum or minimum value -
(A) $\sinh x$
(B) $\cosh x$
(C) $\tanh x$
(D) None of these
Q. 29 The maximum value of
$5 \sin \theta+3 \sin (\theta+\pi / 3)+3$ is -
(A) 11
(B) 12
(C) 10
(D) 9
Q. 30 The maximum value of $(x-2)(x-3)^{2}$ is-
(A) $2 / 27$
(B) $1 / 27$
(C) $4 / 27$
(D) $5 / 27$
Q. 31 A maximum point of cosecx is-
(A) $x=0$
(B) $x=\pi / 2$
(C) $x=\pi$
(D) $x=3 \pi / 2$
Q. 32 The function $f(x)=a \sin x+\frac{1}{3} \sin 3 x$ has a maximum at $x=\pi / 3$, then a equals-
(A) -2
(B) 2
(C) -1
(D) 1
Q. 33 If $f(x)=x^{3}+a x^{2}+b x+c$ is minimum at $\mathrm{x}=3$ and maximum at $\mathrm{x}=-1$, then-
(A) $\mathrm{a}=-3, \mathrm{~b}=-9, \mathrm{c}=0$
(B) $\mathrm{a}=3, \mathrm{~b}=9, \mathrm{c}=0$
(C) $a=-3, b=-9, c \in R$
(D) None of these
Q. 34 If $a>1, x>1$, then minimum value of $\log _{a} x+\log _{x}$ a is -
(A) 2
(B) -2
(C) 2 a
(D) None
Q. 35 If x be real, then the minimum value of $f(x)=3^{x+1}+3^{-(x+1)}$ is -
(A) 2
(B) 6
(C) $2 / 3$
(D) $7 / 9$
Q. 36 If $\alpha<\beta, \alpha, \beta \in(0, \pi / 2)$ then correct statement is -
(A) $\alpha-\sin \alpha>\beta-\sin \beta$
(B) $\alpha-\sin \alpha<\beta-\sin \beta$
(C) $\sin \alpha-\alpha<-\sin \beta+\beta$
(D) None of these
Q. 37 Function $f(x)=e^{x}+e^{-x}$ has -
(A) one minimum point
(B) one maximum point
(C) many extreme points
(D) no extreme point
Q. 38 Which of the following functions has infinite extreme points -
(A) $\tan x$
(B) $\cot \mathrm{x}$
(C) $\sec x$
(D) $\cosh x$
Q. 39 The maximum value of the function $(x-2)^{6}(x-3)^{5}$ is -
(A) 0
(B) 1
(C) -1
(D) does not exist
Q. 40 If $f^{\prime}(x)=(x-a)^{2 n}(x-b)^{2 p+1} ; n, p \in N$, then-
(A) $x=a$ is a minimum point
(B) $x=a$ is a maximum point
(C) $x=a$ is neither maximum nor minimum
(D) None of these
Q. 41 At $x=5 \pi / 6$, function $2 \sin 3 x+3 \cos 3 x$ is-
(A) maximum
(B) minimum
(C) zero
(D) None of these
Q. 42 The minimum value of $y=x(\log x)^{2}$ is -
(A) 0
(B) 1
(C) 2
(D) None

Question

 based on
Greatest a least value in an interval

Q. 43 The local maximum value of $x(1-x)^{2}, 0 \leq x \leq 2$ is
(A) 2
(B) $4 / 27$
(C) 5
(D) 0
Q. 44 In the interval ($-2,2$), the minimum value of $x^{3}-3 x+4$ is -
(A) 0
(B) 1
(C) 2
(D) 3
Q. 45 The least value of $f(x)=x^{3}-12 x^{2}+45 x$ in $[0,7]$ is -
(A) 0
(B) 50
(C) 45
(D) 54
Q. 46 The minimum value of $y=7 \cos \theta+24 \sin \theta(0 \leq \theta \leq 2 \pi)$ is -
(A) 25
(B) -25
(C) 50
(D) None
Q. 47 If $0 \leq x \leq \pi$, then maximum value of $y=(1+\sin x) \cos x$ is -
(A) $3 \sqrt{3}$
(B) $3 \sqrt{3} / 2$
(C) $3 \sqrt{3} / 4$
(D) -1
Q. 48 The highest point on the curve $y=x^{-x}$ is-
(A) $(1,1 / e)$
(B) $(\mathrm{e}, 1)$
(C) $(1 / e, 1)$
(D) $(1, \mathrm{e})$
Q. 49 The function $3 x^{4}-2 x^{3}-6 x^{2}+6 x+1$ has a maximum in $[0,2]$ at -
(A) $x=1 / 2$
(B) $x=1$
(C) $x=0$
(D) does not exist
Q. 50 The function $f(x)=x^{2} \log x$ in the interval [1, e] has -
(A) a point of maximum and minimum
(B) a point of maximum only
(C) a point of minimum only
(D) no point of maximum and minimum is [1, e]

Question Maxima \& Minima of function of based on Two variable

Q. 51 If $x y=c^{2}$ then the minimum value of $a x+b y$ $(a>0, b>0)$ is-
(A) $c \sqrt{a b}$
(B) $-\mathrm{c} \sqrt{\mathrm{ab}}$
(C) $2 c \sqrt{a b}$
(D) $-2 c \sqrt{a b}$
Q. 52 The difference between two numbers is a. If their product is minimum, then number are-
(A) $-\mathrm{a} / 2, \mathrm{a} / 2$
(B) $-\mathrm{a}, 2 \mathrm{a}$
(C) $-a / 3,2 a / 3$
(D) $-\mathrm{a} / 3,4 \mathrm{a} / 3$
Q. 53 If the sum of the number and its square is minimum, then number is -
(A) 0
(B) $1 / 2$
(C) $-1 / 2$
(D) None of these
Q. 5420 is divided into two parts so that product of cube of one quantity and square of the other quantity is maximum. The part are-
(A) 10,10
(B) 16,4
(C) 8,12
(D) 12,8
Q. 55 Which of the following point lying on the line $x+2 y=5$ is at minimum distance from the origin
(A) $(1,2)$
(B) $(3,1)$
(C) $(-1,3)$
(D) $(2,3 / 2)$
Q. 56 The point on the curve $\mathrm{x}^{2}=2 \mathrm{y}$ which is nearest to $(0,5)$ is -
(A) $(2 \sqrt{2}, 0)$
(B) $(0,0)$
(C) $(2,2)$
(D) None
Q. 57 The maximum distance of the point $(\mathrm{a}, 0)$ from the curve $2 \mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}=0$ is-
(A) $\sqrt{\left(1-2 a+a^{2}\right)}$
(B) $\sqrt{\left(1+2 \mathrm{a}+2 \mathrm{a}^{2}\right)}$
(C) $\sqrt{\left(1+2 a-a^{2}\right)}$
(D) $\sqrt{\left(1-2 a+2 a^{2}\right)}$
Q. 58 The sum of two non-zero number is 6. The minimum value of the sum of their reciprocals is-
(A) 3
(B) 6
(C) $2 / 3$
(D) $6 / 5$
Q. 59 Divide 10 into two parts so that sum of double of one part and square of the other part is minimum, then the part are-
(A) 9,1
(B) 5,5
(C) 8,2
(D) 4,6
Q. 60 The sum of two number is 12 . If their product is maximum, then they are -
(A) 8,4
(B) 9, 3
(C) 6,6
(D) None of these
Q. 61 If $x y=4$ and $x<0$ then maximum value of $x+16 y$ is -
(A) 8
(B) -8
(C) 16
(D) -16

Question
Geometrical result related to based on Maxima \& Minima
Q. 62 The area of a rectangle of maximum area inscribed in a circle of radius a is -
(A) πa^{2}
(B) a^{2}
(C) $2 a^{2}$
(D) $2 \pi a^{2}$
Q. 63 The ratio between the height of a right circular cone of maximum volume inscribed in a sphere and the diameter of the sphere is -
(A) $2: 3$
(B) $3: 4$
(C) $1: 3$
(D) $1: 4$
Q. 64 The point on the line $\mathrm{y}=\mathrm{x}$ such that the sum of the squares of its distance from the point $(a, 0)$, $(-\mathrm{a}, 0)$ and $(0, \mathrm{~b})$ is minimum will be -
(A) $(\mathrm{a} / 6, \mathrm{a} / 6)$
(B) (a, a)
(C) (b, b)
(D) $(\mathrm{b} / 6, \mathrm{~b} / 6)$
Q. 65 The minimum distance of the point (a, b, c) from x -axis is -
(A) $\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$
(B) $\sqrt{\mathrm{c}^{2}+\mathrm{a}^{2}}$
(C) $\sqrt{\mathrm{b}^{2}+\mathrm{c}^{2}}$
(D) $\sqrt{a^{2}+b^{2}+c^{2}}$
Q. 66 An isosceles triangle with vertical angle 2θ is inscribed in a circle of radius a. The area of the triangle will be maximum when $\theta=$
(A) $\pi / 6$
(B) $\pi / 4$
(C) $\pi / 3$
(D) $\pi / 2$
Q. 67 The first and second order derivatives of a function $f(x)$ exist at all points in (a, b) with $\mathrm{f}^{\prime}(\mathrm{c})=0$, where $\mathrm{a}<\mathrm{c}<\mathrm{b}$. Further more, if $\mathrm{f}^{\prime}(\mathrm{x})<0$ at all points on the immediate left of c and $\mathrm{f}^{\prime}(\mathrm{x})>0$ for all points on the immediate right of c, then at $x=c, f(x)$ has a -
(A) local maximum
(B) local minimum
(C) point of inflexion
(D) none of these
Q. 68 A wire of length p is cut into two parts. A circle and a square is formed with the help of these parts. The sum of the area of circle and square is minimum, if the ratio of sides of a square and diameter of circle is -
(A) $2: 1$
(B) $1: 2$
(C) $1: 1$
(D) None of these

LEVEL- 2

Q. 1 The maximum value of $\sin ^{3} \mathrm{x}+\cos ^{3} \mathrm{x}$ is-
(A) 1
(B) 2
(C) $3 / 2$
(D) None of these
Q. $2 L$ Let $f(x)=\left(x^{2}-4\right)^{n+1}\left(x^{2}-x+1\right), n \in N$ and $f(x)$ has a local extremum at $x=2$ then -
(A) $n=2$
(B) $\mathrm{n}=6$
(C) $\mathrm{n}=3$
(D) none
Q. 3 Let $f(x)=(x-1)^{m}(x-2)^{n}(m, n \in N), x \in R$. Then at each point $f(x)$ is either local maximum or local minimum if-
(A) $\mathrm{m}=2, \mathrm{n}=3$
(B) $\mathrm{m}=2, \mathrm{n}=4$
(C) $\mathrm{m}=3, \mathrm{n}=5$
(D) $\mathrm{m}=3, \mathrm{n}=4$
Q. 4 If $\frac{x}{a}+\frac{y}{b}=1$, then minimum value of $x^{2}+y^{2}$ is-
(A) $\frac{2 a^{2} b^{2}}{a^{2}+b^{2}}$
(B) $\frac{a^{2} b^{2}}{a^{2}+b^{2}}$
(C) $\frac{2 a b}{a^{2}+b^{2}}$
(D) None of these
Q. 5 Let $f(x)=\left\{\begin{array}{l}|x-1|+a, x<1 \\ 2 x+3, x \geq 1\end{array}\right.$. If $f(x)$ has a local minima at $\mathrm{x}=1$, then -
(A) $a \geq 5$
(B) $a>5$
(C) $a>0$
(D) none of these
Q. 6 Which point of the parabola $y=x^{2}$ is nearest to the point $(3,0)$ -
(A) $(-1,1)$
(B) $(1,1)$
(C) $(2,4)$
(D) $(-2,4)$
Q. 7 If value of the function $a^{2} \sec ^{2} \theta+b^{2} \operatorname{cosec}^{2} \theta$ $(a>0, b>0)$ is minimum, then θ equals -
(A) $\tan ^{-1} \sqrt{(a / b)}$
(B) $\tan ^{-1}(a / b)$
(C) $\tan ^{-1}(b / a)$
(D) $\tan ^{-1} \sqrt{(\mathrm{~b} / \mathrm{a})}$
Q. 8 For the curve $\frac{c^{4}}{r^{2}}=\frac{a^{2}}{\sin ^{2} \theta}+\frac{b^{2}}{\cos ^{2} \theta}$, the maximum value of r is -
(A) $\frac{c^{2}}{a+b}$
(B) $\frac{a+b}{c^{2}}$
(C) $\frac{c^{2}}{a-b}$
(D) $c^{2}(a+b)$
Q. 9 If points of maxima and minima of a function $f(x)=2 x^{3}-9 a x^{2}+12 a^{2} x+1(a>0)$ are respectively p and q, then for what value of a, the equation $\mathrm{p}^{2}=\mathrm{q}$ is true -
(A) 0
(B) 0,2
(C) 2
(D) None
Q. 10 If $f(x)=\left\{\begin{array}{ll}x^{2} & x<0 \\ 5 & x=0 \\ 2 \sin x & x>0\end{array}\right.$ then at $x=0, f(x)$ has
(A) a local maximum
(B) a local minimum
(C) an absolute minimum
(D) neither a maximum nor a minimum
Q. $11 \mathrm{f}(\mathrm{x})=\left\{\begin{array}{cl}\cos \frac{\pi x}{2}, & \mathrm{x}>0 \\ \mathrm{x}+\mathrm{a}, & \mathrm{x} \leq 0\end{array}\right.$ find the value of a if $\mathrm{x}=0$ is a point of maxima -
(A) $\mathrm{a} \leq 1$
(B) $a \geq 1$
(C) $-1 \leq$ a ≤ 1
(D) none of these
Q. 12 Find the value of a if $x^{3}-3 x+a=0$ has three real and distinct roots -
(A) $\mathrm{a}>2$
(B) a <2
(C) $-2<$ a <2
(D) none
Q. 13 The maximum possible area that can be enclosed by a wire of length 20 cms by bending it into the form of a sector in square cms is -
(A) 25
(B) 10
(C) 15
(D) None of these
Q. 14 The greatest value of the function $\mathrm{y}=\frac{\sin 2 \mathrm{x}}{\sin (\mathrm{x}+\pi / 4)} ; \mathrm{x} \in(0, \pi / 2)$ is -
(A) 1
(B) $-\sqrt{2}$
(C) $\sqrt{2}$
(D) $1 / \sqrt{2}$
Q. 15 The set of values of 'a' for which the function $f(x)=\frac{a x^{3}}{3}+(a+2) x^{2}+(a-1) x+2$ possesses a negative point of inflection -
(A) $(-\infty,-2) \cup(0, \infty)$
(B) $\{-4 / 5\}$
(C) $(-2,0)$
(D) empty set
Q. 16 If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are four positive real numbers such that abcd $=1$ then minimum value of $(1+a)(1+b)(1+c)(1+d)$
(A) 8
(B) 12
(C) 16
(D) 20
Q. 17 The difference between the greatest and least values of the function $f(x)=\sin 2 x-x$ on $[-\pi / 2, \pi / 2]$ is
(A) $\frac{\sqrt{3}+\sqrt{2}}{2}$
(B) $\frac{\sqrt{3}+\sqrt{2}}{2}+\frac{\pi}{3}$
(C) π
(D) $\frac{\sqrt{3}+\sqrt{2}}{2}-\frac{\pi}{3}$
Q. 18 A line is drawn through a fixed point (a, b), $(a>0, b>0)$ to meet the positive direction of the coordinate axes in P, Q respectively. The minimum value of $\mathrm{OP}+\mathrm{OQ}$ is -
(A) $\sqrt{a}+\sqrt{b}$
(B) $(\sqrt{a}+\sqrt{b})^{2}$
(C) $(\sqrt{\mathrm{a}}+\sqrt{\mathrm{b}})^{3}$
(D) None of these
Q. 19 The equation of the line through (3, 4) which cuts the first quadrant a triangle of minimum area is-
(A) $4 x+3 y-24=0$
(B) $3 x+4 y-12=0$
(C) $2 x+4 y-12=0$
(D) $3 x+2 y-24=0$
Q. 20 If $\mathrm{a}<\mathrm{b}<\mathrm{c}<\mathrm{d} \& \mathrm{x} \in \mathrm{R}$ then the least value of the function $f(x)=|x-a|+|x-b|+|x-c|+|x-d|$ is-
(A) $c-d+b-a$
(B) $\mathrm{c}+\mathrm{d}-\mathrm{b}-\mathrm{a}$
(C) $\mathrm{c}+\mathrm{d}-\mathrm{b}+\mathrm{a}$
(D) $\mathrm{c}-\mathrm{d}+\mathrm{b}+\mathrm{a}$
Q. 21 Find the minimum and maximum value of $f(x, y)=7 x^{2}+4 x y+3 y^{2}$ subjected to $x^{2}+y^{2}=1$.
(A) $5,5-2 \sqrt{2}$
(B) $5+2 \sqrt{2}, 5-\sqrt{2}$
(C) $5+2 \sqrt{2}, 5-2 \sqrt{2}$
(D) None
Q. 22 The least value of $2^{\left(x^{2}-3\right)^{2}+27}$ is -
(A) 2^{27}
(B) 2
(C) 1
(D) None of these
Q. 23 If $f(x)=\left\{\begin{array}{cc}3 x^{2}+12 x-1, & -1 \leq x \leq 2 \\ 37-x, & 2<x \leq 3\end{array}\right.$ then -
(A) $f(x)$ is increasing in $[-1,2]$
(B) $f(x)$ is continuous in $[-1,3]$
(C) $f(x)$ is maximum at $x=2$
(D) All the above
Q. 24 If the function
$f(x)=x^{3}+3(a-7) x^{2}+3\left(a^{2}-9\right) x-1$ has a positive point of maximum, then -
(A) $\mathrm{a} \in(3, \infty) \cup(-\infty,-3)$
(B) $\mathrm{a} \in(-\infty,-3) \cup(3,29 / 7)$
(C) $(-\infty, 7)$
(D) $(-\infty, 29 / 7)$
Q. 25 Let the function $f(x)$ be defined as below,
$f(x)= \begin{cases}\sin ^{-1} \lambda+x^{2}, 0<x<1 \\ 2 x, & x \geq 1\end{cases}$
$f(x)$ can have a minimum at $x=1$ then value of λ is -
(A) 1
(B) -1
(C) 0
(D) none of these
Q. 1 A differentiable function $f(x)$ has a relative minimum at $x=0$, then the function $y=f(x)+a x+b$ has a relative minimum at $\mathrm{x}=0$ for -
(A) all a and all b
(B) all b if $\mathrm{a}=0$
(C) all b > 0
(D) all a > 0
Q. 2 If $a^{2} x^{4}+b^{2} y^{4}=c^{6}$, then the maximum value of $x y$ is -
(A) $\frac{c^{3}}{2 a b}$
(B) $\frac{c^{3}}{\sqrt{2 a b}}$
(C) $\frac{c^{3}}{a b}$
(D) $\frac{c^{3}}{\sqrt{a b}}$
Q. 3 The critical points of the function
$f(x)=(x-2)^{2 / 3}(2 x+1)$ are -
(A) 1 and 2
(B) 1 and $-1 / 2$
(C) -1 and 2
(D) 1
Q. 4 If $\mathrm{f}^{\prime}(\mathrm{x})=(\mathrm{x}-\mathrm{a})^{2 \mathrm{n}}(\mathrm{x}-\mathrm{b})^{2 \mathrm{~m}+1}$ where $\mathrm{m}, \mathrm{n} \in \mathrm{N}$, then -
(A) $x=b$ is point of minimum.
(B) $x=b$ is a point of maximum.
(C) $x=b$ is a point of inflexion.
(D) none of these
Q. 5 The maximum slope of the curve $y=-x^{3}+3 x^{2}+2 x-27$ is -
(A) 5
(B) -5
(C) $\frac{1}{5}$
(D) none
Q. 6 Let $f(x)=(x-p)^{2}+(x-q)^{2}+(x-r)^{2}$. Then $f(x)$ has a minimum at $x=\lambda$ where λ is equal to -
(A) $\frac{\mathrm{p}+\mathrm{q}+\mathrm{r}}{3}$
(B) $3 \sqrt{\mathrm{pqr}}$
(C) $\frac{3}{\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}+\frac{1}{\mathrm{r}}}$
(D) none of these.
Q. 7 If $x y=a^{2}$ and $S=b^{2} x+c^{2} y$ where a, b and c are constants then the minimum value of S is -
(A) abc
(B) $\mathrm{bc} \sqrt{\mathrm{a}}$
(C) 2 abc
(D) none of these.

Statement type Questions

All questions are Assertion \& Reason type questions. Each of these questions contains two statements: Statement-I (Assertion) and Statement-II (Reason). Answer these questions from the following four option.
(A) If both Statement-I and Statement- II are true, and Statement - II is the correct explanation of Statement-I.
(B) If both Statement - I and Statement - II are true but Statement - II is not the correct explanation of Statement - I.
(C) If Statement - I is true but Statement - II is false.
(D) If Statement - I is false but Statement - II is true.
Q. $8 \quad$ Statement I : $\mathrm{e}^{\pi}>\pi^{\mathrm{e}}$.

Statement II : The function $x^{1 / x}(x>0)$ has a local maximum at $\mathrm{x}=\mathrm{e}$.
Q. 9 Statement I : If $0<a<b$ then absolute $\min ^{m}$ value of $|x-a|+|x-b|$ is $b-a$.
Statement II : The function $|x-a|+|x-b|$ is differentiable at $\mathrm{x}=\mathrm{b}$.
Q. 10 Statement I: The $\min ^{m}$ value of the expression $x^{2}+2 b x+c$ is $c-b^{2}$.
Statement II : The first order derivative of the expression at $x=-b$ is zero

$>$ Passage Based Questions

Passage:

Let $f(x)=1+a^{2} x-x^{3}$ where ' a ' is real number, point of minima of $f(x)$ must lie between [A, B] where A and B is the minimum and maximum value of $\frac{x^{2}+3 x+1}{x^{2}+x+1}$ for all $x \in R$.
On the basis of above information, answer the following questions -
Q. 11 Find the value of A
(A) -1
(B) $-\frac{1}{2}$
(C) -2
(D) None of these
Q. 12 Find the value of B
(A) $\frac{3}{2}$
(B) $\frac{5}{3}$
(C) $\frac{5}{4}$
(D) None of these
Q. 13 If a >0, then find the point of local minima
(A) $\frac{-\mathrm{a}}{\sqrt{3}}$
(B) $\frac{\mathrm{a}}{\sqrt{3}}$
(C) $\frac{\mathrm{a}}{\sqrt{2}}$
(D) None of these
Q. 14 If a <0, then a must lie between -
(A) $[-\sqrt{2}, 0]$
(B) $[-\sqrt{3}, 0]$
(C) $[-\sqrt{3}, 0)$
(D) None of these
Q. 15 For what value of a, the above information does not satisfy -
(A) $-\sqrt{2}$
(B) -1
(C) $-\sqrt{5}$
(D) None of these

$>$ Column Matching Questions

Match the entry in Column 1 with the entry in Column 2.

Q. 16 For the function in column-I

Column-I
 Column-II

$\begin{array}{ll}\text { (A) } \cos x-1+\frac{x^{2}}{2!}-\frac{x^{3}}{3!} & \text { (P) minimum value }\end{array}$ is -4
(B) $\cos x-1+\frac{x^{2}}{2!}$
(Q) there is no
extremum at $\mathrm{x}=0$
(C) $x^{4} e^{-x^{2}}$
(R) the minimum is
$f(0)=0$
(D) $\sin 3 x-3 \sin x$
(S) the functions reaches maximum at $\mathrm{x}=\sqrt{2}$
Q. 17 Let the function defined in column-I have domain $(0, \pi / 2)$ the -

Column 1

Column II

(A) $x^{2}+2 \cos x+2$ on
(P) local maximum at $\cos ^{-1}(2 / 3)$
$(0, \pi / 2)$ has
(Q) maximum at $\mathrm{x}=1 / 2$
(B) $9 x-4 \tan x$ on
$(0, \pi / 2)$ has
(C) $(1 / 2-x) \cos x+\quad$ (R) no local extremum
$\sin x-\frac{x^{2}-x}{4}$
(D) $\left(\frac{1}{2}-x\right) \cos \pi(x+3) \quad$ (S) minimum at $x=1$
$+(1 / \pi) \sin \pi(x+3)$
on (0,4)

LEVEL- 4

(Question asked in previous AIEEE and IIT-JEE)

SECTION -A

Q. 1 If the function $f(x)=2 x^{3}-9 a^{2}+12 a^{2} x+1$, where $\mathrm{a}>0$, attains its maximum and minimum at p and q respectively such that $\mathrm{p}^{2}=\mathrm{q}$, then a equals
[AIEEE 2003]
(A) $1 / 2$
(B) 3
(C) 1
(D) 2
Q. 2 The real number x when added to its inverse gives the minimum value of the sum at x equal to-
[AIEEE 2003]
(A) -2
(B) 2
(C) 1
(D) -1
Q. 3 The function $f(x)=\frac{x}{2}+\frac{2}{x}$ has a local minimum at -
[AIEEE 2006]
(A) $x=-2$
(B) $x=0$
(C) $x=1$
(D) $x=2$
Q. 4 A triangular park is enclosed on two sides by a fence and on the third side by a straight river bank. The two sides having fence are of same length x. The maximum area enclosed by the park is -
[AIEEE 2006]
(A) $\sqrt{\frac{x^{3}}{8}}$
(B) $\frac{1}{2} \mathrm{x}^{2}$
(C) πx^{2}
(D) $\frac{3}{2} x^{2}$
Q. 5 If p and q are positive real numbers such that $\mathrm{p}^{2}+\mathrm{q}^{2}=1$, then the maximum value of $(\mathrm{p}+\mathrm{q})$ is-
[AIEEE 2007]
(A) 2
(B) $\frac{1}{2}$
(C) $\frac{1}{\sqrt{2}}$
(D) $\sqrt{2}$

Suppose the cubic $\mathrm{x}^{3}-\mathrm{px}+\mathrm{q}$ has three distinct real roots where $\mathrm{p}>0$ and $\mathrm{q}>0$. Then which one of the following holds? [AIEEE 2008]
(A) The cubic has minima at $-\sqrt{\frac{\mathrm{p}}{3}}$ and maxima at $\sqrt{\frac{\mathrm{p}}{3}}$
(B) The cubic has minima at both $\sqrt{\frac{\mathrm{p}}{3}}$ and $-\sqrt{\frac{\mathrm{p}}{3}}$
(C) The cubic has maxima at both $\sqrt{\frac{\mathrm{p}}{3}}$ and $-\sqrt{\frac{\mathrm{p}}{3}}$
(D) The cubic has minima at $\sqrt{\frac{\mathrm{p}}{3}}$ and maxima at $-\sqrt{\frac{\mathrm{p}}{3}}$
Q. 7 Given $P(x)=x^{4}+a x^{3}+b x^{2}+c x+d$ such that $x=0$ is the only real root of $\mathrm{P}^{\prime}(\mathrm{x})=0$. If $\mathrm{P}(-1)<\mathrm{P}(1)$, then in the interval $[-1,1]-$
[AIEEE 2009]
(A) $\mathrm{P}(-1)$ is the minimum and $\mathrm{P}(1)$ is the maximum of P
(B) $\mathrm{P}(-1)$ is not minimum but $\mathrm{P}(1)$ is the maximum of P
(C) $\mathrm{P}(-1)$ is the minimum but $\mathrm{P}(1)$ is not the maximum of P
(D) Neither $\mathrm{P}(-1)$ is the minimum nor $\mathrm{P}(1)$ is the maximum of P
Q. 8 The shortest distance between the line $y-x=1$ and the curve $\mathrm{x}=\mathrm{y}^{2}$ is - [AIEEE 2009, 11]
(A) $\frac{3 \sqrt{2}}{8}$
(B) $\frac{2 \sqrt{3}}{8}$
(C) $\frac{3 \sqrt{2}}{5}$
(D) $\frac{\sqrt{3}}{4}$
Q. 9 Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined by
$f(x)= \begin{cases}k-2 x, & \text { if } x \leq-1 \\ 2 x+3, & \text { if } x>-1\end{cases}$
If f has a local minimum at $\mathrm{x}=-1$, then a possible value of k is
[AIEEE 2010]
(A) 1
(B) 0
(C) $-\frac{1}{2}$
(D) -1
Q. 10 For $\mathrm{x} \in\left(0, \frac{5 \pi}{2}\right)$, define
$f(x)=\int_{0}^{x} \sqrt{t} \sin t d t$
Then f has :
[AIEEE 2011]
(A) local maximum at π and 2π
(B) local minimum at π and 2π
(C) local minimum at π and local maximum at 2π
(D) local maximum at π and local minimum at 2π
Q. 11 Let $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ be such that the function f given by f $(x)=\ln |x|+b x^{2}+a x, x \neq 0$ has extreme values at $\mathrm{x}=-1$ and $\mathrm{x}=2$.
[AIEEE 2012]
Statement 1: f has local maximum at $\mathrm{x}=-1$ and at $\mathrm{x}=2$.

Statement 2: $\mathrm{a}=\frac{1}{2}$ and $\mathrm{b}=\frac{-1}{4}$.
(A) Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for Statement 1.
(B) Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation for Statement 1.
(C) Statement 1 is true, Statement 2 is false.
(D) Statement 1 is false, Statement 2 is true.

SECTION-B

Q. 1 If $\mathrm{A}>0, \mathrm{~B}>0$ and $\mathrm{A}+\mathrm{B}=\pi / 3$, then the maximum value of $\tan A \tan B$ is [IIT- 1993]
(A) $1 / 3$
(B) $2 / 3$
(C) $1 / 2$
(D) None
Q. 2 On the interval $[0,1]$, the function $x^{25}(1-x)^{75}$ takes its maximum value at the point- [IIT- 1995]
(A) 0
(B) $\frac{1}{4}$
(C) $\frac{1}{2}$
(D) $\frac{1}{3}$
Q. 3 The number of values of x where the function $f(x)=\cos x+\cos (\sqrt{2} x)$ attains its maximum is
(A) 0
(B) 1
(C) 2
(D) infinite
Q. 4 The function $f(x)=\int_{-1}^{x} t\left(e^{t}-1\right)(t-1)(t-2)^{3}(t-3)^{5} d t$ has a local minimum at $\mathrm{x}=$
[IIT- 1999]
(A) 0,4
(B) 1,3
(C) 0,2
(D) 2, 4
Q. 5 Let $f(x)=\left\{\begin{array}{c}|x| \text { for } 0<|x| \leq 2 \\ 1 \text { for } x=0\end{array}\right.$, then at $x=0$, f has -
[IIT Scr. 2000]
(A) a local maximum (B) no local maximum
(C) a local minimum (D) no extremum
Q. 6 Let $f(x)=\left(1+b^{2}\right) x^{2}+2 b x+1$ and $m(b)$ is minimum value of $f(x)$. As b varies, the range of $m(b)$ is-
[IIT Scr. 2001]
(A) $[0,1]$
(B) $(0,1 / 2]$ (C) $[1 / 2,1]$
(D) $(0,1]$
Q. 7 The value of ' θ '; $\theta \in[0, \pi]$ for which the sum of intercepts on coordinate axes cut by tangent at point $(3 \sqrt{3} \cos \theta, \sin \theta)$ to ellipse $\frac{x^{2}}{27}+y^{2}=1$ is minimum is :
[IIT Scr. 2003]
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{4}$
(D) $\frac{\pi}{8}$
Q. $8 \quad f(x)=x^{2}-2 b x+2 c^{2}$ and $g(x)=-x^{2}-2 c x+b^{2}$ if the minimum value of $f(x)$ is always greater than maximum value of $g(x)$ then. [IIT Scr. 2003]
(A) $|c|>\sqrt{2}|b|$
(B) $c>\sqrt{2 b}$
(C) $c<-\sqrt{2 b}$
(D) $|\mathrm{c}|<\sqrt{2}|\mathrm{~b}|$
Q. 9 If $f(x)=\sqrt{x^{2}+x}+\frac{\tan ^{2} \alpha}{\sqrt{x^{2}+x}}, \alpha \in(0, \pi / 2)$, $x>0$ then value of $f(x)$ is greater than or equal to
[IIT Scr. 2003]
(A) 2
(B) $2 \tan \alpha$
(C) $\frac{5}{2}$ (D) $\sec \alpha$
[IIT- 1998]
Q. 10 Let f be a function defined on R (the set of all real numbers) such that
$\mathrm{f}^{\prime}(\mathrm{x})=2010(\mathrm{x}-2009)(\mathrm{x}-2010)^{2}(\mathrm{x}-2011)^{3}$ $(x-2012)^{4}$, for all $x \in R$.

If g is a function defined on R with values in the interval $(0, \infty)$ such that $f(x)=\ln \{g(x)\}$, for all $x \in R$, then the number of points in R at which g has a local maximum is
[IIT- 2010]
(A) 0
(B) 1
(C) 2
(D) 5
Q. 11 Let f, g and h be real-valued functions defined on the interval $[0,1]$ by $f(x)=e^{x^{2}}+e^{-x^{2}}$, $g(x)=x e^{x^{2}}+e^{-x^{2}}$ and $h(x)=x^{2} e^{x^{2}}+e^{-x^{2}}$. If a, b and c denote, respectively, the absolute maximum of f, g and h on $[0,1]$, then [IIT- 2010]
(A) $\mathrm{a}=\mathrm{b}$ and $\mathrm{c} \neq \mathrm{b}$
(B) $\mathrm{a}=\mathrm{c}$ and $\mathrm{a} \neq \mathrm{b}$
(C) a \neq b and c \neq b
(D) $\mathrm{a}=\mathrm{b}=\mathrm{c}$
Q. 12 Let $\mathrm{f}: \operatorname{IR} \rightarrow \operatorname{IR}$ be defined as $f(x)=|x|+\left|x^{2}-1\right|$. The total number of points at which f attains either a local maximum or a local minimum is
[IIT- 2012]
Q. 13 Let $\mathrm{p}(\mathrm{x})$ be a real polynomial of least degree which has a local maximum at $x=1$ and a local minimum at $x=3$. If $p(1)=6$ and $p(3)=2$, then $p^{\prime}(0)$ is
[IIT- 2012]
Q. 14 If $f(x)=\int_{0}^{x} \mathrm{e}^{\mathrm{t}^{2}}(\mathrm{t}-2)(\mathrm{t}-3) \mathrm{dt}$ for all $\mathrm{x} \in(0, \infty)$, then
[IIT 2012]
(A) f has a local maximum at $\mathrm{x}=2$
(B) f is decreasing on $(2,3)$
(C) there exists some $\mathrm{c} \in(0, \infty)$ such that $\mathrm{f}^{\prime \prime}(\mathrm{c})=0$
(D) f has a local minimum at $\mathrm{x}=3$
Q. 15 A rectangular sheet of fixed perimeter with sides having their lengths in the ratio $8: 15$ is converted into an open rectangular box by folding after removing squares of equal area from all four corners. If the total area of removed squares is 100 , the resulting box has maximum volume. Then the lengths of the sides of the rectangular sheet are -
[JEE - Advance 2013]
(A) 24
(B) 32
(C) 45
(D) 60
Q. 16 The function $f(\mathrm{x})=2|\mathrm{x}|+|\mathrm{x}+2|$ $-\|x+2|-2| x\|$ has a local minimum or a local maximum at $\mathrm{x}=$
[JEE - Advance 2013]
(A) -2
(B) $\frac{-2}{3}$
(C) 2
(D) $\frac{2}{3}$

Passage for Question 17 and 18

Let $\mathrm{f}:[0,1] \rightarrow \mathrm{R}$ (the set of all real numbers) be a function. Suppose the function f is twice differentiable, $f(0)=f(1)=0$ and satisfies $\mathrm{f}^{\prime \prime}(\mathrm{x})-2 \mathrm{f}^{\prime}(\mathrm{x})+\mathrm{f}(\mathrm{x}) \geq \mathrm{e}^{\mathrm{x}}, \mathrm{x} \in[0,1]$.
[JEE - Advance 2013]
Q. 17 If the function $\mathrm{e}^{-\mathrm{x}} \mathrm{f}(\mathrm{x})$ assumes its minimum in the interval $[0,1]$ at $x=\frac{1}{4}$, which of the following is true ?
(A) $\mathrm{f}^{\prime}(\mathrm{x})<\mathrm{f}(\mathrm{x}), \frac{1}{4}<\mathrm{x}<\frac{3}{4}$
(B) $\mathrm{f}^{\prime}(\mathrm{x})>\mathrm{f}(\mathrm{x}), 0<\mathrm{x}<\frac{1}{4}$
(C) $\mathrm{f}^{\prime}(\mathrm{x})<\mathrm{f}(\mathrm{x}), 0<\mathrm{x}<\frac{1}{4}$
(D) $\mathrm{f}^{\prime}(\mathrm{x})<\mathrm{f}(\mathrm{x}), \frac{3}{4}<\mathrm{x}<1$
Q. 18 Which of the following is true for $0<x<1$?
(A) $0<f(x)<\infty$
(B) $-\frac{1}{2}<\mathrm{f}(\mathrm{x})<\frac{1}{2}$
(C) $-\frac{1}{4}<\mathrm{f}(\mathrm{x})<1$
(D) $-\infty<$ f $(x)<0$
Q. 19 A vertical line passing through the point (h, 0) intersects the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$ at the points P and Q . Let the tangents to the ellipse at P and Q meet at the point R. If $\Delta(\mathrm{h})=$ area of the triangle PQR, $\Delta_{1}=\max _{1 / 2 \leq \mathrm{h} \leq 1} \Delta(\mathrm{~h})$ and $\Delta_{2}=\min _{1 / 2 \leq \mathrm{h} \leq 1} \Delta(\mathrm{~h})$, then $\frac{8}{\sqrt{5}} \Delta_{1}-8 \Delta_{2}=\quad$ [JEE - Advance 2013]

LEVEL- 1

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	B	A	A	B	B	A	C	A	B	A	D	C	B	B	C	C	C	B	C	D
Q.No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	B	C	A	A	B	B	A	B	C	C	D	B	C	A	A	B	A	C	A	C
Q.No.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	D	A	B	C	A	B	C	A	A	D	C	A	C	D	A	D	D	C	A	C
Q.No.	61	62	63	64	65	66	67	68												
Ans.	D	C	A	D	C	A	B	C												

LEVEL- 2

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
Ans.	A	C	B	B	A	B	D	A	C	A	A	C	A	A	A
Q.No.	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$					
Ans.	C	C	B	A	B	C	A	D	B	D					

LEVEL- 3

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
Ans.	B	B	A	A	A	A	C	A	C	A	A	B	A	C	C

16. $\mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{R} ; \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{P}$
17. (A) $\rightarrow R,(B) \rightarrow P,(C) \rightarrow Q,(D) \rightarrow Q, S$

LEVEL- 4

SECTION-A

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
Ans.	D	C	D	B	D	D	B	A	D	D	A

SECTION-B

1.[A] If $\mathrm{A}>0 ; \mathrm{B}>0$
$\mathrm{A}+\mathrm{B}=\pi / 3$
Product of $\tan \mathrm{A} \& \tan \mathrm{~B}$ will be maximum when
$\mathrm{A}=\mathrm{B}=\pi / 6$
$\therefore(\tan \mathrm{A} \tan \mathrm{B})_{\max }=\tan \pi / 6 \times \tan \pi / 6$

$$
=\frac{1}{\sqrt{3}} \times \frac{1}{\sqrt{3}}=\frac{1}{3}
$$

$\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{x}^{25} 75(1-\mathrm{x})^{74}(-1)+(1-\mathrm{x})^{75} .25 \mathrm{x}^{24}$
$=25 x^{24}(1-x)^{74}(-3 x+1-x)$
$=25 \mathrm{x}^{24}(\mathrm{x}-1)^{74}(-4 \mathrm{x}+1)$
$=-25 \mathrm{x}^{24}(\mathrm{x}-1)^{74}(4 \mathrm{x}-1)$

$\therefore \quad \mathrm{x}=\frac{1}{4}$ is point of maxima
2.[B] $\quad f(x)=x^{25}(1-x)^{75}$
3.[B] $\quad f(x)=\cos x+\cos \sqrt{2} x$
$f(x)$ will be maximum when $x=0$
$\therefore \mathrm{f}(0)=2$
\therefore only one value of x exist
4.[B] $f(x)=\int_{-1}^{x} t\left(e^{t}-1\right)(t-1)(t-2)^{3}(t-3)^{5} d t$
$f^{\prime}(x)=x\left(e^{x}-1\right)(x-1)(x-2)^{3}(x-3)^{5}$

$x=1,3$ point of local minima
5.[A]

$(x)=\left\{\begin{array}{cc}|x| & \text { for } 0<|x| \leq 2 \\ 1 \text { for } x=0\end{array}\right.$
$=\left\{\begin{array}{ccc}-\mathrm{x} & ; & -2 \leq \mathrm{x}<0 \\ 1 & ; & \mathrm{x}=0 \\ \mathrm{x} & ; & 0<\mathrm{x} \leq 2\end{array}\right.$
$\because \mathrm{f}(0)>\mathrm{f}(0 \pm \mathrm{h})$
$\therefore \mathrm{x}=0$ is point of local maxima
6.[D] $\quad f(x)=\left(1+b^{2}\right) x^{2}+2 b x+1$
$\mathrm{f}(\mathrm{x})_{\max }=\frac{4 \mathrm{AC}-\mathrm{B}^{2}}{4 \mathrm{~A}}$
$=\frac{4 \cdot\left(1+b^{2}\right) \cdot 1-4 b^{2}}{4\left(1+b^{2}\right)}$
$\mathrm{m}(\mathrm{b})=\frac{1}{1+\mathrm{b}^{2}}\left\{\because \mathrm{~F}_{\max }=\mathrm{m}(\mathrm{b})\right\}$
$\because \infty>\mathrm{b}^{2} \geq 0$

$$
\infty>1+b^{2} \geq 1
$$

$0<\frac{1}{1+\mathrm{b}^{2}} \leq 1$
\therefore range of $\mathrm{m}(\mathrm{b})$ is $(0,1]$
7.[A] $\frac{x^{2}}{27}+y^{2}=1$
equation of tangent to the curve at
$(3 \sqrt{3} \cos \theta, \sin \theta)$
is $\frac{3 \sqrt{3} \cos \theta \cdot x}{27}+\frac{\sin \theta \cdot y}{1}=1$
$\Rightarrow \frac{\mathrm{x}}{3 \sqrt{3} \sec \theta}+\frac{\mathrm{y}}{\operatorname{cosec} \theta}=1$
sum of intercepts on coordinate axes is
Let $\mathrm{z}=3 \sqrt{3} \sec \theta+\operatorname{cosec} \theta$
\because we know $\mathrm{Z}_{\text {min }}=\left((3 \sqrt{3})^{2 / 3}+(1)^{2 / 3}\right)^{3 / 2}=8$
$\&$ this minimum value of z occurs at $\theta=\frac{\pi}{6}$
8.[A] $f(x)=x^{2}-2 b x+2 c^{2}$
$\mathrm{f}(\mathrm{x})_{\min }=\frac{4.1 .2 \mathrm{c}^{2}-4 \mathrm{~b}^{2}}{4.1}$

$$
=2 \mathrm{c}^{2}-\mathrm{b}^{2}
$$

$\& g(x)=-x^{2}-2 c x+b^{2}$
$\mathrm{g}(\mathrm{x})_{\max }=\frac{4 \cdot(-1) \cdot \mathrm{b}^{2}-4 \mathrm{c}^{2}}{4 \cdot(-1)}=\mathrm{b}^{2}+\mathrm{c}^{2}$
According to question
$f(x)_{\text {min }}>g(x)_{\text {max }}$
$\Rightarrow 2 \mathrm{c}^{2}-\mathrm{b}^{2}>\mathrm{b}^{2}+\mathrm{c}^{2}$
$\Rightarrow \mathrm{c}^{2}>2 \mathrm{~b}^{2}$
$\Rightarrow|c|>\sqrt{2}|b|$
9.[B] $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}^{2}+\mathrm{x}}+\frac{\tan ^{2} \alpha}{\sqrt{\mathrm{x}^{2}+\mathrm{x}}} ; \alpha \in\left(0, \frac{\pi}{2}\right) ; \mathrm{x}>0$
$\mathrm{AM} \geq \mathrm{GM}$

$$
\begin{aligned}
& \frac{\sqrt{\mathrm{x}^{2}+\mathrm{x}}+\frac{\tan ^{2} \alpha}{\sqrt{\mathrm{x}^{2}+\mathrm{x}}}}{2} \geq \sqrt{\tan ^{2} \alpha} \\
\Rightarrow & \mathrm{f}(\mathrm{x}) \geq 2 \tan \alpha \quad\left(\because \alpha \in\left(0, \frac{\pi}{2}\right)\right) \\
\Rightarrow & \mathrm{f}(\mathrm{x})_{\min }=2 \tan \alpha
\end{aligned}
$$

10.[B] $\quad f^{\prime}(x)=2010(x-2009)(x-2010)^{2}$

$$
(x-2011)^{3}(x-2012)^{4}
$$

$\mathrm{f}(\mathrm{x})=\ln (\mathrm{g}(\mathrm{x}))$
$\Rightarrow \mathrm{g}(\mathrm{x})=\mathrm{e}^{\mathrm{f}(\mathrm{x})}$
$\Rightarrow \mathrm{g}^{\prime}(\mathrm{x})=\mathrm{e}^{\mathrm{f}(\mathrm{x})} . \mathrm{f}^{\prime}(\mathrm{x})\left\{\because \mathrm{e}^{\mathrm{f}(\mathrm{x})}>0 \forall \mathrm{x} \in \mathrm{R}\right\}$
$\Rightarrow \mathrm{g}^{\prime}(\mathrm{x})=(+\mathrm{ve}) \mathrm{f}^{\prime}(\mathrm{x})$
Sign convention for $\mathrm{g}^{\prime}(\mathrm{x})$

$\therefore \mathrm{x}=2009$ is point of local maxima
\therefore only one point
11.[D] $f(x)=e^{x^{2}}+e^{-x^{2}}$

$$
f^{\prime}(x)=2 x e^{x^{2}}-2 x e^{-x^{2}}
$$

$$
=2 x\left[\frac{\mathrm{e}^{\mathrm{x}^{4}}-1}{\mathrm{e}^{\mathrm{x}^{2}}}\right] \geq 0 ; \mathrm{x} \in[0,1]
$$

$\therefore \mathrm{f}(\mathrm{x})$ is increasing function in $[0,1]$
$\mathrm{a}=\mathrm{f}(1)_{\text {max }}=\mathrm{e}+\mathrm{e}=2 \mathrm{e}$
$g(x)=x e^{x^{2}}+e^{-x^{2}}$
$g^{\prime}(x)=\mathrm{xe}^{\mathrm{x}^{2}} 2 \mathrm{x}+\mathrm{e}^{\mathrm{x}^{2}} .1-2 \mathrm{xe}^{-\mathrm{x}^{2}}$
$=\frac{2 \mathrm{x}^{2} \mathrm{e}^{\mathrm{x}^{4}}+\mathrm{e}^{\mathrm{x}^{4}}-2 \mathrm{x}}{\mathrm{e}^{\mathrm{x}^{2}}}=\frac{\left(2 \mathrm{x}^{2}+1\right) \mathrm{e}^{\mathrm{x}^{4}}-2 \mathrm{x}}{\mathrm{e}^{\mathrm{x}^{2}}}>0$
$\therefore \mathrm{g}(\mathrm{x})$ is increasing function in $[0,1]$
$\therefore \mathrm{b}=\mathrm{g}(1)_{\max }=\mathrm{e}+\mathrm{e}=2 \mathrm{e}$
$h(x)=x^{2} e^{x^{2}}+e^{-x^{2}}$
$h^{\prime}(x)=x^{2} \cdot 2 x e^{x^{2}}+e^{x^{2}} \cdot 2 x-2 x^{-x^{2}}$

$$
=\frac{\left(2 x^{3}+2 x\right) e^{x^{4}}-2 x}{e^{x^{2}}}>0
$$

$\Rightarrow \mathrm{h}(\mathrm{x})$ is increasing function in $[0,1]$
$\therefore \mathrm{c}=\mathrm{h}(1)_{\text {max }}=\mathrm{e}+\mathrm{e}$
12.[5] $f(x)=|x|+|x-1||x+1|$
$x \geq 1 f(x)=x^{2}+x-1 f^{\prime}(x)=2 x+1$
$+\mathrm{ve}$

$$
\begin{aligned}
& 0 \leq x<1 f(x)=1-x^{2}+x f^{\prime}(x)=1-2 x x>\frac{1}{2}-v e \\
&-1<x<0 f(x)=1-x^{2}-x f^{\prime}(x) \\
&=-2 x-1 x>-\frac{1}{2}-v e ; x<-\frac{1}{2}+v e \\
& x \leq-1 f(x)=x^{2}-x-1 f^{\prime}(x)=2 x-1-v e
\end{aligned}
$$

13.[9] $\mathrm{p}^{\prime}(1)=0, \mathrm{p}^{\prime}(3)=0$

$$
\begin{aligned}
& \mathrm{p}^{\prime}(\mathrm{x})=\mathrm{K}(\mathrm{x}-1)(\mathrm{x}-3) \\
&=\mathrm{K}\left(\mathrm{x}^{2}-4 \mathrm{x}+3\right) \mathrm{p}^{\prime}(0)=3 \mathrm{~K} \\
& \mathrm{p}(\mathrm{x})=\frac{\mathrm{K}}{3} \mathrm{x}^{3}-2 \mathrm{~K} \mathrm{x}^{2}+3 \mathrm{~K} \mathrm{x}+\lambda \\
& \frac{\mathrm{K}}{3}-2 \mathrm{~K}+3 \mathrm{~K}+\lambda=6,9 \mathrm{~K}-18 \mathrm{~K}+9 \mathrm{~K}+\lambda=2 \\
& \frac{4}{3} \mathrm{~K}+\lambda=6, \frac{4}{3} \mathrm{~K}=4 \\
& \mathrm{~K}=3 \\
& \mathrm{p}^{\prime}(0)=9
\end{aligned}
$$

14.[A, B, C, D]

$f(x)=\int_{0}^{x} e^{t^{2}}(t-2)(t-3) d t$
$f^{\prime}(x)=e^{x^{2}}(x-2)(x-3)$

$\mathrm{f}^{\prime}(\mathrm{x})<0 \quad \forall \mathrm{x} \in(2,3)$
so $f(x)$ is decreasing on $(2,3)$
also at $\mathrm{x}=2, \mathrm{f}^{\prime}(\mathrm{x})$ changes its sign from +ve to -ve .

Hence $x=2$ is point of maxima
At $\mathrm{x}=3, \mathrm{f}^{\prime}(\mathrm{x})$ changes its sign from -ve to +ve .
Hence $x=3$ is point of minima.
Also $\mathrm{f}^{\prime}(2)=\mathrm{f}^{\prime}(3)=0$
So from Rolle's Theorem there exist a point c such that $\mathrm{f}^{\prime \prime}(\mathrm{c})=0$

15.[A,C]

$V=(15 a-2 x)(8 a-2 x) x$
$V=4 x^{3}-46 a x^{2}+120 a^{2} x$
$\frac{d V}{d x}=12 x^{2}-92 a x+120 a^{2}$
$=4\left(3 x^{2}-23 a x+30 a^{2}\right)$
at $x=5, \frac{d V}{d x}=0$
$30 a^{2}-115 a+75=0$
$\Rightarrow 6 \mathrm{a}^{2}-23 \mathrm{a}+15=0$
$\Rightarrow(a-3)(6 a-5)=0$
\Rightarrow So, $\mathrm{a}=3$ or $\mathrm{a}=\frac{5}{6}$
Now $\frac{d^{2} V}{d x^{2}}=24 x-92 a$
For $\mathrm{a}=3, \frac{\mathrm{~d}^{2} \mathrm{~V}}{\mathrm{dx}^{2}}<0$
So, V is maximum for $\mathrm{a}=3$.
Hence lengths are 24 and 45.

16.[A,B]

$f(\mathrm{x})=2|\mathrm{x}|+|\mathrm{x}+2|-||\mathrm{x}+2|-2| \mathrm{x} \|$

$$
=\left\{\begin{array}{cc}
-2 x-4, & x<-2 \\
2 x+4, & -2 \leq x<-\frac{2}{3} \\
-4 x, & -\frac{2}{3} \leq x<0 \\
4 x, & 0 \leq x<2 \\
2 x+4, & x \geq 2
\end{array}\right.
$$

Clearly point of minima $x=-2,0$

$$
\text { Point of maxima } x=\frac{-2}{3}
$$

17.[C] Let $\phi(x)=\mathrm{e}^{-\mathrm{x}} \mathrm{f}(\mathrm{x}) ; \mathrm{x} \in[0,1]$
$\phi^{\prime}(x)=e^{-x}\left(f^{\prime}(x)-f(x)\right)$
as $\phi_{\min }(\mathrm{x})=\phi(1 / 4)$ so $\phi^{\prime}(1 / 4)=0$
and $\phi^{\prime \prime}(\mathrm{x})=\mathrm{e}^{-\mathrm{x}}\left(\mathrm{f} "(\mathrm{x})-2 \mathrm{f}^{\prime}(\mathrm{x})+\mathrm{f}(\mathrm{x})\right)>0$; for $x \in[0,1]$ (given)
so $\phi^{\prime}(\mathrm{x})$ increases for $\mathrm{x} \in[0,1]$ and $\phi^{\prime}(1 / 4)=0$
so $\phi^{\prime}(x)<0 \Rightarrow f^{\prime}(x)<f(x)$ for $x \in(0,1 / 4)$
and $\phi^{\prime}(\mathrm{x})>0 \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>\mathrm{f}(\mathrm{x})$ for $\mathrm{x} \in(1 / 4,1)$

18.[D]

From previous questions

$$
\left.\begin{array}{l}
\phi_{\min }(\mathrm{x})=\phi(1 / 4), \phi(0)=\mathrm{f}(0)=0 \\
\& \phi(1)=\mathrm{e}^{-1} \mathrm{f}(1)=0
\end{array}\right\} \text { given }
$$

hence $\phi_{\max }=\phi(0)=\phi(1)=0$
so, $\phi(\mathrm{x})<0$; for $\mathrm{x} \in(0,1)$
$\mathrm{e}^{-\mathrm{x}} \mathrm{f}(\mathrm{x})<0$; for $\mathrm{x} \in(0,1)$
$\mathrm{f}(\mathrm{x})<0$; for $\mathrm{x} \in(0,1)$
19.[9]

Line PQ is chord of contact

$$
\begin{aligned}
\Rightarrow \frac{\mathrm{xh}_{1}}{4}+0 & =1 \ldots .(1) \\
x & =\mathrm{h} \ldots . .(2)
\end{aligned}
$$

Compare (1) \& (2)
$\mathrm{h}_{1}=\frac{4}{\mathrm{~h}}$
So area $=\left(\frac{4}{h}-h\right) \times \sqrt{3} \sqrt{1-\frac{h^{2}}{4}}$
$=\frac{\sqrt{3}}{2} \frac{\left(4-\mathrm{h}^{2}\right)^{3 / 2}}{\mathrm{~h}}$ regular decreasing
$\left(\underset{h=1 / 2}{(\operatorname{Area}} \max ^{2}\right)=\frac{\sqrt{3}}{2} \frac{\left(4-\frac{1}{\mathrm{~h}}\right)^{3 / 2}}{1 / 2}$,
$\underset{\mathrm{h}=1}{(\text { Area })_{\min }}=\frac{\sqrt{3}}{2}(3)^{3 / 2}$
$=\frac{\sqrt{3}}{2}(\sqrt{15})^{3 / 2}$
So, $\frac{8}{\sqrt{5}} \Delta_{1}-8 \Delta_{2}=\frac{8}{\sqrt{5}} \times \frac{\sqrt{3}}{8} \times(\sqrt{15})^{3 / 2}-8$
$\times \frac{\sqrt{3}}{2}(3)^{3 / 2}$
$=5 \times 9-4 \times 9$
$=45-36$
$=9$

