JEE MAIN + ADVANCED

MATHEMATICS

TOPIC NAME VECTOR

(PRACTICE SHEET)

Question based on	Kinds	of	vectors
based on	Kinus	01	vectors

- Q.1 If \vec{a} is a constant vector then -
 - (A) the direction of \vec{a} is constant
 - (B) the magnitude of \vec{a} is constant
 - (C) both direction and magnitude of \vec{a} is constant
 - (D) None of these

Q.2 If $\vec{a} = \vec{b}$, then

- (A) both have equal magnitude and collinear
- (B) both have equal magnitude and like vectors
- (C) both have equal magnitude
- (D) they have unequal magnitude but like vectors
- Q.3 Two vectors will be equal when-
 - (A) they have same magnitude
 - (B) they have same direction
 - (C) they meet at a point
 - (D) their magnitude and direction is same
- Q.4 Which of the following is unit vectors-

(A)
$$\hat{i} + \hat{j}$$
 (B) $\frac{(i+j+k)}{\sqrt{2}}$
(C) $\hat{i} + \hat{j} + \hat{k}$ (D) $\frac{(\hat{i} + \hat{j} + \hat{k})}{\sqrt{3}}$

Q.5 Unit vector in the direction of \vec{a} is represented by

(A) 1.
$$\vec{a}$$
 (B) $\frac{\vec{a}}{\vec{a} | \vec{a} |}$

(C)
$$\vec{a} | \vec{a} |$$
 (D) $\frac{\vec{a}}{\hat{i}}$

- Q.6 The zero vector has-
 - (A) no direction
 - (B) direction towards a particular point
 - (C) direction towards the origin
 - (D) indeterminate direction

Question based on Addition & subtraction of vectors

- Q.7 If ABCDE is a pentagon, then $\overrightarrow{AB} + \overrightarrow{AE} + \overrightarrow{BC} + \overrightarrow{DC} + \overrightarrow{ED} + \overrightarrow{AC}$ equals-(A) 3 \overrightarrow{AD} (B) 3 \overrightarrow{AC} (C) 3 \overrightarrow{BE} (D) 3 \overrightarrow{CE}
- Q.8 If $\vec{a} = 2\hat{i} + 5\hat{j}$ and $\vec{b} = 2\hat{i} \hat{j}$, then unit vector in the direction of $\vec{a} + \vec{b}$ is-(A) $\hat{i} + \hat{j}$ (B) $\sqrt{2} (\hat{i} + \hat{j})$ (C) $(\hat{i} + \hat{j})/\sqrt{2}$ (D) $(\hat{i} - \hat{j})/\sqrt{2}$
- Q.9 If \vec{a} and \vec{b} are two unit vectors then vector $(\vec{a} + \vec{b})$
 - (A) is a unit vector
 - (B) is not a unit vector
 - (C) can be a unit vector or not
 - (D) is a unit vector when both \vec{a} and \vec{b} are parallel
- Q.10 If \vec{a} and \vec{b} represent vectors of two adjacent sides \overrightarrow{AB} and \overrightarrow{BC} of a regular hexagon ABCDEF, then \overrightarrow{AE} equals-

$$(A)\vec{a} + \vec{b}$$
 $(B)\vec{a} - \vec{b}$ $(C) 2\vec{b}$ $(D) 2\vec{b} - \vec{a}$

- Q.11 If in a parallelogram PQRS, sides PQ and QR are represented by vector \vec{a} and \vec{b} respectively then the side represented by $\vec{a} + \vec{b}$ is -
 - (A) \overrightarrow{PR} (B) \overrightarrow{RS} (C) \overrightarrow{QS} (D) \overrightarrow{PQ}
- Q.12 If ABCD is a quadrilateral, then the resultant of the forces represented by \overrightarrow{BA} , \overrightarrow{BC} , \overrightarrow{CD} and \overrightarrow{DA} is
 - (A) $2 \overrightarrow{BA}$ (B) $2 \overrightarrow{AC}$ (C) $2 \overrightarrow{AD}$ (D) $2 \overrightarrow{AB}$

- Q.13 If ABCD is a rhombus whose diagonals cut at the origin O, then $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =$ (A) $\overrightarrow{AB} + \overrightarrow{AC}$ (B) $\overrightarrow{AB} + \overrightarrow{BC}$ (C) 2($\overrightarrow{AC} + \overrightarrow{BD}$) (D) $\vec{0}$
- Q.14 If vector \vec{a} , \vec{b} represent two consecutive sides of regular hexagon then the vectors representing remaining four sides in sequence are-
 - (A) $\vec{a} \vec{b}$, $\vec{a} \vec{b}$, $\vec{a} + \vec{b}$, $\vec{a} + \vec{b}$
 - (B) $\vec{a} \vec{b}$, \vec{a} , $\vec{b} \vec{a}$, \vec{b}
 - (C) $\vec{a} + \vec{b}$, $-\vec{a}$, $-\vec{b}$, $\vec{a} \vec{b}$
 - (D) $\vec{b} \vec{a}$, $-\vec{a}$, $-\vec{b}$, $\vec{a} \vec{b}$
- Q.15 In the adjoining diagram vector $\vec{u} \vec{v}$ is represented by the directed line segment-

- Q16 If three forces P, Q, R acting on a particle are represented by three sides of a triangle taken in order, then-
 - (A) $\vec{P} + \vec{Q} + \vec{R} = \vec{0}$ (B) $\vec{P} \vec{Q} + \vec{R} = \vec{0}$ (C) $\vec{P} + \vec{Q} - \vec{R} = \vec{0}$ (D) $\vec{P} - \vec{Q} - \vec{R} = \vec{0}$
- Q.17 If $\vec{a} = 3\hat{i} 2\hat{j} + \hat{k}$ and $\vec{b} = -\hat{i} + \hat{j} + \hat{k}$, then unit vector parallel to $\vec{a} + \vec{b}$ is-
 - (A) $\frac{1}{3} (2\hat{i} \hat{j} + 2\hat{k})$ (B) $\frac{1}{5} (2\hat{i} \hat{j} + 2\hat{k})$ (C) $\frac{1}{\sqrt{3}} (2\hat{i} - \hat{j} + 2\hat{k})$ (D) None of these
- **Q.18** If $2\hat{i} + 4\hat{j} 5\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$ are two adjacent sides of a parallelogram, then the unit vector along the diagonal determined by these sides is-

(A)
$$\frac{(3\hat{i}+6\hat{j}-2\hat{k})}{7}$$
 (B) $\hat{i}+2\hat{j}+8\hat{k}$
(C) $-\hat{i}-2\hat{j}+8\hat{k}$ (D) $\frac{(-\hat{i}-2\hat{j}+8\hat{k})}{\sqrt{69}}$

Question based on Vectors in terms of position vectors of end points

- Q.19 The position vector of a point C with respect to B is $\hat{i} + \hat{j}$ and that of B with respect to A is $\hat{i} - \hat{j}$. The position vector of C with respect to A is-(A) $2\hat{i}$ (B) $- 2\hat{i}$ (C) $2\hat{j}$ (D) $- 2\hat{j}$
- Q.20 If A, B, C are three points such that $2\overrightarrow{AC}=3\overrightarrow{CB}$, then $2\overrightarrow{OA}+3\overrightarrow{OB}$ equals-(A) $5\overrightarrow{OC}$ (B) \overrightarrow{OC} (C) $-\overrightarrow{OC}$ (D) None of these
- Q.21 If the position vector of the point A and B with respect to point O are respectively $\hat{i}+2\hat{j}-3\hat{k}$ and $-2\hat{i}+3\hat{j}-4\hat{k}$ then \overrightarrow{BA} equals-(A) $3\hat{i}-\hat{j}+\hat{k}$ (B) $3\hat{i}+\hat{j}-\hat{k}$ (C) $-3\hat{i}+\hat{j}+\hat{k}$ (D) None of these

Question based on Distance between two points

- Q.22 If the end points of \overrightarrow{AB} are (3, -7) and (-1, -4), then magnitude of \overrightarrow{AB} is-(A) 2 (B) 3 (C) 4 (D) 5
- Q.23 If $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} + 3\hat{k}$ then the value of $|\vec{a} + \vec{b}|$ is -(A) $\sqrt{6}$ (B) $2\sqrt{6}$ (C) $3\sqrt{6}$ (D) $4\sqrt{6}$
- Q.24 The vectors $3\hat{i} 2\hat{j} + \hat{k}$, $\hat{i} 3\hat{j} + 5\hat{k}$ & $2\hat{i} + \hat{j} 4\hat{k}$ form-(A) an equilateral triangle (B) an isosceles triangle (C) a right angle triangle
 - (D) None of these

Q.25 If vectors $2\hat{i}+3\hat{j}-2\hat{k}$ and $\hat{i}+2\hat{j}+\hat{k}$ represents the adjacent sides of any parallelogram then the length of diagonals of parallelogram are-

(A)
$$\sqrt{35}$$
, $\sqrt{35}$ (B) $\sqrt{35}$, $\sqrt{11}$
(C) $\sqrt{25}$, $\sqrt{11}$ (D) None of these

- **Q.26** If position vectors of the vertices of a triangle are $4\hat{i} + 5\hat{j} + 6\hat{k}$, $5\hat{i} + 6\hat{j} + 4\hat{k}$ and $6\hat{i} + 4\hat{j} + 5\hat{k}$ then this triangle is-(A) right angled (B) equilateral (C) isosceles (D) None of these
- Q.27 The length of vector $\frac{1}{\sqrt{6}} (\hat{i} + \hat{j} + 2\hat{k})$ is (A) $\frac{1}{6}$ (B) $\frac{1}{\sqrt{6}}$ (C) 1 (D) None of these
- Q.28 If A = (1, 0, 3), B = (3, 1, 5), then 3 kg. wt. along \overrightarrow{AB} is represented by the vector-(A) $2\hat{i} + 2\hat{j} + \hat{k}$ (B) $2\hat{i} + \hat{j} + 2\hat{k}$
 - (C) $\hat{i} + 2\hat{j} + 2\hat{k}$ (D) $\hat{i} + \hat{j} + \hat{k}$
- **Q.29** If ℓ_1 and ℓ_2 are lengths of the vectors $\hat{i} + 2\hat{j} + \hat{k}$ and $\hat{i} + 5\hat{j}$ respectively, then-

(A) $\ell_1 = \ell_2$ (B) $\ell_1 = -\ell_2$ (C) $\ell_1 < \ell_2$ (D) $\ell_1 > \ell_2$

Q.30 If $\vec{a} = \hat{i} + \lambda \hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} + \sqrt{\lambda} \hat{k}$ are of equal magnitudes, then value of λ is-(A) 1 (B) 0 (C) 2 (D) 0 or 1

Question based on Position vector of dividing point

Q.31 If the position vector of points A and B with respect to point P are respectively \vec{a} and \vec{b} then the position vector of middle point of \overrightarrow{AB} is -

(A)
$$\frac{\vec{b}-\vec{a}}{2}$$
 (B) $\frac{\vec{a}+\vec{b}}{2}$
(C) $\frac{\vec{a}-\vec{b}}{2}$ (D) None of these

Q.32 The position vector of two points P and Q are respectively \vec{p} and \vec{q} then the position vector

of the point dividing \overrightarrow{PQ} in 2 : 5 is -

(A)
$$\frac{\vec{p} + \vec{q}}{2+5}$$
 (B) $\frac{5\vec{p} + 2\vec{q}}{2+5}$
(C) $\frac{2\vec{p} + 5\vec{q}}{2+5}$ (D) $\frac{\vec{p} - \vec{q}}{2+5}$

Q.33 The position vector of the vertices of triangle ABC are \hat{i} , \hat{j} and \hat{k} then the position vector of its orthocentre is-

(A)
$$\hat{i} + \hat{j} + \hat{k}$$
 (B) 2 $(\hat{i} + \hat{j} + \hat{k})$
(C) $\frac{1}{3}(\hat{i} + \hat{j} + \hat{k})$ (D) $\frac{1}{\sqrt{3}}(\hat{i} + \hat{j} + \hat{k})$

Q.34 If D, E, F are mid points of sides BC, CA and AB respectively of a triangle ABC, and $\hat{i} + \hat{j}$, $\hat{j} + \hat{k}$, $\hat{k} + \hat{i}$ are p. v. of points A, B and C respectively, then p. v. of centroid of ΔDEF is-

(A)
$$\frac{\hat{i} + \hat{j} + \hat{k}}{3}$$
 (B) $\hat{i} + \hat{j} + \hat{k}$
(C) 2 ($\hat{i} + \hat{j} + \hat{k}$) (D) $\frac{2(\hat{i} + \hat{j} + \hat{k})}{3}$

- Q.35 If D, E and F are midpoints of sides BC, CA and AB of a triangle ABC, then $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF}$ is equal to-
 - (A) $\vec{0}$ (B) $2 \ \vec{BC}$ (C) $2 \ \vec{AB}$ (D) $2 \ \vec{CA}$
- **Q.36** If A, B, C, D be any four points and E and F be the middle points of AC and BD respectively, then $\overrightarrow{AB} + \overrightarrow{CB} + \overrightarrow{CD} + \overrightarrow{AD}$ is equal to-
 - (A) $3 \overrightarrow{EF}$ (B) $3 \overrightarrow{FE}$ (C) $4 \overrightarrow{EF}$ (D) $4 \overrightarrow{FE}$
- Q.37 If G is centroid of $\triangle ABC$ and $\overrightarrow{AB} = \vec{a}$, $\overrightarrow{AC} = \vec{b}$ then \overrightarrow{AG} equals-(A) 1/2 ($\vec{a} + \vec{b}$) (B) 1/3 ($\vec{a} + \vec{b}$) (C) 2/3 ($\vec{a} + \vec{b}$) (D) 1/6 ($\vec{a} + \vec{b}$) VECTOR 27

Q.38 If E is the intersection point of diagonals of parallelogram ABCD and $\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=x$ \overrightarrow{OE} then x is equal to (where O represents origin)-(A) 3 (B) 4 (C) 5 (D) 6

- Q.39 If \vec{a} , \vec{b} , \vec{c} be position vectors of A,B,C respectively and D is the middle point of BC, then \overrightarrow{AD} equals-(A) $(\vec{b} + \vec{c} - \vec{a})/2$ (B) $(\vec{a} + \vec{c} - 2\vec{a})/2$
 - (C) $(\vec{b} + \vec{c} 2\vec{a})/2$ (D) $(\vec{a} + \vec{b} 2\vec{c})/2$
- **Q.40** If the position vectors of three consecutive vertices of any parallelogram are respectively $\hat{i} + \hat{j} + \hat{k}$, $\hat{i} + 3\hat{j} + 5\hat{k}$, $7\hat{i} + 9\hat{j} + 11\hat{k}$ then the position vector of its fourth vertex is-

(A)
$$6(\hat{i}+\hat{j}+\hat{k})$$
 (B) $7(\hat{i}+\hat{j}+\hat{k})$
(C) $2\hat{j}-4\hat{k}$ (D) $6\hat{i}+8\hat{j}+10\hat{k}$

- Q.41 Two points A and P are respectively $\vec{a} + 2\vec{b}$ and \vec{a} and P divides AB in the ratio 2: 3 then p.v. of B is-
 - (A) \vec{b} (B) $\vec{a} 3\vec{b}$
 - (C) $2\vec{a} \vec{b}$ (D) $\vec{b} 2\vec{a}$
- Q.42 The orthocentre of the triangle whose vertices are $3\hat{i}+2\hat{j}$, $-2\hat{i}+3\hat{j}$ and $\hat{i}+5\hat{j}$ is-
 - (A) $\hat{i} + 5\hat{j}$ (B) $-2\hat{i} + 3\hat{j}$
 - (C) $3\hat{i} + 2\hat{j}$ (D) None of these
- **Q.43** The centroid of the triangle whose vertices are $\hat{i} + 2\hat{j}$, $2\hat{i} + \hat{j}$, $\hat{i} + \hat{j} + \hat{k}$ is-

(A)
$$4\hat{i} + 4\hat{j} + \hat{k}$$
 (B) $\frac{4\hat{i} + 4\hat{j} + \hat{k}}{3}$
(C) $\frac{4\hat{i} + 4\hat{j} + \hat{k}}{2}$ (D) None of these

Q.44 If p. v. of vertices of a tetrahedron are $\hat{i} - \hat{j} - \hat{k}$, $-\hat{i} + \hat{j} - \hat{k}$, $-\hat{i} - \hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$, then its centre is-

> (A) origin (B) $\hat{i} + \hat{j} + \hat{k}$ (C) $\frac{\hat{i} + \hat{j} + \hat{k}}{4}$ (D) None of these

Q.45 The position vector of the points A and B are \vec{a} and \vec{b} respectively. If P divides AB is the ratio 3 : 1 and Q is the mid point of AP, then the position vector of Q is-

(A)
$$\frac{\vec{a} + \vec{b}}{2}$$
 (B) $\frac{\vec{a} - \vec{b}}{2}$
(C) $\frac{5\vec{a} - 3\vec{b}}{8}$ (D) $\frac{5\vec{a} + 3\vec{b}}{8}$

Question based on Collinearity of three points

- Q.46 If vectors $(x 2)\hat{i} + \hat{j}$ and $(x + 1)\hat{i} + 2\hat{j}$ are collinear, then the value of x is-(A) 3 (B) 4 (C) 5 (D) 0
- Q.47 If points $\hat{i} + 2\hat{k}$, $\hat{j} + \hat{k}$ and $\lambda \hat{i} + \mu \hat{j}$ are collinear, then-(A) $\lambda = 2, \mu = 1$ (B) $\lambda = 2, \mu = -1$ (C) $\lambda = -1, \mu = 2$ (D) $\lambda = -1, \mu = -2$
- Q.48 If three collinear points A,B,C are such that AB = BC and the position vector of points A and B with respect to origin O are respectively \vec{a} and \vec{b} then the position vector of point C is-

(A)
$$\frac{\vec{a} - \vec{b}}{2}$$
 (B) $\frac{\vec{a} + \vec{b}}{2}$
(C) $2\vec{b} - \vec{a}$ (D) None of these

- Q.49 If \$\vec{a}\$, \$\vec{b}\$ and \$(3\vec{a}-2\vec{b}\$)\$ are position vectors of three points, then points are(A) collinear
 (B) vertices of a right angled triangle
 - (B) vertices of a right angled triangle
 - (C) vertices of an equilateral triangle
 - (D) None of these
- **Q.50** Three points A, B, C with position vectors \vec{a} , \vec{b} , \vec{c} are collinear if $x\vec{a} + y\vec{b} + z\vec{c} = \vec{0}$ when-(A) x + y + z = 0(B) $x + y + z \neq 0$ (C) x + y + z may or may not be zero (D) None of these

Q.51 If the vectors $3\hat{i} - 2\hat{j} + 5\hat{k}$ and $-2\hat{i} + p\hat{j} - q\hat{k}$ are collinear, then (p, q) is-(A) (4/3, -10/3) (B) (10, 4/3) (C) (-4/3, 10/3) (D) (4/3, 10/3)

- Q.52 If $A(-\hat{i}+3\hat{j}+2\hat{k})$, $B(-4\hat{i}+2\hat{j}-2\hat{k})$ and C $(5\hat{i}+p\hat{j}+q\hat{k})$ are collinear then the value of p and q respectively-(A) 5, 10 (B) 10, 5 (C) - 5, 10 (D) 5, -10
- **Q.53** If the position vectors of the points A, B, C are $3\hat{i}-2\hat{j}+4\hat{k}$, $\hat{i}+\hat{j}+\hat{k}$ & $-\hat{i}+4\hat{j}-2\hat{k}$, then A,B,C are-
 - (A) vertices of a right angled triangle
 - (B) vertices of an isosceles triangle
 - (C) vertices of an equilateral triangle
 - (D) collinear
- Q.54 If A, B, C are collinear and their position vector are respectively $\hat{i} - 2\hat{j} - 8\hat{k}$, $5\hat{i} - 2\hat{k}$ & $11\hat{i}+3\hat{j}+7\hat{k}$ then B, divides AC in the ratio-(A) 1:2 (B) 2:1 (C) 2:3 (D) 3:2

Question between two parallel vectors

- Q.55 If $\hat{i} + 2\hat{j} + 3\hat{k}$ is parallel to sum of the vectors $3\hat{i} + \lambda\hat{j} + 2\hat{k}$ and $-2\hat{i} + 3\hat{j} + \hat{k}$, then λ equals-(A) 1 (B) -1 (C) 2 (D) -2
- **Q.56** If $\vec{a} = 4\hat{i} 2\hat{j} + 3\hat{k}$ and $\vec{b} = -8\hat{i} + 4\hat{j} 6\hat{k}$ are two vectors then \vec{a} , \vec{b} are-(A) like parallel (B) unlike parallel (C) non-collinear (D) perpendicular
- Q.57 If position vectors of A, B, C, D are respectively $2\hat{i}+3\hat{j}+5\hat{k}$, $\hat{i}+2\hat{j}+3\hat{k}$, $-5\hat{i}+4\hat{j}-2\hat{k}$ and $\hat{i}+10\hat{j}+10\hat{k}$, then-(A) $\overrightarrow{AB} \parallel \overrightarrow{CD}$
 - (B) $\overrightarrow{DC} \parallel \overrightarrow{AD}$
 - (C) A, B, C are collinear

- (D) B, C, D are collinear
- **Q.58** If $\vec{a} = 3\hat{i} 2\hat{j} + \hat{k}$ and $\vec{b} = -\hat{i} + \hat{j} + \hat{k}$ then the unit vector parallel to $\vec{a} + \vec{b}$, is-(A) $\frac{1}{3} (2\hat{i} - \hat{j} + 2\hat{k})$ (B) $\frac{1}{5} (2\hat{i} - \hat{j} + 2\hat{k})$ (C) $\frac{1}{\sqrt{3}} (2\hat{i} - \hat{j} + 2\hat{k})$ (D) None of these
- Q.59 If $\vec{A} = (x + 1)\vec{a} + (2y 3)\vec{b}$ and $\vec{B} = 5\vec{a} 2\vec{b}$ are two vectors such that $2\vec{A} = 3\vec{B} \& \vec{a}, \vec{b}$ are non zero non-collinear vectors then-(A) x = 13/2, y = 0 (B) x = 0, y = 3(C) x = -13/2, y = 0 (D) None of these
- **Q.60** The p. v. of four points A, B, C, D are respectively $2\hat{i} + \hat{j}, \hat{i} - 3\hat{j}, 3\hat{i} + 2\hat{j}$ and $\hat{i} + \lambda\hat{j}$. If $\overrightarrow{AB} \parallel \overrightarrow{CD}$, then value of λ is-(A) 6 (B) - 6 (C) 8 (D) - 8

Question based on Coplanar and non-coplanar vectors

Q.61 If $\vec{p} = 2\vec{a} - 3\vec{b}$, $\vec{q} = \vec{a} - 2\vec{b} + \vec{c}$, $\vec{r} = -3\vec{a} + \vec{b} + 2\vec{c}$, \vec{a} , \vec{b} , \vec{c} being non zero, non coplanar vectors then the vectors $-2\vec{a} + 3\vec{b} - \vec{c}$ is equal to -

(A)
$$\frac{-7\dot{q}+\dot{r}}{5}$$
 (B) $\vec{p}-4\vec{q}$
(C) $2\vec{p}-3\vec{q}+\vec{r}$ (D) $4\vec{p}-2\vec{r}$

- Q.62 If the position vectors of four points P, Q, R, S respectively $2\vec{a} + 4\vec{c}$, $5\vec{a} + 3\sqrt{3}\vec{b} + 4\vec{c}$, $-2\sqrt{3}\vec{b} + \vec{c}$ and $2\vec{a} + \vec{c}$ then-(A) $\overrightarrow{PQ} \parallel \overrightarrow{RS}$ (B) $\overrightarrow{PQ} = \overrightarrow{RS}$ (C) $\overrightarrow{PQ} \neq \overrightarrow{RS}$ (D) None of these
- Q.63 If \vec{a} , \vec{b} , \vec{c} , \vec{d} are four linearly independent vectors and $x \vec{a} + y \vec{b} + z \vec{c} + u \vec{d} = \vec{0}$, then-(A) x + y + z + u = 0 (B) x + y = z + u(C) x + z = y + u (D) All correct

Q.64 If \vec{a} , \vec{b} , \vec{c} are non coplanar vectors then the three points whose position vector are $\vec{a} - 2\vec{b} + 3\vec{c}$, $2\vec{a} + m\vec{b} - 4\vec{c}$ and $-7\vec{b} + 10\vec{c}$ are collinear, if m equals-(A) 2 (B) 3 (C) 0 (D) 1

Question based on Scalar or Dot product of two vectors

- **Q.65** If the angle between \vec{a} and \vec{b} is θ then for $\vec{a} \cdot \vec{b} \ge 0$ (A) $0 \le \theta \le \pi$ (B) $0 < \theta < \pi/2$ (C) $\pi/2 \le \theta \le \pi$ (D) $0 \le \theta \le \pi/2$
- **Q.66** If the moduli of vectors \vec{a} and \vec{b} are 1 and 2 respectively and $\vec{a} \cdot \vec{b} = 1$, then the angle θ between them is-(A) $\theta = \pi/6$ (B) $\theta = \pi/3$ (C) $\theta = \pi/2$ (D) $\theta = 2\pi/3$

Q.67 If $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 3\hat{i} - 4\hat{j} + 2\hat{k}$ & $\vec{c} = \hat{i} - 2\hat{j} + 2\hat{k}$ then the projection of $\vec{a} + \vec{b}$ on \vec{c} is-(A) 17/3 (B) 5/3 (C) 4/3 (D) None of these

Q.68 If \vec{a} and \vec{b} are unit vectors and 60° is the angle between them, then $(2\vec{a} - 3\vec{b}) \cdot (4\vec{a} + \vec{b})$ equals-(A) 5 (B) 0

- (C) 11 (D) None of these
- Q.69 If vectors $3\hat{i} + 2\hat{j} + 8\hat{k}$ and $2\hat{i} + x\hat{j} + \hat{k}$ are perpendicular then x is equal to-(A) 7 (B) -7 (C) 5 (D) -4
- **Q.70** If vector $\vec{a} + \vec{b}$ is perpendicular to \vec{b} and $2\vec{b} + \vec{a}$ is perpendicular to \vec{a} , then-
 - (A) $|\vec{a}| = \sqrt{2} |\vec{b}|$ (B) $|\vec{a}| = 2|\vec{b}|$ (C) $|\vec{b}| = \sqrt{2} |\vec{a}|$ (D) $|\vec{a}| = |\vec{b}|$
- Q.71 If $|\vec{a}| = |\vec{b}|$, then $(\vec{a} + \vec{b})$. $(\vec{a} \vec{b})$ is-(A) positive (B) negative (C) zero (D) None of these

- **Q.72** If \vec{a} and \vec{b} are vectors of equal magnitude 2 and α be the angle between them, then magnitude of $(\vec{a} + \vec{b})$ will be 2 if -(A) $\alpha = \pi/3$ (B) $\alpha = \pi/4$
 - (C) $\alpha = \pi/2$ (D) $\alpha = 2\pi/3$
- Q.73 If $\vec{a} = \hat{i} + 3\hat{j} 2\hat{k}$ and $\vec{b} = 4\hat{i} 2\hat{j} + 4\hat{k}$, then $(2\vec{a} + \vec{b}).(\vec{a} - 2\vec{b})$ equals-(A) 14 (B) -14 (C) 0 (D) None of these

Q.74 Angle between the vectors $2\hat{i} + 6\hat{j} + 3\hat{k}$ and $12\hat{i} - 4\hat{j} + 3\hat{k}$ is -(A) $\cos^{-1}\left(\frac{1}{10}\right)$ (B) $\cos^{-1}\left(\frac{9}{11}\right)$ (C) $\cos^{-1}\left(\frac{9}{91}\right)$ (D) $\cos^{-1}\left(\frac{1}{9}\right)$

Q.75 If $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 5\hat{j}$, $3\hat{i} + 2\hat{j} - 3\hat{k}$ and $\hat{i} - 6\hat{j} - \hat{k}$ be p.v. of four points A,B,C and D respectively, then the angle between \overrightarrow{AB} and \overrightarrow{CD} is-(A) $\pi/4$ (B) $\pi/2$ (C) π (D) None of these

Q.76 If the force $\vec{F} = \hat{i} + 2\hat{j} + 3\hat{k}$ moves a particle from $\hat{i} + \hat{j} - \hat{k}$ to $2\hat{i} - \hat{j} + \hat{k}$, then the work done is-(A) 6 (B) 5 (C) 4 (D) 3

Q.77 Two forces $P = 2\hat{i} - 5\hat{j} + 6\hat{k}$ and $Q = -\hat{i} + 2\hat{j} - \hat{k}$ are acting on a particle. These forces displace the particle from point $A(4\hat{i} - 3\hat{j} - 2\hat{k})$ to point $B(6\hat{i} + \hat{j} - 3\hat{k})$. The work done by these forces is-(A) 15 units (B) -15 units

Q.78 The projection of vector $\hat{i} + 2\hat{j} + 2\hat{k}$ on x- axis is -

(C) 10 units

(A) 2 (B) 1 (C) $\sqrt{5}$ (D) 3

(D) - 10 units

- Q.79 \vec{a} and \vec{b} are vectors of equal magnitude and angle between them is 120°. If $\vec{a} \cdot \vec{b} = -8$, then $|\vec{a}|$ equals-(A) 4 (B) -4 (C) 5 (D) -5
- **Q.80** If the points P, Q, R, S are respectively $\hat{i} \hat{k}$, $-\hat{i} + 2\hat{j}, 2\hat{i} - 3\hat{k}$ and $3\hat{i} - 2\hat{j} - \hat{k}$, then projection of \overrightarrow{PQ} on \overrightarrow{RS} is-(A) 4/3 (B) - 4/3 (C) 3/4 (D) -3/4
- Q.81 If angle between vectors \vec{a} and \vec{b} is 120° and $|\vec{a}| = 3$, $|\vec{b}| = 4$, then length of $4 \vec{a} - 3 \vec{b}$ is-(A) $12\sqrt{3}$ (B) $2\sqrt{3}$ (C) 432 (D) None of these
- Q.82 Vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are perpendicular, when-(A) $\vec{a} = \vec{0}$ (B) $\vec{a} + \vec{b} = \vec{0}$ or $\vec{a} - \vec{b} = \vec{0}$ (C) $\vec{b} = \vec{0}$ (D) None of these
- Q.83 If $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$, then -(A) \vec{a} and \vec{b} are perpendicular
 - (B) \vec{a} , \vec{b} are parallel to each other
 - (C) $\vec{a} \neq \vec{0}$
 - (D) $\vec{b} \neq \vec{0}$

Q.84 If the angle between two vectors \vec{a} and \vec{b} is 120°. If $|\vec{a}| = 2$, $|\vec{b}| = 1$ then the value of $|2\vec{a} + \vec{b}|$ is-(A) $\sqrt{21}$ (B) $\sqrt{13}$

(11) v21	(\mathbf{D}) V13
(C) 21	(D) 13

- Q.85 For any vector $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, $(\vec{r}.\hat{i})\hat{i} + (\vec{r}.\hat{j})\hat{j} + (\vec{r}.\hat{k})\hat{k}$ equals-(A) $\vec{0}$ (B) 2 \vec{r} (C) \vec{r} (D) 3 \vec{r}
- **Q.86** If \vec{a} and \vec{b} be two non-zero vectors, then $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b})$ equals-
 - (A) $|\vec{a} + \vec{b}|$ (B) $|\vec{a} \vec{b}|^2$
 - (C) $|\vec{a} + \vec{b}|^2$ (D) $|\vec{a}|^2 |\vec{b}|^2$

- Q.87 If sum of two unit vectors is again a unit vector, then modulus of their difference is-
 - (A) 1 (B) 2 (C) $\sqrt{2}$ (D) $\sqrt{3}$
- **Q.88** The angle between $(\hat{i} + \hat{j})$ and $(\hat{i} + \hat{k})$ is-(A) 0 (B) $\pi/4$ (C) $\pi/2$ (D) $\pi/3$

Q.89 The angle between the vectors $3\hat{i} + \hat{j} + 2\hat{k}$ and $2\hat{i} - 2\hat{j} + 4\hat{k}$ is-

(A)
$$\sin^{-1}\frac{2}{\sqrt{5}}$$
 (B) $\sin^{-1}\frac{2}{\sqrt{7}}$
(C) $\cos^{-1}\frac{2}{\sqrt{5}}$ (D) $\cos^{-1}\frac{2}{\sqrt{7}}$

- **Q.90** If $\vec{a} = \hat{i} + 2\hat{j} 3\hat{k}$ and $\vec{b} = 3\hat{i} \hat{j} + 2\hat{k}$, then the angle between vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ is-(A) 0° (B) 30° (C) 60° (D) 90°
- Q.91 If angle between vectors \vec{a} and \vec{b} is 30°, then angle between 3 \vec{a} and 4 \vec{b} will be-(A) 60° (B) 30° (C) 0° (D) 90°
- **Q.92** The unit vector which bisect the angle between \hat{i} and \hat{j} is-
 - (A) \hat{k} (B) $\frac{(\hat{i}+\hat{j})}{\sqrt{2}}$ (C) $\frac{(\hat{i}+\hat{j}+\hat{k})}{\sqrt{3}}$ (D) None of these
- **Q.93** If $\vec{a} = 4\hat{i} + 6\hat{j}$ and $\vec{b} = 3\hat{j} + 4\hat{k}$, then component vector of \vec{a} along \vec{b} is-

(A)
$$\frac{18(3\hat{j}+4\hat{k})}{10\sqrt{3}}$$
 (B) $\frac{18(3\hat{j}+4\hat{k})}{25}$
(C) $\frac{18(3\hat{j}+4\hat{k})}{\sqrt{13}}$ (D) $3\hat{i}+4\hat{k}$

Q.94 A force $\vec{F} = \hat{i} - 3\hat{j} + 5\hat{k}$ acting on a particle displaces it from point A(4, -3, -2) to B (6,1, -3) then the work done by the force is-(A) -15 unit (B) 16 unit (C) 0 (D) None of these

- **Q.95** If by acting three forces $\vec{F}_1 = \hat{i} \hat{j} + \hat{k}$, $\vec{F}_2 = -\hat{i} + 2\hat{j} - \hat{k}$, $\vec{F}_3 = -\hat{j} - \hat{k}$ on a particle it displaces it from point A(4, -3, -2) to point B (6, 1, -3) then the work done by the force is-(A) 1 unit (B) 2 unit
 - (C) 0 unit (D) None of these
- Q.96 The work done in moving an object along the vector $3\hat{i} + 2\hat{j} - 5\hat{k}$, if the applied force is $F = 2\hat{i} - \hat{j} - \hat{k}$ is-(A) 7 (B) 8 (C) 9 (D) 10
- **Q.97** If angle between two unit vectors \vec{a} and \vec{b} is θ then sin ($\theta/2$) is equal to-

(A) $2 |\vec{a} - \vec{b}|$ (B) $\frac{1}{2} |\vec{a} - \vec{b}|$ (C) $\frac{1}{2} |\vec{a} + \vec{b}|$ (D) $2 (\vec{a} + \vec{b})$

- **Q.98** If $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$, $\vec{b} = \hat{i} + 3\hat{j} + 3\hat{k}$ then $|\vec{a} \times \vec{b}|$ is (A) $\sqrt{6}$ (B) $2\sqrt{6}$ (C) $\sqrt{70}$ (D) $4\sqrt{6}$
- **Q.99** If \vec{a} and \vec{b} are two vectors, then-(A) $|\vec{a} \times \vec{b}| \ge |\vec{a}| |\vec{b}|$ (B) $|\vec{a} \times \vec{b}| \le |\vec{a}| |\vec{b}|$ (C) $|\vec{a} \times \vec{b}| > |\vec{a}| |\vec{b}|$ (D) $|\vec{a} \times \vec{b}| < |\vec{a}| |\vec{b}|$
- **Q.100** If θ be the angle between vectors $\hat{i} + 2\hat{j} + 3\hat{k}$ and $3\hat{i} + 2\hat{j} + \hat{k}$, then the value of $\sin \theta$ is-

(A) $\sqrt{6/7}$	(B) $\frac{2\sqrt{6}}{7}$
(C) 1/7	(D) None of these

Q.101 If $|\vec{a} \times \vec{b}| = |\vec{a}.\vec{b}|$ then angle between \vec{a} and \vec{b} is -(A) 0° (B) 90°

(1)	(D) 70
(C) 60°	(D) 45°

- Q.102 The unit vector perpendicular to vectors $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$ is-(A) $\frac{1}{\sqrt{3}}(\hat{i} - \hat{j} + \hat{k})$ (B) $\frac{1}{\sqrt{3}}(\hat{i} + \hat{j} - \hat{k})$ (C) $\frac{1}{\sqrt{3}}(\hat{i} + \hat{j} + \hat{k})$ (D) None of these
- Q.103 If $|\vec{a}.\vec{b}| = 3$ and $|\vec{a}\times\vec{b}| = 4$, then the angle between \vec{a} and \vec{b} is-(A) cos⁻¹ 3/4 (B) cos⁻¹ 3/5 (C) sin⁻¹ 4/5 (D) $\pi/4$
- Q.104 If $|(\vec{a} \times \vec{b})|^2 + (\vec{a} \cdot \vec{b})^2 = 144$ and $|\vec{a}| = 4$, then $|\vec{b}|$ is equal to -(A) 3 (B) 8 (C) 12 (D) 16
- Q.105 $(\hat{i} + \hat{j})$. $[(\hat{j} + \hat{k}) \times (\hat{k} + \hat{i})]$ equals-(A) 0 (B) 1 (C) -1 (D) 2

Q.106 If for vectors $\vec{a} \& \vec{b}$, $\vec{a} \times \vec{b} = \vec{0}$ and $\vec{a} \cdot \vec{b} = 0$, then-(A) $\vec{a} \parallel \vec{b}$ (B) $\vec{a} \perp \vec{b}$

(C) $\vec{a} = \vec{0}$ or $\vec{b} = \vec{0}$ (D) None of these

Q.107 In a parallelogram PQRS, $\overrightarrow{PQ} = \vec{a} + \vec{b}$ and $\overrightarrow{PR} = \vec{a} - \vec{b}$, then its vector area is-(A) $|\vec{a}|^2 - |\vec{b}|^2$ (B) $\vec{a} \times \vec{b}$ (C) $2(\vec{a} \times \vec{b})$ (D) $2(\vec{b} \times \vec{a})$

Q.108 If the diagonals of a parallelogram are respectively $\vec{a} = \hat{i} + \hat{j} - 2\hat{k}$, $\vec{b} = \hat{i} - 3\hat{j} + 4\hat{k}$, then the area of parallelogram is-

- (A) $\sqrt{14}$ (B) $2\sqrt{14}$ (C) $2\sqrt{6}$ (D) $\sqrt{38}$
- Q.109 If adjacent sides of a triangle are represented by vectors $\vec{a} = 3\hat{i} + 4\hat{j}$ and $\vec{b} = -5\hat{i} + 7\hat{j}$, then vector area is -(A) 13/2 (B) 41/2
 - (C) 41 (D) None of these

Q.110 If $\hat{i} - \hat{j} + 2\hat{k}$, $2\hat{i} + \hat{j} - \hat{k}$ and $3\hat{i} - \hat{j} + 2\hat{k}$ are position vectors of vertices of a triangle, then its area is-(A) 26 (B) 13

- (C) $2\sqrt{13}$ (D) $\sqrt{13}$
- Q.111 Two constant forces $P = 2\hat{i} 5\hat{j} + 6\hat{k}$ and $Q = -\hat{i} + 2\hat{j} - \hat{k}$ are acting on a point A (4,-3,-2). The moment of their resultant about origin (0, 0, 0) is-(A) $21\hat{i} + 22\hat{j} + 9\hat{k}$ (B) $-(21\hat{i} + 22\hat{j} + 9\hat{k})$
 - (C) $21\hat{i} 22\hat{j} 9\hat{k}$ (D) None of these
- **Q.112** If $\vec{a} = 2\hat{i} + 3\hat{j} \hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} 4\hat{k}$ & $\vec{c} = \hat{i} + \hat{j} + \hat{k}$, then $(\vec{a} \times \vec{b})$. $(\vec{a} \times \vec{c})$ equals-

(A) 60	(B) 64
(C) 74	(D) –74

- Q.113 Vector $\vec{a} \times (\vec{b} + \vec{a})$ is perpendicular to-(A) both \vec{a} and \vec{b} (B) \vec{a} (C) \vec{b} (D) Neither \vec{a} nor \vec{b}
- Q.114 If angle between vector \vec{a} and \vec{b} lies between $\pi/2$ and $3\pi/4$, then -

(A) $|\vec{a} \times \vec{b}| \le |\vec{a}.\vec{b}|$ (B) $|\vec{a} \times \vec{b}| \ge |\vec{a}.\vec{b}|$

(C) $|\vec{a} \times \vec{b}| < |\vec{a}.\vec{b}|$ (D) $|\vec{a} \times \vec{b}| > |\vec{a}.\vec{b}|$

Q.115 If $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$, then unit vector along the direction of the resultant is-

(A)
$$3\hat{i} + 5\hat{j} + 4\hat{k}$$
 (B) $\frac{3\hat{i} + 5\hat{j} + 4\hat{k}}{50}$
(C) $\frac{3\hat{i} + 5\hat{j} + 4\hat{k}}{5\sqrt{2}}$ (D) None of these

Q.116 If points P(1, -1, 2), Q(2, 0, -1) and R (0, 2, 1) be any three points, then unit vector perpendicular to the plane PQR is-

(A)
$$2\hat{i} + \hat{j} + \hat{k}$$
 (B) $\frac{2i + j + k}{\sqrt{6}}$
(C) $\frac{3\hat{i} + 2\hat{j} - \hat{k}}{\sqrt{14}}$ (D) None of these

- Q.117 Let $\vec{a} = \hat{i} + \hat{j} \hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ & $\vec{c} = -\hat{i} + 2\hat{j} + \hat{k}$, then the unit vector perpendicular to both $\vec{a} + \vec{b}$ and $\vec{b} + \vec{c}$ is-(A) \hat{i} (B) \hat{j} (C) $\frac{\hat{k} + \hat{i}}{\sqrt{2}}$ (D) $(\hat{i} + \hat{j} + \hat{k})/\sqrt{3}$
- Q.118 If $|\vec{a}| = 10$, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = 12$, then $|\vec{a} \times \vec{b}|$ equals-(A) 16 (B) 8 (C) 32 (D) None of these
- Q.119 Which one of the following is correct-
 - (A) $\hat{i}.\hat{i}+\hat{j}.\hat{j}+\hat{k}.\hat{k} = 0$ (B) $\hat{i}\times\hat{j}+\hat{j}\times\hat{k}+\hat{k}\times\hat{i} = \vec{0}$ (C) $\hat{i}.\hat{i}+\hat{j}.\hat{j}+\hat{k}.\hat{k} = 3$ (D) $\hat{i}\times\hat{j}+\hat{j}\times\hat{k}+\hat{k}\times\hat{i} = 3$
- Q.120 If $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ and $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, $\vec{a} \neq \vec{0}$, then-(A) $\vec{b} = \vec{0}$ (B) $\vec{b} = \vec{c}$ (C) $\vec{b} \neq \vec{c}$ (D) None of these
- Q.121 For any three vectors \vec{a} , \vec{b} , \vec{c} , $\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b})$ equals-(A) $\vec{a} + \vec{b} + \vec{c}$ (B) $[\vec{a} \ \vec{b} \ \vec{c}]$ (C) $\vec{a} \times \vec{b} \times \vec{c}$ (D) $\vec{0}$
- **Q.122** $|(2\hat{i}+\hat{k})\times(\hat{i}+\hat{j}+\hat{k})|$ is equal to-
 - (A) 6 (B) $\sqrt{6}$ (C) 3 (D) $\sqrt{3}$
- **Q.123** $(2\vec{a} + 3\vec{b}) \times (5\vec{a} + 7\vec{b})$ is equal to-
 - (A) $\vec{a} + \vec{b}$ (B) $\vec{b} \times \vec{a}$ (C) $\vec{a} \times \vec{b}$ (D) $7\vec{a} + 10\vec{b}$

Q.124 For any two vectors

 \vec{a} , \vec{b} { $|\vec{a} \times \vec{b}|^2 + (\vec{a} \cdot \vec{b})^2$ } + $|\vec{a}|^2 |\vec{b}|^2$ equals-

- (A) $|\vec{a}|^2 |\vec{b}|^2$ (B) $2 |\vec{a}|^2 |\vec{b}|^2$
- (C) 0 (D) None of these

- **Q.125** If vectors $\hat{i} + 2\hat{j} + 3\hat{k}$ and $-3\hat{i} + 2\hat{j} + \hat{k}$ represent adjacent sides of a parallelogram, then its area is-
 - (A) $5\sqrt{6}$ (B) $6\sqrt{2}$ (C) $6\sqrt{5}$ (D) 180
- **Q.126** If $\vec{a} = 2\hat{i} 3\hat{j} + \hat{k}$, $\vec{b} = -\hat{i} + \hat{k}$, $\vec{c} = -2\hat{j} \hat{k}$ then the area of the parallelogram with diagonals $\vec{a} + \vec{b}$ and $\vec{b} + \vec{c}$ will be-
 - (A) $\sqrt{21}$ (B) $2\sqrt{21}$ (C) $\frac{1}{2}\sqrt{21}$ (D) None of these
- **Q.127** If A (1, -1, 2), B(2, 1, -1), C(3, -1, 2) be any three points, then area of ABC is-

(A)
$$\sqrt{13}$$
 (B) $2\sqrt{13}$
(C) $\frac{1}{2}\sqrt{3}$ (D) None of these

- Q.128 If the vertices of any triangle are i, j, k then its area is (A) 1 unit
 (B) 2 unit
 - (C) $\sqrt{2}$ unit (D) $\frac{\sqrt{3}}{2}$ unit
- **Q.129** If $\hat{i} + 2\hat{j} + 3\hat{k}$, $-\hat{i} \hat{j} + 8\hat{k}$, $-4\hat{i} + 4\hat{j} + 6\hat{k}$ be p.v. of A, B, and C respectively, then $\triangle ABC$ is-(A) right angled (B) isosceles
 - (C) equilateral (D) None of these
- **Q.130** A force $F = 2\hat{i} + \hat{j} \hat{k}$ acts at a point A whose position vector is $2\hat{i} - \hat{j}$. The moment of F about origin is-
 - (A) $\hat{i} + 2\hat{j} + 4\hat{k}$ (B) $\hat{i} 2\hat{j} + 4\hat{k}$ (C) $\hat{i} + 2\hat{i} - 4\hat{k}$ (D) $\hat{i} - 2\hat{i} - 4\hat{k}$
- **Q.131** A force $F = 3\hat{i} + \hat{k}$ passing through A whose position vector is $2\hat{i} - \hat{j} + 3\hat{k}$, then the moment of the force about point P whose position vector is, $\hat{i} + 2\hat{j} - \hat{k}$ is-
 - (A) $-3\hat{i}+11\hat{j}+9\hat{k}$ (B) $2\hat{i}+10\hat{j}+8\hat{k}$ (C) $\hat{i}+3\hat{j}+7\hat{k}$ (D) $4\hat{i}+3\hat{j}-6\hat{k}$

Question based on Scalar Triple product

- **Q.132** If $[3\hat{i} \quad 5\hat{j} 3\hat{k} \quad \lambda\hat{i} + \hat{k}] = 5$, then the value of λ is-(A) 1 (B) 2 (C) 3 (D) Not possible **Q.133** If $\vec{a} = 4\hat{i} - 3\hat{j} + \hat{k}$, $\vec{b} = 3\hat{i} + 2\hat{j} - \hat{k}$ & $\vec{c} = 3\hat{i} - \hat{j} + 2\hat{k}$ represent three coterminous edges of a parallelopiped then its volume is-(A) 60 (B) 15 (C) 30 (D) 40 **Q.134** $[(\hat{i} \times \hat{j}) \times (\hat{i} \times \hat{k})]$. \hat{j} equals-(A) 1 (B) - 1(C) 0 (D) None of these Q.135 If \vec{a} , \vec{b} , \vec{c} are mutually perpendicular unit vectors, then $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$ equals-(A) 0 $(B) \pm 1$ (D) 1 (C) 3 **Q.136** $[\vec{a} \ \vec{b} \ \vec{c}]$ will not be zero when-(A) $\vec{a} = \vec{b} = \vec{c}$ (B) $\vec{a} = \vec{b}$ or $\vec{b} = \vec{c}$ (C) \vec{a} , \vec{b} , \vec{c} are coplanar (D) $\vec{a} \perp \vec{b}$ or $\vec{b} \perp \vec{c}$ 0.137 The vector \vec{a} which is collinear with the
 - vector $\vec{b} = 2\hat{i} \hat{j}$ and $\vec{a} \cdot \vec{b} = 10$ is-(A) $4\hat{i} - 2\hat{j}$ (B) $-2\hat{i} + 4\hat{j}$ (C) $2\hat{i} + 4\hat{j} + \hat{k}$ (D) $4\hat{i} + 2\hat{j} - \hat{k}$

Q.138 Three vectors $\hat{i} - \hat{j} - \hat{k}$, $-\hat{i} + \hat{j} - \hat{k}$ & $-\hat{i} - \hat{j} + \hat{k}$ are-(A) coplanar (B) non- coplanar (C) two are perpendicular to each other

- (D) none of these
- Q.139 If the volume of the tetrahedron with edges $\hat{i} + \hat{j} + \hat{k}$, $\hat{i} + a\hat{j} + \hat{k}$ and $\hat{i} + 2\hat{j} - \hat{k}$ is 6 cubic units, then a is-(A) 1 (B) -1 (C) 2 (D) -17

Q.140 If $\vec{a} = \hat{i} + \hat{j} - \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = \hat{i} - \hat{j} + 2\hat{k}$ then $\vec{a}.(\vec{b} \times \vec{c})$ is equal to -(A) 10 (B) 7 (C) 24 (D) 6

- Q.141 If \vec{a} , \vec{b} , \vec{c} are any three coplanar unit vectors then -
 - (A) $\vec{a}.(\vec{b}\times\vec{c}) = 1$ (B) $\vec{a}.(\vec{b}\times\vec{c}) = 3$ (C) $(\vec{a}\times\vec{b}).\vec{c} = 0$ (D) $(\vec{c}\times\vec{a}).\vec{b} = 1$
- Q.142 If vectors $\vec{a} = 2\hat{i} 3\hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} 3\hat{k}$ and $\vec{c} = \hat{j} + p\hat{k}$ are coplanar, then the value of p is (A) 1 (B) 2 (C) - 1 (D) - 2
- Q.143 If \vec{a} , \vec{b} , \vec{c} are three non-zero coplanar vectors so that \vec{a} . $\vec{b} = 0$ and \vec{b} . $\vec{c} = 0$, then-(A) \vec{a} . $\vec{c} = 0$ (B) \vec{a} . $\vec{c} \neq 0$ (C) \vec{a} . $\vec{c} > 0$ (D) None of these
- Q.144 For any non-zero vector \vec{d} ; $\vec{d} \cdot \vec{a} = \vec{d} \cdot \vec{b} = \vec{d} \cdot \vec{c} = 0$ then $[\vec{a} \ \vec{b} \ \vec{c}]$ equals -(A) 0 (B) 1 (B) -1 (D) None of these
- Q.145 If $[2\hat{i} \quad \hat{j} + \hat{k} \quad \lambda \hat{i} 2\hat{k}] = -4$ then λ is equal to-(A) -1 (B) 1 (C) 2 (D) any real number
- Q.146 If a, b, c are coplanar vectors, then which of the following are non-coplanar vectors(A) a × b, b × c, c × a
 (B) a+b, b+c, c+a
 - (C) $\vec{a} \vec{b}$, $\vec{b} \vec{c}$, $\vec{c} \vec{a}$
 - (D) None of these
- Q.147 If four points A(1, 2, -1), B(0, 1, m), C (-1, 2, 1), D(2, 1, 3) are coplanar, then the value of m is-(A) 2 (B) 0 (C) 5 (D) - 5
- **Q.148** A unit vector which is coplanar with vector $\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$ and perpendicular to $\hat{i} + \hat{j} + \hat{k}$ is-

(A)
$$\frac{(\hat{i} - \hat{j})}{\sqrt{2}}$$
 (B) $\frac{(\hat{j} - \hat{k})}{\sqrt{2}}$
(C) $\frac{(\hat{k} - \hat{j})}{\sqrt{2}}$ (D) $\frac{(\hat{i} + \hat{j} + \hat{k})}{\sqrt{3}}$

Q.149 Four points with position vectors \vec{a} , \vec{b} , \vec{c} , \vec{d} are coplanar if-

- (A) $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = 0$ (B) $\begin{bmatrix} \vec{b} & \vec{c} & \vec{d} \end{bmatrix} = 0$ (C) $\begin{bmatrix} \vec{a} - \vec{d} & \vec{b} - \vec{d} & \vec{c} - \vec{d} \end{bmatrix} = 0$
- (D) None of these
- Q.150 If p.v. of vertices A, B, C with respect to vertex O of any tetrahedron are $6\hat{i}, 6\hat{j}, \hat{k}$ respectively, then its volume is-(A) 1/3 (B) 1/6 (C) 3 (D) 6
- Q.151 If volume of a tetrahedron is 5 units and vertices are A (2, 1, -1), B(3, 0, 1), C(2, -1, 3) and fourth vertex is on y- axis, then its coordinates are(A) (0, 8, 0)
 (B) (0, -7, 0)
 (C) (0, 8, 0), (0, -7, 0)
 (D) None of these
- Q.152 If \vec{a} , \vec{b} , \vec{c} , \vec{d} are position vectors of four vertices of a tetrahedron, then its volume is-(A) (1/2) $[\vec{a} - \vec{d} \quad \vec{b} - \vec{d} \quad \vec{c} - \vec{d}]$
 - (B) (1/3) [$\vec{a} \vec{d}$ $\vec{b} \vec{d}$ $\vec{c} \vec{d}$]
 - (C) (1/4) $\begin{bmatrix} \vec{a} \vec{d} & \vec{b} \vec{d} & \vec{c} \vec{d} \end{bmatrix}$
 - (D) (1/6) $[\vec{a} \vec{d} \quad \vec{b} \vec{d} \quad \vec{c} \vec{d}]$

Question based on Vector triple product

Q.153 If $\vec{a} = \hat{i} + 2\hat{j} - 2\hat{k}$, $\vec{b} = 2\hat{i} - \hat{j} + \hat{k}$ & $\vec{c} = \hat{i} + 3\hat{j} - \hat{k}$ then $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to-(A) $20\hat{i} - 3\hat{j} + 7\hat{k}$ (B) $20\hat{i} + 3\hat{j} + 7\hat{k}$ (C) $20\hat{i} + 3\hat{j} - 7\hat{k}$ (D) None of these **Q.154** $\vec{a} \times (\vec{b} \times \vec{c})$ is coplanar with-

(A) \vec{a} and \vec{b}	(B) \vec{b} and \vec{c}

- (C) \vec{c} and \vec{a} (D) None of these
- Q.155 For three vectors \vec{a} , \vec{b} , \vec{c} correct statement is-
 - (A) $\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{a} \times \vec{c})$
 - (B) $(\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \times \vec{c})$
 - (C) $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$
 - (D) None of these
- Q.156 The value of $\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b})$ is-(A) $\vec{0}$ (B) 1 (C) $\vec{a} + \vec{b} + \vec{c}$ (D) 2 $[\vec{a} \ \vec{b} \ \vec{c}]$
- Q.157 If $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$, then it is possible that-
 - (A) $\vec{a} \perp \vec{b}$ (B) $\vec{a} \perp \vec{c}$ (C) $\vec{a} \parallel \vec{c}$ (D) $\vec{b} \parallel \vec{c}$
- **Q.158** For any vectors \vec{a} , \vec{b} , \vec{c} correct statement is-
 - (A) $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$ (B) $\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$
 - (C) $\vec{a}.(\vec{b}\times\vec{c}) = \vec{a}.\vec{b}\times\vec{a}.\vec{c}$
 - (D) $\vec{a}.(\vec{b}-\vec{c}) = \vec{a}.\vec{b}-\vec{a}.\vec{c}$

- **Q.159** $[\vec{a} \quad \vec{b} \quad \vec{a} \times \vec{b}]$ equals-
 - (A) $|\vec{a} \times \vec{b}|$ (B) $|\vec{a} \times \vec{b}|^2$
 - (C) $|\vec{a} \cdot \vec{b}|$ (D) $|\vec{a}| |\vec{b}|$
- Q.160 Which of the following is true statement-
 - (A) $(\vec{a} \times \vec{b}) \times \vec{c}$ is coplanar with \vec{c}
 - (B) $(\vec{a} \times \vec{b}) \times \vec{c}$ is perpendicular to \vec{a}
 - (C) $(\vec{a} \times \vec{b}) \times \vec{c}$ is perpendicular to \vec{b}
 - (D) $(\vec{a} \times \vec{b}) \times \vec{c}$ is perpendicular to \vec{c}
- **Q.161** $\hat{j} \times (\hat{j} \times \hat{k})$ equals-
 - (A) \hat{i} (B) $-\hat{i}$ (C) \hat{k} (D) $-\hat{k}$
- Q.162 $(\vec{a} \times \vec{b}) \times \vec{c}$ equals-(A) $(\vec{a}.\vec{c})\vec{b} - (\vec{a}.\vec{b})\vec{c}$ (B) $(\vec{a}.\vec{b})\vec{c} - (\vec{a}.\vec{c})\vec{b}$
 - (C) $(\vec{b}.\vec{c})\vec{a} (\vec{a}.\vec{c})\vec{b}$ (D) $(\vec{a}.\vec{c})\vec{b} (\vec{b}.\vec{c})\vec{a}$
- **Q.163** $(\hat{i} \times \hat{j}).[(\hat{j} \times \hat{k}) \times (\hat{k} \times \hat{i})]$ equals-(A) 0 (B) 1
 - (C) -1 (D) 2

- Q.1 If C is mid point of AB and P is any point outside AB, then-
 - (A) $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC}$
 - (B) $\overrightarrow{PA} + \overrightarrow{PB} = 2 \overrightarrow{PC}$
 - (C) $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \overrightarrow{0}$
 - (D) $\overrightarrow{PA} + \overrightarrow{PB} + 2 \overrightarrow{PC} = \vec{0}$

Q.2 If $\vec{a} = \hat{i} + \hat{j} - \hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j}$, $\vec{c} = 3\hat{i} + 5\hat{j} - 2\hat{k}$, $\vec{d} = \hat{k} - \hat{j}$, then the ratio of the magnitudes of vectors $(\vec{b} - \vec{a})$ and $(\vec{d} - \vec{c})$ is-(A) 1 : 2 (B) 2 : 1 (C) 1 : 3 (D) 1 : 4

- **Q.3** If vector $\overrightarrow{AB} = 3\hat{i} 3\hat{k}$, $\overrightarrow{AC} = \hat{i} 2\hat{j} + \hat{k}$ represents the sides of any triangle ABC then the length of median AM is-
 - (A) $\sqrt{6}$ (B) $\sqrt{3}$ (C) $2\sqrt{3}$ (D) $3\sqrt{2}$
- Q.4 If \vec{a} , \vec{b} , \vec{c} , \vec{d} are position vectors of the points A, B, C and D such that $\vec{a} + \vec{c} = \vec{b} + \vec{d}$, then ABCD is a-(A) parallelogram (B) square (C) rectangle (D) Trapezium
- Q.5 If A, B, P, Q, R be any five points in a plane and forces \overrightarrow{AP} , \overrightarrow{AQ} , \overrightarrow{AR} act at the point A and forces \overrightarrow{PB} , \overrightarrow{QB} , \overrightarrow{RB} act at the point B, then their resultant is-
 - (A) $3 \overrightarrow{AB}$ (B) $3 \overrightarrow{BA}$ (C) $3 \overrightarrow{PQ}$ (D) $3 \overrightarrow{PR}$
- Q.6 If $|\vec{b}| = 10$, then the vector b which is collinear with the vector $2\sqrt{2}\hat{i} - \hat{j} + 4\hat{k}$ is-(A) $4\sqrt{2}\hat{i} - 2\hat{j} + 8\hat{k}$ (B) $-4\sqrt{2}\hat{i} - 2\hat{j} + 8\hat{k}$ (C) $4\sqrt{2}\hat{i} + 2\hat{j} + 8\hat{k}$ (D) None of these

Q.7 The mid point of points which divide line joining the points \vec{a} and \vec{b} in the ratio 1: 2 and 2 : 1 is-

(A)
$$\vec{a} + \vec{b}$$
 (B) $\frac{\vec{a} + b}{2}$

(C)
$$\frac{\vec{a} + \vec{b}}{3}$$
 (D) None of these

Q.8 If $\vec{a} + 5\vec{b} = \vec{c}$ and $\vec{a} - 7\vec{b} = 2\vec{c}$, then-

- (A) \vec{a} and \vec{c} are like but \vec{b} and \vec{c} are unlike vectors
- (B) \vec{a} and \vec{b} are unlike vectors and so also \vec{a} and \vec{c}
- (C) \vec{b} and \vec{c} are like but \vec{a} and \vec{b} are unlike vectors
- (D) \vec{a} and \vec{c} are unlike vectors and so also \vec{b} and \vec{c}
- Q.9 If p. v. of vertices of a $\triangle ABC$ are $2\hat{i}+4\hat{j}-\hat{k},4\hat{i}+5\hat{j}+\hat{k}, \quad 3\hat{i}+6\hat{j}-3\hat{k},$ then which of the following angles is a right angle-(A) $\angle A$ (B) $\angle B$ (C) $\angle C$ (D) None of these
- Q.10 \vec{a} , \vec{b} , \vec{c} are three non zero vectors no two of them are parallel. If $\vec{a} + \vec{b}$ is collinear to \vec{c} and $\vec{b} + \vec{c}$ is collinear to \vec{a} , then $\vec{a} + \vec{b} + \vec{c}$ is equal to-
 - (A) \vec{a} (B) \vec{b}
 - (C) \vec{c} (D) None of these
- **Q.11** If $\vec{a} = \hat{i} + 2\hat{j} 3\hat{k}$, $\vec{b} = \hat{i} 3\hat{j} + 2\hat{k}$ & $\vec{c} = 2\hat{i} \hat{j} + 5\hat{k}$

are vectors, then the vectors \vec{a} , \vec{b} , \vec{c} are-

- (A) linearly independent
- (B) collinear
- (C) linearly dependent
- (D) None of these

- Q.12 If two forces acting at a point are represented by nOP and mOQ and their resultant is represented by (m + n) OR, then R is a point such that(A) m : n = RQ : PR
 (B) m : n = PR : RQ
 (C) R is the midpoint of PQ
 (D) None of these
- **Q.13** If $4\hat{i} + 7\hat{j} + 8\hat{k}$, $2\hat{i} + 3\hat{j} + 4\hat{k}$ and $2\hat{i} + 5\hat{j} + 7\hat{k}$ are the position vectors of the vertices A, B and C respectively of triangle ABC. The position vector of the point where the bisector of angle A meets BC is-

(A)
$$\frac{2}{3} (-3\hat{i}-4\hat{j}-3\hat{k})$$

(B) $\frac{6\hat{i}+13\hat{j}+18\hat{k}}{3}$
(C) $\frac{2}{3} (6\hat{i}+8\hat{j}+6\hat{k})$
(D) $-\frac{2}{3} (6\hat{i}+8\hat{j}+6\hat{k})$

- Q.14 If \vec{p} , \vec{q} , \vec{r} , \vec{s} are position vectors of points P, Q, R, S such that $\vec{p} - \vec{q} = 2(\vec{s} - \vec{r})$, then-(A) PQ and RS bisect each other (B) QS and PR bisect each other (C) PQ and RS divide each other in 2 : 1 (D) QS and PR divide each other in 2 : 1
- Q.15 ABCDE is a pentagon. Force \overrightarrow{AB} , \overrightarrow{AE} , \overrightarrow{DC} , \overrightarrow{ED} act at a point. Which force should be added to this system to make the resultant 2 \overrightarrow{AC} -
 - (A) \overrightarrow{AC} (B) \overrightarrow{BC}
 - (C) \overrightarrow{BD} (D) \overrightarrow{AD}
- Q.16 If G and G' be centroides of triangles ABC and A'B'C'. Then $\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'}$ is equal to -
 - (A) $\overrightarrow{GG'}$ (B) $2 \overrightarrow{GG'}$
 - (C) $3 \overrightarrow{GG'}$ (D) $\frac{2}{3} \overrightarrow{GG'}$

- Q.17 If \vec{a} , \vec{b} , \vec{c} be any three unit vectors such that $3\vec{a} + 4\vec{b} + 5\vec{c} = \vec{0}$, then-(A) $\vec{a} \parallel \vec{b}$ (B) $\vec{b} \parallel \vec{c}$ (C) $\vec{a} \perp \vec{b}$ (D) None of these
- **Q.18** If \vec{a} , \vec{b} , \vec{c} be any three unit vectors such that \vec{a} and \vec{b} are perpendicular to each other and $2\vec{a} - 3\vec{b} = \lambda \vec{c}$, then value of λ is-
 - (A) 1 (B) 5 (C) $\sqrt{13}$ (D) 13
- Q.19 If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$, then vectors $\vec{a} - \vec{d}$ and $\vec{b} - \vec{c}$ will be-(A) perpendicular (B) parallel (C) coincident (D) None of these
- **Q.20** If \vec{p} , \vec{q} , \vec{r} be three mutually perpendicular vectors of equal magnitude, then the angle between \vec{p} and $\vec{p} + \vec{q} + \vec{r}$ is-
 - (A) $\cos^{-1}(1/\sqrt{3})$ (B) $\sin^{-1}(1/\sqrt{3})$ (C) $\cos^{-1}(1/3)$ (D) $\sin^{-1}(1/3)$
- Q.21 If \vec{a} , \vec{b} , \vec{c} are three non- coplanar vectors, then $\frac{\vec{a} \cdot \vec{b} \times \vec{c}}{\vec{c} \times \vec{a} \cdot \vec{b}} + \frac{\vec{b} \cdot \vec{a} \times \vec{c}}{\vec{c} \cdot \vec{a} \times \vec{b}}$ equals-(A) 0 (B) 2 (C) 2 [\vec{a} \vec{b} \vec{c}] (D) None of these
- Q.22 If $\vec{a} = (1, 1 1)$, $\vec{b} = (1, -1, 1)$, then a unit vector \vec{c} which is perpendicular to \vec{a} and coplanar with \vec{a} and \vec{b} is given by-(A) $(1/\sqrt{3})(-1, 1, 1)$ (B) $(1/\sqrt{6})(2, 1, -1)$ (C) $(1/\sqrt{6})(2, -1, 1)$ (D) None of these
- **Q.23** If \vec{a} , \vec{b} , \vec{c} are three non- coplanar vectors and \vec{p} , \vec{q} , \vec{r} are vectors defined as

$$\vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{a}\vec{b}\vec{c}]}, \quad \vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{a}\vec{b}\vec{c}]}, \quad \vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{a}\vec{b}\vec{c}]} \quad \text{then}$$
$$(\vec{a} + \vec{b}) \cdot \vec{p} + (\vec{b} + \vec{c}) \cdot \vec{q} + (\vec{c} + \vec{a}) \cdot \vec{r} \quad \text{equals-}$$
$$(A) \ 0 \qquad (B) \ 1 \qquad (C) \ 2 \qquad (D) \ 3$$

VECTOR

Q.24 If \vec{a} , \vec{b} , \vec{c} be any three non-zero non coplanar vectors and vectors

$$\vec{p} = \frac{\vec{b} \times \vec{c}}{\vec{a}.\vec{b} \times \vec{c}}, \ \vec{q} = \frac{\vec{c} \times \vec{a}}{\vec{a}.\vec{b} \times \vec{c}}, \ \vec{r} = \frac{\vec{a} \times \vec{b}}{\vec{a}.\vec{b} \times \vec{c}}, \ \text{then}$$

 $[\vec{p} \ \vec{q} \ \vec{r}]$ equals-

(A)
$$\vec{a}.\vec{b}\times\vec{c}$$
 (B) $\frac{1}{\vec{a}.\vec{b}\times\vec{c}}$
(C) 0 (D) None of these

Q.25 Let \vec{a} and \vec{b} two unit vectors. If vectors $3\vec{a} - 5\vec{b}$ and $\vec{a} + \vec{b}$ are perpendicular, then-

- (A) \vec{a} and \vec{b} are perpendicular
- (B) \vec{a} and \vec{b} are in opposite direction
- (C) angle between \vec{a} and \vec{b} is zero
- (D) None of these

Q.26 If $\vec{a} = (1, 1, 1)$, $\vec{c} = (0, 1, -1)$ are two vectors and \vec{b} is a vector such that $\vec{a} \times \vec{b} = \vec{c}$ and

> $\vec{a} \cdot \vec{b} = 3$, then \vec{b} equals-(A) (5, 2, 2) (B) (5/3, 2/3, 2/3)

(C)
$$(2/3, 5/3, 2/3)$$
 (D) $(2/3, 2/3, 5/3)$

Q.27 Let the vectors \vec{a} and \vec{b} are at right- angle, then what is value of m so that $\vec{a} + m\vec{b}$ and $\vec{a} + \vec{b}$ are at right angle-

- (A) 1 (B) 1
- (C) 0 (D) $-(|\vec{a}|/|\vec{b}|)^2$
- **Q.28** $[(a \times \vec{b}) \times (\vec{a} \times \vec{c})].\vec{d}$ equals-(A) $(\vec{a}.\vec{d})[\vec{a} \ \vec{b} \ \vec{c}]$ (B) $(\vec{c}.\vec{d})[\vec{a} \ \vec{b} \ \vec{c}]$ (C) $(\vec{b}.\vec{d})[\vec{a} \ \vec{b} \ \vec{c}]$ (D) None of these
- **Q.29** If $p\hat{i} + q\hat{j} + r\hat{k}$ is a unit vector and is perpendicular to vectors $2\hat{i} - \hat{j} + \hat{k}$ and $3\hat{i} + 2\hat{j} - \hat{k}$, then |p| equals-

(A)
$$\frac{1}{\sqrt{75}}$$
 (B) $\frac{2}{\sqrt{75}}$
(C) $\frac{3}{\sqrt{75}}$ (D) None of these

- Q.30 If $\vec{a} \times \vec{b} = \vec{c}$, $\vec{b} \times \vec{c} = \vec{a}$ then -(A) $|\vec{a}| = 1$, $|\vec{b}| = |\vec{c}|$ (B) $|\vec{b}| = 1$, $|\vec{c}| = |\vec{a}|$ (C) $|\vec{b}| = 2$, $|\vec{c}| = 2|\vec{a}|$ (D) $|\vec{c}| = 1$, $|\vec{a}| = 1$
- **Q.31** If vectors \vec{c} , $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$ and $\vec{b} = \hat{j}$ are such that \vec{a} , \vec{c} and \vec{b} form a right-handed orthogonal system, then \vec{c} is-
 - (A) $\vec{0}$ (B) $z\hat{i} x\hat{k}$ (C) $-z\hat{i} + x\hat{k}$ (D) $z\hat{k}$
- Q.32 If $\vec{u} = \vec{a} \vec{b}$ and $\vec{v} = \vec{a} + \vec{b}$, and $|\vec{a}| = |\vec{b}| = 2$ then $|\vec{u} \times \vec{v}|$ is equal to-

(A)
$$2\sqrt{16 - (\vec{a}.\vec{b})^2}$$
 (B) $\sqrt{16 - (\vec{a}.\vec{b})^2}$
(C) $2\sqrt{4 - (\vec{a}.\vec{b})^2}$ (D) $\sqrt{4 - (\vec{a}.\vec{b})^2}$

Q.33 If $\vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{a}\vec{b}\vec{c}]}$, $\vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{a}\vec{b}\vec{c}]}$, $\vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{a}\vec{b}\vec{c}]}$, where $\vec{a}, \vec{b}, \vec{c}$ are non- coplanar vectors, then $(\vec{a} + \vec{b} + \vec{c}).(\vec{p} + \vec{q} + \vec{r})$ equals-(A) 3 (B) 2 (C) 1 (D) 0

- Q.34 If a and b are non- parallel unit vectors such that $|\vec{a} + \vec{b}| = \sqrt{3}$, then $(2\vec{a} - 5\vec{b}).(3\vec{a} + \vec{b})$ equals-(A) 11/2 (B) 0 (C) -11/2 (D) 13/2
- Q.35 If A, B, C, D are four points in space, and $|\overrightarrow{AB} \times \overrightarrow{CD} + \overrightarrow{BC} \times \overrightarrow{AD} + \overrightarrow{CA} \times \overrightarrow{BD}| = \lambda$ (area of (ΔABC), then λ is equal to -(A) 2 (B) 3 (C) 4 (D) 1
- Q.36 If $\vec{a} \cdot \hat{i} = 4$, then $(\vec{a} \times \hat{j}) \cdot (2\hat{j} 3\hat{k})$ equals-(A) 0 (B) 2 (C) 12 (D) -12

Q.37 If $\vec{d} = p(\vec{a} \times \vec{b}) + q(\vec{b} \times \vec{c}) + r(\vec{c} \times \vec{a})$ and $[\vec{a} \ \vec{b} \ \vec{c}] = 1$, then (p+q+r) equals-

- (A) $\vec{d} \cdot (\vec{a} + \vec{b} + \vec{c})$ (B) $\vec{a} + \vec{b} + \vec{c}$ (C) 1 (D) None of these
- **Q.38** Let $\vec{b} = 3\hat{j} + 4\hat{k}$, $\vec{a} = \hat{i} + \hat{j}$ and let \vec{b}_1 and \vec{b}_2 be component vectors of \vec{b} parallel and perpendicular to \vec{a} . If $\vec{b}_1 = \frac{3}{2}\hat{i} + \frac{3}{2}\hat{j}$, then \vec{b}_2 is equal to-
 - (A) $-\frac{3}{2}\hat{i} + \frac{3}{2}\hat{j}$ (B) $\frac{3}{2}\hat{i} + \frac{3}{2}\hat{j} + 4\vec{k}$ (C) $-\frac{3}{2}\hat{i} + \frac{3}{2}\hat{j} + 4\vec{k}$
 - (D) None of these

- Q.39 If in a right- angled triangle ABC, the hypotenuse AB = p, $\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{BC} \cdot \overrightarrow{BA} + \overrightarrow{CA} \cdot \overrightarrow{CB}$ equals-(A) $2p^2$ (B) $p^{2/2}$ (C) p^{2} (D) 0
- **Q.40** The value of x for which the angle between the vectors $\vec{a} = -3\hat{i} + x\hat{j} + \hat{k}$ and $\vec{b} = x\hat{i} + 2x\hat{j} + \hat{k}$ is acute and the angle between b and x-axis lies between $\pi/2$ and π satisfy-(A) x < -1 only (B) x > 0 (C) x > 1 only (D) x < 0

If the vectors $\vec{a} = (clog_2 x) \hat{i} - 6\hat{j} + 3\hat{k}$ and Q.1 $\vec{b} = (\log_2 x) \hat{i} + 2\hat{j} + (2clog_2 x)\hat{k}$ make on obtuse angle for any $x \in (0, \infty)$, then c belongs to -

> $(A)(-\infty, 0)$ (B) $(-\infty, -4/3)$ (C)(-4/3, 0)(D) $(-4/3, \infty)$

- If \vec{a} , \vec{b} , \vec{c} are the position vectors of the Q.2 vertices of an equilateral triangle whose orthocentre is at the origin, then -
 - (B) $|\vec{a}|^2 = |\vec{b}|^2 + |\vec{c}|^2$ (A) $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ (C) $\vec{a} + \vec{b} = \vec{c}$ (D) None of these
- Let the pairs \vec{a} , \vec{b} and \vec{c} , \vec{d} each determines Q.3 a plane. Then the planes are parallel if -(A) $(\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) = \vec{0}$ (B) $(\vec{a} \times \vec{c}) \cdot (\vec{b} \times \vec{d}) = 0$ (C) $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0}$ (D) $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = 0$
- If \vec{a} and \vec{b} are not perpendicular to each **Q.4** other and $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}$, $\vec{r} \cdot \vec{c} = 0$ then \vec{r} is equal to
 - (A) $\vec{a} \vec{c}$
 - (B) $\vec{b} + x \vec{a}$ for all scalars x
 - (C) $\vec{b} \frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{c}} \vec{a}$
 - (D) None of these
- Let the unit vectors \vec{a} and \vec{b} be perpendicular Q.5 to each other and the unit vector \vec{c} be inclined at an angle θ to both \vec{a} and \vec{b} .
 - If $\vec{c} = x \vec{a} + y \vec{b} + z(\vec{a} \times \vec{b})$, then-(A) $x = \cos\theta$, $y = \sin\theta$, $z = \cos 2\theta$
 - (B) $x = \sin\theta$, $y = \cos\theta$, $z = \cos 2\theta$
 - (C) $x = y = \cos\theta$, $z^2 = \cos 2\theta$
 - (D) $x = y = \cos\theta$, $z^2 = -\cos 2\theta$

If the vectors $\vec{a} = \hat{i} + a\hat{j} + a^2\hat{k}$, Q.6 $\vec{b} = \hat{i} + b\hat{j} + b^2\hat{k}$, $\vec{c} = \hat{i} + c\hat{j} + c^2\hat{k}$ are three non-coplanar vectors and $\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} = 0,$

then the value of abc is-**(B)** 1

(A) 0

(C) 2 (D)
$$-1$$

Let $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ **Q.7** and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector \perp to both \vec{a} and \vec{b} . If the angle between \vec{a} and \vec{b} is $\pi/6$,

then
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2$$
 is equal to -
(A) 0 (B) 1
(C) $\frac{1}{4} |\vec{a}|^2 |\vec{b}|^2$ (D) $\frac{3}{4} |\vec{a}|^2 |\vec{b}|^2$

If \vec{a} , \vec{b} , \vec{c} are non-coplanar vectors, then **Q.8** $\vec{a}.\vec{a}$ $\vec{a}.\vec{b}$ $\vec{a}.\vec{c}$ $\vec{b}.\vec{a}$ $\vec{b}.\vec{b}$ $\vec{b}.\vec{c}$ equals- $\vec{c}.\vec{a}$ $\vec{c}.\vec{b}$ $\vec{c}.\vec{c}$ (A) $[\vec{a} \ \vec{b} \ \vec{c}]^2$ (B) $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$ (C) $[\vec{a} \ \vec{b} \ \vec{c}]^3$ (D) None of these

- If forces of magnitudes 6 and 7 units acting in Q.9 the directions $\hat{i} - 2\hat{j} + 2\hat{k}$ and $2\hat{i} - 3\hat{j} + 6\hat{k}$ respectively act on a particle which is displaced from the point P(2, -1, -3) to Q(3, -1, 1) then the work done by the forces is-(A) 44 units (B) -4 units (C) 7 units (D) -7 units
- If \vec{a} , \vec{b} , \vec{c} are three non-zero vectors such Q.10 that $\vec{a} + \vec{b} + \vec{c} = 0$ and $m = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$, then
 - (A) m < 0(B) m > 0(C) m = 0(D) m = 3.

Q.11 If the position vectors of three points A, B, C are respectively $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 3\hat{j} - 4\hat{k}$ and $7\hat{i} + 4\hat{j} + 9\hat{k}$, then the unit vector perpendicular to the plane of triangle ABC is-

(A)
$$31\hat{i} - 18\hat{j} - 9\hat{k}$$
 (B) $\frac{31\hat{i} - 38\hat{j} - 9\hat{k}}{\sqrt{2486}}$
(C) $\frac{31\hat{i} + 38\hat{j} + 9\hat{k}}{\sqrt{2486}}$ (D) None of these

- Q.12 Vectors \vec{a} and \vec{b} are inclined at an angle $\theta = 120^{\circ}$. If $|\vec{a}| = 1$, $|\vec{b}| = 2$, then $[(\vec{a} + 3\vec{b}) \times (3\vec{a} - \vec{b})]^2$ is equal to-(A) 225 (B) 275 (C) 325 (D) 300
- **Q.13** A parallelogram is constructed on the vectors $\vec{a} = 3 \vec{\alpha} - \vec{\beta}$, $\vec{b} = \vec{\alpha} + 3 \vec{\beta}$. If $|\vec{\alpha}| = |\vec{\beta}| = 2$ and the angle between $\vec{\alpha}$ and $\vec{\beta}$ is $\frac{\pi}{3}$, then the length of a diagonal of the parallelogram is-(A) $4\sqrt{5}$ (B) $\sqrt{3}$ (C) $4\sqrt{7}$ (D) None of these
- Q.14 $(\vec{a} + 2\vec{b} \vec{c}) \cdot \{(\vec{a} \vec{b}) \times (\vec{a} \vec{b} \vec{c})\}$ is equal to (A) $[\vec{a} \ \vec{b} \ \vec{c}]$ (B) $2[\vec{a} \ \vec{b} \ \vec{c}]$
 - (A) $[\vec{a} \ \vec{b} \ \vec{c}]$ (B) $2[\vec{a} \ \vec{b} \ \vec{c}]$ (C) $3[\vec{a} \ \vec{b} \ \vec{c}]$ (D) 0
- Q.15 If the vectors \vec{a} and \vec{b} are mutually perpendicular, then $\vec{a} \times \{\vec{a} \times \{\vec{a} \times (\vec{a} \times \vec{b})\}\}$ is equal to-
 - (A) $|\vec{a}|^2 \vec{b}$ (B) $|\vec{a}|^3 \vec{b}$
 - (C) $|\vec{a}|^4 \vec{b}$ (D) None of these
- Q.16 The area of parallelogram constructed on the vectors $\vec{a} = \vec{p} + 2\vec{q}$ and $\vec{b} = 2\vec{p} + \vec{q}$ where \vec{p} and \vec{q} are unit vectors forming an angle of 30° is-

(A) 3/2	(B) 1
(C) 0	(D) None of these

Statement type Questions

Each of the questions (Q.No.17 to 27) given below consists of Statement -I and Statement-II. Use the following key to choose the appropriate answer.

- (A) If both Statement- I Statement- II are true, and Statement-II is the correct explanation of Statement- I.
- (B) If Statement-I and Statement-II are true but Statement-II is not the correct explanation of Statement-I
- (C) If Statement-I is true but Statement-II is false
- (D) If Statement-I is false but Statement-II is true
- Q. 17 Statement-1 (A) : If the difference of two unit vectors is again a unit vector then angle between them is 60°

Statement-2 (R) : If angle between $\vec{a} \& \vec{b}$ is acute than $|\vec{a}.\vec{b}| \le |\vec{a}| |\vec{b}|$

- Q.18 Statement-1 (A) : ABCDEF is a regular hexagon and $\overrightarrow{AB} = \vec{a}$, $\overrightarrow{BC} = \vec{b}$ and $\overrightarrow{CD} = \vec{c}$, then \overrightarrow{EA} is equal to $-(\vec{b} + \vec{c})$. Statement-2 (R) : $\overrightarrow{AE} = \overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD}$
- Q.19 Statement-1(A) : In ABC, $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \vec{0}$ Statement-2 (R) : If $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$ then $\overrightarrow{AB} = \vec{a} + \vec{b}$ (Triangle law of addition)
- Q.20 Statement-1 (A) : $\vec{a} = \hat{i} + p \hat{j} + 2 \hat{k}$ and $\vec{b} = 2 \hat{i} + 3 \hat{j} + q \hat{k}$ are parallel vector. If p = 3/2, q = 4. Statement-2 (R) : If $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ are parallel $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$

Q.21 Statement-1 (A) : If \vec{a} , \vec{b} , \vec{c} are three coplanar vectors then the vectors $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{a}$ are also coplanar.

Statement-2 (R) : If \vec{a} , \vec{b} , \vec{c} are coplanar vectors then $[\vec{a} \ \vec{b} \ \vec{c}] = 0$

- Q.22 Statement-1 (A) : Three points A(\vec{a}), B(\vec{b}), C(\vec{c}) are collinear if $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \vec{0}$ Statement-2 (R) : Points \vec{A} , \vec{B} , \vec{C} are collinear $\Leftrightarrow \vec{AB} = t \vec{AC}$, $t \in R$.
- Q.23 Let \overrightarrow{PQ} , \overrightarrow{QR} , \overrightarrow{RS} , \overrightarrow{ST} , \overrightarrow{TU} , \overrightarrow{UP} denote the sides of a regular hexagon. Statement-1 (A): $\overrightarrow{PQ} \times (\overrightarrow{RS} + \overrightarrow{ST}) \neq \vec{0}$ Statement-2 (R): $\overrightarrow{PQ} \times \overrightarrow{RS} = \vec{0}$ and $\overrightarrow{PQ} \times \overrightarrow{ST} = \vec{0}$
- Q.24 Statement-1 (A) : Vectors $-\lambda^2 \hat{i} + \hat{j} + \hat{k}$, $\hat{i} - \lambda^2 \hat{j} + \hat{k}$ & $\hat{i} + \hat{j} - \lambda^2 \hat{k}$ are coplanar for only two values of λ . Statement-2 (R) : Three vector \vec{a} , \vec{b} , \vec{c} are coplanar if \vec{a} . ($\vec{b} \times \vec{c}$) = 0.
- Q.25 Statement-1 (A) : Three vector \vec{a} , \vec{b} , \vec{c} are non coplanar then $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$ are also non coplanar.

Statement-2 (R) : $[\vec{a} + \vec{b} \ \vec{b} + \vec{c} \ \vec{c} + \vec{a}]$ = $[\vec{a} \ \vec{b} \ \vec{c}]$

Q.26 Statement-1(A) : If \vec{a} , \vec{b} , \vec{c} are non coplanar vectors then vectors

 $2\vec{a} - \vec{b} + 3\vec{c}, \vec{a} + \vec{b} - 2\vec{c}$,

 $\vec{a} + \vec{b} - 3\vec{c}$ are also non coplanar.

Statement-2 (R) : Three vector \vec{A} , \vec{B} , \vec{C} are non coplanar then $[\vec{A} \ \vec{B} \ \vec{C}] \neq 0$ Q.27 Statement-1 (A) : If \vec{a} , \vec{b} , \vec{c} are unit coplanar vectors then $[2\vec{a} - \vec{b} \ 2\vec{b} - \vec{c} \ 2\vec{c} - \vec{a} \] = 0$ Statement-2 (R) : $[\vec{a} \ \vec{b} \ \vec{c} \] = 0$

Passage Based Question

Passage-1

The scalar triple product of three vectors \vec{a} , \vec{b} , \vec{c} is denoted by $[\vec{a} \ \vec{b} \ \vec{c}]$ and is defined as $[\vec{a} \ \vec{b} \ \vec{c}] = \vec{a} . (\vec{b} \times \vec{c})$. Three vectors \vec{a} , \vec{b} , \vec{c} are coplanar vectors if and only if $[\vec{a} \ \vec{b} \ \vec{c}] = 0$. Volume of the parallelopiped whose three concurrent edges are \vec{a} , \vec{b} , \vec{c} is $|[\vec{a} \ \vec{b} \ \vec{c}]|$

- Q.28 If the volume of a parallelopiped whose three concurrent edges are $-12\hat{i} + \lambda \hat{k}$, $3\hat{j} - \hat{k}$ and $2\hat{i} + \hat{j} - 15\hat{k}$ is 546 then $\lambda =$ (A) 2/3 (B) -1 (C) -4 (D) -3
- Q.29 If \vec{a} , \vec{b} , \vec{c} , \vec{d} are four coplanar points then $[\vec{b} \ \vec{c} \ \vec{d}] + [\vec{c} \ \vec{a} \ \vec{d}] + [\vec{a} \ \vec{b} \ \vec{d}]$ is (A) 0 (B) 1 (C) $[\vec{a} \ \vec{b} \ \vec{c}]$ (D) $2[\vec{a} \ \vec{b} \ \vec{c}]$

Passage - 2 :

Let \vec{a} , \vec{b} , \vec{c} are non coplanar vectors and let $\vec{b} \times \vec{c}$, \vec{c} , $\vec{c} \times \vec{a}$

the equations
$$\vec{a}' = \frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}$$
, $\vec{b}' = \frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}$, $\vec{c}' =$

 $\frac{\vec{a} \times \vec{b}}{[\vec{a} \ \vec{b} \ \vec{c}]}$ are reciprocal system of vectors

ā, b, c.

On the basis of above information, answer the following questions.

- Q.30 The value of the expression $\vec{a} \cdot \vec{a}' + \vec{b} \cdot \vec{b}' + \vec{c} \cdot \vec{c}'$ equals-(A) 0 (B) 1
 - (C) 2 (D) 3

- **Q.31** The expression $\vec{a} \times \vec{a}' + \vec{b} \times \vec{b}' + \vec{c} \times \vec{c}'$ is
 - (A) a unit vector
 - (B) null vector
 - (C) $\frac{|\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2}{|\vec{a}'|^2 + |\vec{b}'|^2 + |\vec{c}'|^2}$
 - (D) arbitrary vector
- Q.32 The value of the expression
 - $\vec{a}' \times \vec{b}' + \vec{b}' \times \vec{c}' + \vec{c}' \times \vec{a}'$ is-

(A)
$$\frac{\vec{a} + \vec{b} - \vec{c}}{[\vec{a} \ \vec{b} \ \vec{c}]}$$
 (B) $\frac{\vec{a} - \vec{b} + \vec{c}}{[\vec{a} \ \vec{b} \ \vec{c}]}$

(C)
$$\frac{-\vec{a}+\vec{b}+\vec{c}}{[\vec{a}\ \vec{b}\ \vec{c}]}$$
 (D)
$$\frac{\vec{a}+\vec{b}+\vec{c}}{[\vec{a}\ \vec{b}\ \vec{c}]}$$

Q.33 If $\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$, $\vec{b} = \hat{i} - \hat{j} - 2\hat{k}$, $\vec{c} = -\hat{i} + 2\hat{j} + 2\hat{k}$, then $\vec{c}' \times \vec{a}'$ equals (A) $\frac{\hat{i} + \hat{j} - 2\hat{k}}{3}$ (B) $\frac{\hat{i} - \hat{j} - 2\hat{k}}{3}$ (C) $\frac{\hat{i} + \hat{j} - 2\hat{k}}{9}$ (D) $\frac{-\hat{i} + \hat{j} - 2\hat{k}}{3}$

LEVEL-4

(Question asked in previous AIEEE and IIT-JEE)

SECTION –A

- If \vec{a} , \vec{b} , \vec{c} are three non zero vectors out of Q.1 which two are not collinear. If $\vec{a} + 2\vec{b} \& \vec{c}$; $\vec{b} + 3\vec{c}$ and \vec{a} are collinear then $\vec{a} + 2\vec{b} + 6\vec{c}$ is – [AIEEE- 2002] (A) Parallel to \vec{c} (B) Parallel to \vec{a} (C) Parallel to \vec{b} (D) $\vec{0}$ If $[\vec{a} \ \vec{b} \ \vec{c}] = 4$ then $[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}] =$ 0.2 [AIEEE- 2002] (A) 4 (B) 2 (C) 8 (D) 16 If $\vec{c} = 2\lambda (\vec{a} \times \vec{b}) + 3\mu (\vec{b} \times \vec{a}); \vec{a} \times \vec{b} \neq \vec{0}$, Q.3 \vec{c} . $(\vec{a} \times \vec{b}) = 0$ then- [AIEEE-2002] (A) $\lambda = 3\mu$ (B) $2\lambda = 3\mu$ (C) $\lambda + \mu = 0$ (D) None of these
- Q.4 If $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$, $\vec{b} = 5\hat{i} 3\hat{j} + \hat{k}$, then along Component of \vec{a} on \vec{b} is [AFFF 2002]

Component of \vec{a} on \vec{b} is- [AIEEE-2002]

(A)
$$3\hat{i} - 3\hat{j} + \hat{k}$$
 (B) $\frac{9(5\hat{i} - 3\hat{j} + \hat{k})}{35}$
(C) $\frac{(5\hat{i} - 3\hat{j} + \hat{k})}{35}$ (D) $9(5\hat{i} - 3\hat{j} + \hat{k})$

Q.5 A unit vector perpendicular to the plane of $\vec{a} = 2\hat{i} - 6\hat{j} - 3\hat{k}, \ \vec{b} = 4\hat{i} + 3\hat{j} - \hat{k}$ is-

[AIEEE- 2002]

(A)
$$\frac{4\hat{i}+3\hat{j}-\hat{k}}{\sqrt{26}}$$
 (B) $\frac{2\hat{i}-6\hat{j}-3\hat{k}}{7}$
(C) $\frac{3\hat{i}-2\hat{j}+6\hat{k}}{7}$ (D) $\frac{2\hat{i}-3\hat{j}-6\hat{k}}{7}$

Q.6 Let $\vec{u} = \hat{i} + \hat{j}$, $\vec{v} = \hat{i} - \hat{j}$ and $\vec{w} = \hat{i} + 2\hat{j} + 3\hat{k}$. If \hat{n} is a unit vector such that \vec{u} . $\hat{n} = 0$ and \vec{v} . $\hat{n} = 0$, then $|\vec{w}| \cdot \hat{n} |$ is equal to-[AIEEE- 2003] (A) 3 (B) 0 (C) 1 (D) 2

- Q.7 A particle acted on by constant forces $4\hat{i}+\hat{j}-3\hat{k}$ and $3\hat{i}+\hat{j}-\hat{k}$ is displaced from the point $\hat{i}+2\hat{j}+3\hat{k}$ to the point $5\hat{i}+4\hat{j}+\hat{k}$. The total work done by the forces is-[AIEEE-2003] (A) 50 units (B) 20 units (C) 30 units (D) 40 units
- **Q.8** The vectors $\overrightarrow{AB} = 3\hat{i} + 4\hat{k} & \overrightarrow{AC} = 5\hat{i} 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC. The length of the median through A is- [AIEEE-2003] (A) $\sqrt{288}$ (B) $\sqrt{18}$ (C) $\sqrt{72}$ (D) $\sqrt{33}$
- Q.9 \vec{a} , \vec{b} , \vec{c} are 3 vectors, such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ $|\vec{a}| = 1, |\vec{b}| = 2, |\vec{c}| = 3$, then $(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a})$ is equal to-(A) 1 (B) 0 (C) - 7 (D) 7
- Q.10 Consider points A, B, C and D with position vectors $7\hat{i} - 4\hat{j} + 7\hat{k}$, $\hat{i} - 6\hat{j} + 10\hat{k}$, $-\hat{i} - 3\hat{j} + 4\hat{k}$ and $5\hat{i} - \hat{j} + 5\hat{k}$ respectively. Then ABCD is a- [AIEEE- 2003] (A) parallelogram but not a rhombus (B) square (C) rhombus (D) None of these
- Q.11If \vec{u} , \vec{v} and \vec{w} are three non- coplanar
vectors, then $(\vec{u} + \vec{v} \vec{w}) \cdot (\vec{u} \vec{v}) \times (\vec{v} \vec{w})$
equals[AIEEE- 2003]
(A) $3 \vec{u} \cdot \vec{v} \times \vec{w}$ (B) 0
(C) $\vec{u} \cdot \vec{v} \times \vec{w}$ (D) $\vec{u} \cdot \vec{w} \times \vec{v}$
- Q.12 If \vec{a} , \vec{b} , \vec{c} are non- coplanar vectors and λ is a real number, then the vectors $\vec{a} + 2\vec{b} + 3\vec{c}$, $\lambda\vec{b} + 4\vec{c}$ and $(2\lambda - 1)\vec{c}$ are non- coplanar for [AIEEE- 2004] (A) all values of λ (B) all except one value of λ
 - (C) all except two values of λ
 - (D) no value of λ

- Q.13 Let \vec{u} , \vec{v} , \vec{w} be such that $|\vec{u}| = 1$, $|\vec{v}| = 2$, $|\vec{w}| = 3$. If the projection of \vec{v} along \vec{u} is equal to that of \vec{w} along \vec{u} , \vec{v} & \vec{w} are perpendicular to each other then $|\vec{u} - \vec{v} + \vec{w}|$ equals-(A) 2 (B) $\sqrt{7}$ (C) $\sqrt{14}$ (D) 14
- Q.14 Let \vec{a} , \vec{b} and \vec{c} be non-zero vectors such that no two are collinear and

 $(\vec{a} \times \vec{b}) \times \vec{c} = \frac{1}{3} |\vec{b}| |\vec{c}|\vec{a}$ If θ is the acute

angle between the vectors \vec{b} and \vec{c} , then sin θ equals- [AIEEE- 2004]

(A) $\frac{1}{3}$ (B) $\frac{\sqrt{2}}{3}$ (C) $\frac{2}{3}$	(D) $\frac{2\sqrt{2}}{3}$
--	---------------------------

- Q.15 For any vector \vec{a} , $|\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2$ is equal to – [AIEEE- 2005]
 - (A) $|\vec{a}|^2$ (B) $2|\vec{a}|^2$
 - (C) $3|\vec{a}|^2$ (D) None of these
- Q.16 If C is the mid point of AB and P is any point outside AB, then [AIEEE-2005]
 - (A) $\overrightarrow{PA} + \overrightarrow{PB} = 2 \overrightarrow{PC}$
 - (B) $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC}$
 - (C) $\overrightarrow{PA} + \overrightarrow{PB} + 2 \overrightarrow{PC} = \overrightarrow{0}$
 - (D) $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \overrightarrow{0}$
- Q.17If \vec{a} , \vec{b} , \vec{c} are non-coplanar vectors and λ is
a real number then
 $[\lambda(\vec{a} + \vec{b}) \ \lambda^2 \vec{b} \ \lambda \vec{c}] = [\vec{a} \ \vec{b} + \vec{c} \ \vec{b}]$ for -
[AIEEE-2005]
(A) exactly one value of λ
(B) no value of λ
(C) exactly three values of λ
(D) exactly two values of λ
(D) exactly two values of λ Q.18If $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$, where \vec{a} , $\vec{b} \& \vec{c}$ are
any three vectors such that $\vec{a} \cdot \vec{b} \neq 0$, $\vec{b} \cdot \vec{c} \neq$
0, then \vec{a} and \vec{c} are –
[AIEEE-2006]
(A) inclined at an angle of $\pi/6$ between them
 - (B) perpendicular
 - (C) parallel
 - (D) inclined at an angle of $\pi/3$ between them

- Q.19 ABC is a triangle, right angled at A. The resultant of the forces acting along \overrightarrow{AB} , \overrightarrow{AC} with magnitudes $\frac{1}{AB}$ and $\frac{1}{AC}$ respectively is the force along \overrightarrow{AD} , where D is the foot of the perpendicular from A onto BC. The magnitude of the resultant is- [AIEEE-2006] (A) $\frac{(AB)(AC)}{AB+AC}$ (B) $\frac{1}{AB} + \frac{1}{AC}$
 - (C) $\frac{1}{AD}$ (D) $\frac{AB^2 + AC^2}{(AB)^2 (AC)^2}$

Q.20 The values of a, for which the points A, B, C with position vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$ and $a\hat{i} - 3\hat{j} + \hat{k}$ respectively are the vertices of a right-angled triangle with $C = \frac{\pi}{2} \operatorname{are} - \frac{[AIEEE-2006]}{(A) - 2 \operatorname{and} - 1}$ (B) -2 and 1 (C) 2 and -1 (D) 2 and 1 **Q.21** If \vec{u} and \vec{v} are unit vectors and θ is the acute

- Q.21 If u and v are unit vectors and θ is the acute angle between them, then $2\vec{u} \times 3\vec{v}$ is a unit vector for – [AIEEE- 2007] (A) exactly two values of θ (B) more than two values of θ (C) no value of θ (D) exactly one value of θ
- Q.22 Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} \hat{j} + 2\hat{k}$ and $\vec{c} = x\hat{i} + (x - 2)\hat{j} - \hat{k}$. If the vector \vec{c} lies in the plane of $\vec{a} \ll \vec{b}$ then x equals -

[AIEEE - 2007] (A) 0 (B) 1 (C) -4 (D) -2 (

by $\vec{a} = 8\vec{b}$ and $\vec{c} = -7\vec{b}$. Then the angle between \vec{a} and \vec{c} is [AIEEE-2008]

(A)
$$\frac{\pi}{4}$$
 (B) $\frac{\pi}{2}$ (C) π (D) 0

Q.24 The vector $\vec{a} = \alpha \hat{i} + 2 \hat{j} + \beta \hat{k}$ lies in the plane of the vectors $\vec{b} = \hat{i} + \hat{j}$ & $\vec{c} = \hat{j} + \hat{k}$ & bisects the angle between \vec{b} & \vec{c} . Then which one of the following gives possible values of $\alpha \& \beta$? [AIEEE- 2008] (A) $\alpha = 1, \beta = 2$ (B) $\alpha = 2, \beta = 1$ (C) $\alpha = 1, \beta = 1$ (D) $\alpha = 2, \beta = 2$ Q.25 If $\vec{u}, \vec{v}, \vec{w}$ are non-coplanar vectors and p, q are real numbers, then the equality $[3\vec{u} \ p\vec{v} \ p\vec{w}] - [p\vec{v} \ \vec{w} \ q\vec{u}] - [2\vec{w} \ q\vec{v} \ q\vec{u}] = 0$ holds for : [AIEEE -2009] (A) exactly two values of (p, q)(B) more than two but not all values of (p, q)(C) all values of (p, q)(D) exactly one value of (p, q)Let $\vec{a} = \hat{j} - \hat{k}$ and $\vec{c} = \hat{i} - \hat{j} - \hat{k}$. Then the vector Q.26 \vec{b} satisfying $\vec{a} \times \vec{b} + \vec{c} = \vec{0}$ and $\vec{a} \cdot \vec{b} = 3$ is – [AIEEE -2010] (A) $-\hat{i}+\hat{j}-2\hat{k}$ (B) $2\hat{i}-\hat{j}+2\hat{k}$ (C) $\hat{i} - \hat{i} - 2\hat{k}$ (D) $\hat{i} + \hat{i} - 2\hat{k}$ If the vectors $\vec{a} = \hat{i} - \hat{j} + 2\hat{k}$, $\vec{b} = 2\hat{i} + 4\hat{j} + \hat{k}$ **Q.27** and $\vec{c} = \lambda \hat{i} + \hat{j} + \mu \hat{k}$ are mutually orthogonal, then $(\lambda, \mu) =$ [AIEEE -2010] (B) (2, -3)(A) (-3, 2)(C) (-2, 3) (D) (3, -2)If $\vec{a} = \frac{1}{\sqrt{10}} (3\hat{i} + \hat{k})$ and $\vec{b} = \frac{1}{7} (2\hat{i} + 3\hat{j} - 6\hat{k})$, Q.28 then the value of $(2\vec{a} - \vec{b}) \bullet [(\vec{a} \times \vec{b}) \times (\vec{a} + 2\vec{b})]$ is -(A) -5 (B) -3 (C) 5 (D) 3 The vectors a and b are not perpendicular and Q.29 \overrightarrow{c} and \overrightarrow{d} are two vectors satisfying : $\overrightarrow{b}\times\overrightarrow{c}=\overrightarrow{b}\times\overrightarrow{d}$ and $\overrightarrow{a}.\overrightarrow{d}=0$. Then the vector d is equal to -[AIEEE -2011] (A) $\overrightarrow{b} - \begin{pmatrix} \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{a} & \overrightarrow{b} \end{pmatrix} \overrightarrow{c}$ (B) $\overrightarrow{c} + \begin{pmatrix} \overrightarrow{a} & \overrightarrow{c} \\ \overrightarrow{a} & \overrightarrow{c} \\ \overrightarrow{a} & \overrightarrow{b} \end{pmatrix} \overrightarrow{b}$ (C) $\vec{b} + \begin{pmatrix} \vec{b} & \vec{c} \\ \vec{b} & \vec{c} \\ \vec{a} & \vec{b} \end{pmatrix} \vec{c}$ (D) $\vec{c} - \begin{pmatrix} \vec{a} & \vec{c} \\ \vec{a} & \vec{c} \\ \vec{a} & \vec{b} \end{pmatrix} \vec{b}$ Let \hat{a} and \hat{b} be two unit vectors. If the vectors **O.30** $\vec{c} = \hat{a} + 2\hat{b}$ and $\vec{d} = 5\hat{a} - 4\hat{b}$ are perpendicular to each other, then the angle between \hat{a} and \hat{b} [AIEEE -2012] (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{6}$ Let ABCD be a parallelogram such that Q.31 $\overrightarrow{AB} = \overrightarrow{q}$, $\overrightarrow{AD} = \overrightarrow{p}$ and $\angle BAD$ be an acute angle. If \vec{r} is the vector that coincides with the

altitude directed from the vertex B to the side AD, then \vec{r} is given by : [AIEEE -2012]

(A)
$$\vec{r} = -\vec{q} + \left(\frac{\vec{p} \cdot \vec{q}}{\vec{p} \cdot \vec{p}}\right) \vec{p}$$

(B) $\vec{r} = \vec{q} - \left(\frac{\vec{p} \cdot \vec{q}}{\vec{p} \cdot \vec{p}}\right) \vec{p}$
(C) $\vec{r} = -3\vec{q} + \frac{3(\vec{p} \cdot \vec{q})}{(\vec{p} \cdot \vec{p})} \vec{p}$
(D) $\vec{r} = 3\vec{q} - \frac{3(\vec{p} \cdot \vec{q})}{(\vec{p} \cdot \vec{p})} \vec{p}$

O.32

If the vectors $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC, then the length of the median through A is - [JEE Main - 2013] (A) $\sqrt{33}$ (B) $\sqrt{45}$ (C) $\sqrt{18}$ (D) $\sqrt{72}$

SECTION-B

Q.1 Let a, b, c be distinct non-negative numbers. If the vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k} & c\hat{i} + c\hat{j} + c\hat{k}$

- b k lie in a plane, then c is [IIT- 1993/ AIEEE -2005]
 (A) The Arithmetic mean of a and b
 (B) The Geometric mean of a and b
 (C) The Harmonic mean of a and b
 (D) Equal to zero+
- **Q.2** Let α, β, γ be distinct real numbers. The points with position vectors $\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$, $\beta \hat{i} + \gamma \hat{j} + \alpha \hat{k}$, $\gamma \hat{i} + \alpha \hat{j} + \beta \hat{k}$ **[IIT Scr. 1994]** (A) are collinear (B) form an equilateral triangle (C) form an isosceles triangle (D) form a right angled triangle

Q.3 Let $\vec{a} = \hat{i} - \hat{j}$, $\vec{b} = \hat{j} - \hat{k}$, $\vec{c} = \hat{k} - \hat{i}$. If \hat{d} is a unit vector such that $\vec{a} \cdot \hat{d} = 0 = [\vec{b} \ \vec{c} \ \hat{d}]$, then \hat{d} equals- $(A) \pm \frac{\hat{i} + \hat{j} - 2\hat{k}}{\sqrt{6}}$ (B) $\pm \frac{\hat{i} + \hat{j} - \hat{k}}{\sqrt{3}}$ (C) $\pm \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$ (D) $\pm \hat{k}$

- Q.4 If \vec{a} , \vec{b} , \vec{c} are non- coplanar unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$ then the angle between \vec{a} and \vec{b} is- [IIT-1995] (A) $\frac{3\pi}{4}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) π
- Q.5 A vector \vec{a} has components 2p and 1 with respect to a rectangular Cartesian system. The system is rotated thro' a certain angle about the origin in the counterclockwise sense. If, with respect to new system, \vec{a} has components p + 1 and 1, then [IIT-1996] (A) p = 0 (B) p = 1 or p = $-\frac{1}{3}$ (C) p = -1 or p = $\frac{1}{3}$ (D) p = 1 or p = -1
- Q.6 Let $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = 10\overrightarrow{a} + 2\overrightarrow{b}$ and $\overrightarrow{OC} = \overrightarrow{b}$ where O, A, C are non- collinear. Let p denote the area of the quadrilateral OABC and q denote the area of the parallelogram with OA and OC as adjacent sides. Then $\frac{p}{q}$ is equal to-(A) 4 (B) 6 (C) $\frac{1}{2} \frac{|\overrightarrow{a} - \overrightarrow{b}|}{|\overrightarrow{a}|}$ (D) None of these Q.7 If \overrightarrow{a} , \overrightarrow{b} & \overrightarrow{c} are vectors such that $|\overrightarrow{b}| = |\overrightarrow{c}|$,
- (Q.7 If \vec{a} , \vec{b} and \vec{c} are vectors such that $|\vec{b}| |\vec{c}|$, then $[(\vec{a} + \vec{b}) \times (\vec{a} + \vec{c})] \times (\vec{b} \times \vec{c}) \cdot (\vec{b} + \vec{c}) =$ [IIT-1997] (A) 1 (B) - 1 (C) 0 (D) None of these
- Q.8 Let \vec{a} , \vec{b} and \vec{c} be three vectors having magnitudes 1, 1 and 2 respectively. If $\vec{a} \times (\vec{a} \times \vec{c}) - \vec{b} = \vec{0}$, then the acute angle between \vec{a} and \vec{c} is-[IIT-1997] (A) $\frac{\pi}{4}$ (B) $\frac{\pi}{6}$
 - (C) $\frac{\pi}{3}$ (D) None of these

- Q.9 If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{c} = \hat{i} + \alpha\hat{j} + \beta\hat{k}$ are linearly dependent vectors and $|\vec{c}| = \sqrt{3}$, then-[IIT-1998] (A) $\alpha = 1, \beta = -1$ (B) $\alpha = 1, \beta = \pm 1$ (C) $\alpha = -1, \beta = \pm 1$ (D) $\alpha = \pm 1, \beta = 1$
- Q.10 Let $\vec{a} = 2\hat{i} + \hat{j} 2\hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. If \vec{c} is vector such that $\vec{a} \cdot \vec{c} = |\vec{c}|$, $|\vec{c} - \vec{a}| = 2\sqrt{2}$ and the angle between $(\vec{a} \times \vec{b})$ and \vec{c} is 30° then $|(\vec{a} \times \vec{b}) \times \vec{c}| =$ [IIT-1999] (A) $\frac{2}{3}$ (B) $\frac{3}{2}$ (C) 2 (D) 3
- Q.11 Let \vec{a} , \vec{b} , \vec{c} be the position vectors of three vertices. A, B, C of a triangle respectively. Then the area of this triangle is given by-[IIT -2000] (A) $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$
 - (B) $\frac{1}{2} (\vec{a} \times \vec{b}) \cdot \vec{c}$ (C) $\frac{1}{2} |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|$ (D) None of these
- Q.12 Let $\vec{a} = \hat{i} \hat{k}$, $\vec{b} = x\hat{i} + \hat{j} + (1 x)\hat{k}$ and $\vec{c} = y\hat{i} + x\hat{j} + (1 + x - y)\hat{k}$. Then $[\vec{a} \ \vec{b} \ \vec{c}]$ depends on - [IIT scr. 2001/AIEEE -2005] (A) only x (B) only y (C) neither x nor y (D) both x and y
- Q.13 If \vec{a} , \vec{b} , \vec{c} are unit vectors, then $|\vec{a} - \vec{b}|^2 + |\vec{b} - \vec{c}|^2 + |\vec{c} - \vec{a}|^2$ does not exceed-(A) 4 (B) 9 (C) 8 (D) 6
- Q.14 If \vec{a} and \vec{b} are two unit vectors such that $\vec{a} + 2\vec{b}$ and $5\vec{a} - 4\vec{b}$ are perpendicular to each other then the angle between \vec{a} and \vec{b} is [IIT scr. 2002] (A) 45° (B) 60° (C) $\cos^{-1}\left(\frac{1}{3}\right)$ (D) $\cos^{-1}\left(\frac{2}{7}\right)$

Q.15 Let $\vec{V} = 2\hat{i} + \hat{j} - \hat{k}$ and $\vec{W} = \hat{i} + 3\hat{k}$. If \vec{U} is a unit vector; then the maximum value of the scalar triple product $[\vec{U} \ \vec{V} \ \vec{W}]$ is –

[IIT scr. 2002] (A) -1 (B) $\sqrt{10} + \sqrt{6}$ (C) $\sqrt{59}$ (D) $\sqrt{60}$

Q.16 If $\vec{a} = \hat{i} + a\hat{j} + \hat{k}$; $\vec{b} = \hat{j} + a\hat{k}$; $\vec{c} = a\hat{i} + \hat{k}$, then find the value of 'a' for which volume of parallelopiped formed by these three vectors as coterminous edges, is minimum.

[IIT Scr.2003]

(A)
$$\sqrt{3}$$
 (B) 3 (C) $\frac{1}{\sqrt{3}}$ (D) $\frac{1}{3}$

Q.17 If $\vec{a} = \hat{i} + \hat{j} + \hat{k} & \& \vec{a} & .\vec{b} = 1 & \& \vec{a} \times \vec{b} = \hat{j} - \hat{k}$ then \vec{b} is equal to-(A) $2\hat{i}$ (B) $\hat{i} - \hat{j} + \hat{k}$ (C) \hat{i} (D) $2\hat{j} - \hat{k}$

Q.18 A unit vector is orthogonal to $3\hat{i} + 2\hat{j} + 6\hat{k}$ and is coplanar to $2\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} - \hat{j} + \hat{k}$ then the vector, is-**[IIT Scr.2004]**

(A)
$$\frac{3\hat{j} - \hat{k}}{\sqrt{10}}$$
 (B) $\frac{2\hat{i} + 5\hat{j}}{\sqrt{29}}$
(C) $\frac{6\hat{i} - 5\hat{k}}{\sqrt{61}}$ (D) $\frac{2\hat{i} + 2\hat{j} - \hat{k}}{3}$

Q.19 Let $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = \hat{i} - \hat{j} + \hat{k}$ & $\vec{c} = \hat{i} + \hat{j} - \hat{k}$. A vector in the plane of \vec{a} and \vec{b} whose projection on \vec{c} is of length $\frac{1}{\sqrt{3}}$ unit is –

[IIT-2006]

(A) $4\hat{i} + \hat{j} - 4\hat{k}$	(B) $4\hat{i} - \hat{j} + 4\hat{k}$
(C) $2\hat{i} + \hat{j} - 2\hat{k}$	(D) $3\hat{i} + \hat{j} - 3\hat{k}$

- **Q.20** The number of distinct real values of λ , for which the vectors $-\lambda^2 \hat{i} + \hat{j} + \hat{k}$, $\hat{i} - \lambda^2 \hat{j} + \hat{k}$ and $\hat{i} + \hat{j} - \lambda^2 \hat{k}$ are coplanar, is - **[IIT-2007]** (A) zero (B) one (C) two (D) three
- Q.21 Let \vec{a} , \vec{b} , \vec{c} be unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Which one of the following is correct? [IIT-2007] (A) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a} = \vec{0}$ (B) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a} \neq \vec{0}$

(C)
$$\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{a} \times \vec{c} \neq \vec{0}$$

(D) $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{a}$
are mutually perpendicular

Q.22 The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors \hat{a} , \hat{b} , \hat{c} such that \hat{a} . $\hat{b} = \hat{b}$. $\hat{c} = \hat{c}$. $\hat{a} = 1/2$. Then, the volume of the parallelopiped is [IIT-2008]

(A)
$$\frac{1}{\sqrt{2}}$$
 (B) $\frac{1}{2\sqrt{2}}$ (C) $\frac{\sqrt{3}}{2}$ (D) $\frac{1}{\sqrt{3}}$

Q.23 If \vec{a} , \vec{b} , \vec{c} and \vec{d} are unit vectors such that -

$$(\vec{a} \times \vec{b}).(\vec{c} \times \vec{d}) = 1$$
 and $\vec{a}.\vec{c} = \frac{1}{2}$, then -

- (A) $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar
- (B) $\vec{b}, \vec{c}, \vec{d}$ are non-coplanar
- (C) \vec{b}, \vec{d} are non-parallel
- (D) \vec{a}, \vec{d} are parallel and \vec{b}, \vec{c} are parallel
- Q.24 Let P, Q, R and S be the points on the plane with position vectors $-2\hat{i}-\hat{j}$, $4\hat{i}$, $3\hat{i}+3\hat{j}$ and $-3\hat{i}+2\hat{j}$ respectively. The quadrilateral PQRS must be a - [IIT-2010] (A) Parallelogram, which is neither a rhombus nor a rectangle (B) Square (C) Rectangle, but not a square (D) Rhombus, but not a square
- Q.25 If \vec{a} and \vec{b} are vector is space given by $\vec{a} = \frac{\hat{i} - 2\hat{j}}{\sqrt{5}}$ and $\vec{b} = \frac{2\hat{i} + \hat{j} + 3\hat{k}}{\sqrt{14}}$, then the value of $(2\vec{a} + \vec{b}) \cdot [(\vec{a} \times \vec{b}) \times (\vec{a} - 2\vec{b})]$ is – [IIT-2010] (A) - 5 (B) 5 (C) 4 (D) none of these
- Q.26 Two adjacent sides of a parallelogram ABCD are given by $\overrightarrow{AB} = 2\hat{i} + 10\hat{j} + 11\hat{k}$ and $\overrightarrow{AD} = -\hat{i} + 2\hat{j} + 2\hat{k}$

The side AD is rotated by an acute angle α in the plane of the parallelogram so that AD becomes AD'. If AD' makes a right angle with the side AB, then the cosine of the angle α is given by - [IIT-2010]

(A)
$$\frac{8}{9}$$
 (B) $\frac{\sqrt{17}}{9}$ (C) $\frac{1}{9}$ (D) $\frac{4\sqrt{5}}{9}$

- **Q.27** Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} - \hat{j} - \hat{k}$ be three vectors. A vector \vec{v} in the plane of \vec{a} and \vec{b} , whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$, is given by -
 - [IIT-2011] (A) $\hat{i} - 3\hat{j} + 3\hat{k}$ (B) $-3\hat{i} - 3\hat{j} - \hat{k}$ (C) $3\hat{i} - \hat{j} + 3\hat{k}$ (D) $\hat{i} + 3\hat{j} - 3\hat{k}$
- **Q.28** The vector(s) which is/are coplanar with vectors $\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$, and perpendicular to the vector $\hat{i} + \hat{j} + \hat{k}$ is /are [IIT-2011]

(A)
$$\hat{j} - \hat{k}$$
 (B) $-\hat{i} + \hat{j}$
(C) $\hat{i} - \hat{j}$ (D) $-\hat{j} + \hat{k}$

Q.29 Let $\vec{a} = -\hat{i} - \hat{k}$, $\vec{b} = -\hat{i} + \hat{j}$ and $\vec{c} = \hat{i} + 2\hat{j} + 3\hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a} = 0$, then the value of $\vec{r} \cdot \vec{b}$ is - [IIT-2011] (A) 6 (B) 7 (C) 8 (D) 9

- **Q.30** If $\vec{a} = \hat{j} + \sqrt{3}\hat{k}$, $\vec{b} = -\hat{j} + \sqrt{3}\hat{k}$ and $\vec{c} = 2\sqrt{3}\hat{k}$ form a triangle, then the internal angle of the triangle between \vec{a} and \vec{b} is - [IIT-2011] (A) $\frac{\pi}{6}$ (B) $\frac{2\pi}{3}$ (C) $\frac{\pi}{3}$ (D) π
- Q.31 If \vec{a} , \vec{b} and \vec{c} are unit vectors satisfying $|\vec{a} - \vec{b}|^2 + |\vec{b} - \vec{c}|^2 + |\vec{c} - \vec{a}|^2 = 9$, then $|2\vec{a} + 5\vec{b} + 5\vec{c}|$ is [IIT-2012]
- Q.32 If \vec{a} and \vec{b} are vectors such that $|\vec{a} + \vec{b}| = \sqrt{29}$ and $\vec{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \vec{b}$, then a possible value of $(\vec{a} + \vec{b}).(-7\hat{i} + 2\hat{j} + 3\hat{k})$ is [IIT-2012] (A) 0 (B) 3 (C) 4 (D) 8
- **Q.33** Let $\overrightarrow{PR} = 3\hat{i} + \hat{j} 2\hat{k}$ and $\overrightarrow{SQ} = \hat{i} 3\hat{j} 4\hat{k}$ determine diagonals of a parallelogram PQRS and $\overrightarrow{PT} = \hat{i} + 2\hat{j} + 3\hat{k}$ be another vector. Then the volume of the parallelepiped determined by the vectors $\overrightarrow{PT}, \overrightarrow{PQ}$ and \overrightarrow{PS} is –

(A) 5 (B) 20 [JEE - Advance 2013] (C) 10 (D) 30

- **O.34** Match List-I with List-II and select the correct answer using the code given below the lists : [JEE - Advance 2013] List – I List – II (P) Volume of parallelepiped determined (1) 100by vectors \vec{a} , \vec{b} and \vec{c} is 2. Then the volume of the parallelepiped determined by vectors 2 ($\vec{a} \times \vec{b}$), $3(\overrightarrow{b}\times\overrightarrow{c})$ and $(\overrightarrow{c}\times\overrightarrow{a})$ is (Q) Volume of parallelepiped determined (2)30by vectors \vec{a} , \vec{b} and \vec{c} is 5. Then the volume of the parallelepiped determined by vectors $3(\ddot{a} + \ddot{b}), (\ddot{b} + \ddot{c})$ and 2(\overrightarrow{c} + \overrightarrow{a}) is (R) Area of a triangle with adjacent sides (3) 24determined by vectors \overrightarrow{a} and \overrightarrow{b} is 20. Then the area of the triangle with adjacent sides determined by vectors $(2 \overrightarrow{a} + 3 \overrightarrow{b})$ and $(\overrightarrow{a} - \overrightarrow{b})$ is (S) Area of a parallelogram with adjacent (4) 60sides determined by vectors a and b is 30. Then the area of the parallelogram with adjacent sides determined by vectors (a + b) and a is **Codes :** Q 2 3 R 3 1 S Ρ (A) 4 1 (B) 2 4 4 2 2 (C) 3 (D) 1

ANSWER KEY

-

.

								L	EV	ΕL	- 1	-								
Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	С	В	D	D	В	D	В	С	С	D	А	А	D	D	С	А	А	Α	Α	Α
Q.No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	А	D	С	С	В	В	С	В	С	D	В	В	С	D	А	С	В	В	С	В
Q.No.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	В	А	В	Α	D	С	С	С	А	А	D	А	D	С	В	В	А	Α	А	В
Q.No.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	А	А	D	В	D	В	А	В	В	А	С	D	В	С	С	D	В	В	А	В
Q.No.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	А	В	А	В	С	D	D	D	В	D	В	В	В	А	А	С	В	С	В	В
Q.No.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans.	D	А	B,C	Α	D	С	D	А	D	D	В	D	Α	D	С	В	С	Α	С	В
Q.No.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
Ans.	D	В	В	В	С	D	А	D	С	А	А	D	С	С	В	D	А	В	D	В
Q.No.	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
Ans.	С	С	В	Α	D	D	С	B,C	С	D	С	D	А	В	В	А	С	D	В	D
Q.No.	161	162	163																	
Ans.	D	D	В																	

LEVEL-2

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	В	С	Α	Α	Α	Α	В	Α	Α	D	Α	В	В	D	В	С	С	С	В	Α
Q.No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	Α	С	D	В	В	В	D	Α	Α	В	В	Α	Α	С	С	D	Α	С	С	D

LEVEL-3

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	С	А	С	С	D	D	С	А	А	Α	В	D	С	С	С	А	В	А	С	А
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33							1

LEVEL-4

SECTION-A

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	D	D	В	В	С	А	D	D	С	D	С	С	С	D	В	А	В	С	С	D
Qus.	21	22	23	24	25	26	27	28	29	30	31	32								
Ans.	D	D	С	C	D	Α	Α	Α	D	В	А	Α								
				•					•			•								

SECTION-B

1.[B] vectors
$$a\hat{i} + a\hat{j} + c\hat{k}$$
, $\hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ lie

in a plane

- a a c
- $\begin{vmatrix} 1 & 0 & 1 \end{vmatrix} = 0$
- c c b

-ac - a(b - c) + c(c) = 0 $c^{2} = ab$

$$c^2 = ab$$

c is G.M. of a and b.

2.[B]
$$\overrightarrow{AB} = (\beta - \alpha)\hat{i} + (\gamma - \beta)\hat{j} + (\alpha - \gamma)\hat{k}$$

 $|\overrightarrow{AB}| = \sqrt{(\beta - \alpha)^2 + (\gamma - \beta)^2 + (\alpha - \gamma)^2}$
 $\overrightarrow{BC} = (\gamma - \beta)\hat{i} + (\alpha - \gamma)\hat{j} + (\beta - \alpha)\hat{k}$
 $|\overrightarrow{BC}| = \sqrt{(\gamma - \beta)^2 + (\alpha - \gamma)^2 + (\beta - \alpha)^2}$
 $\overrightarrow{CA} = (\alpha - \gamma)\hat{i} + (\beta - \alpha)\hat{j} + (\gamma - \beta)\hat{k}$
 $|\overrightarrow{CA}| = \sqrt{(\alpha - \gamma)^2 + (\beta - \alpha)^2 + (\gamma - \beta)^2}$
 $|\overrightarrow{AB}| = |\overrightarrow{BC}| = |\overrightarrow{CA}|$

3.[A]
$$\vec{a} \cdot \vec{d} = 0$$
 $[\vec{b} \ \vec{c} \ \vec{d}] = 0$
 $\vec{d} = (\vec{b} \times \vec{c}) \times \vec{a}$
 $\vec{d} = (\vec{a} \ . \vec{b}) \vec{c} - (\vec{a} \ . \vec{c}) \vec{b}$
 $\vec{d} = (-1) \vec{c} - (-1) \vec{b}$
 $\vec{d} = \vec{b} - \vec{c} = \hat{i} + \hat{j} - 2\hat{k}$
 $\hat{d} = \pm \frac{\hat{i} + \hat{j} - 2\hat{k}}{\sqrt{6}}$

Aliter

4.[A]

Let
$$\vec{d} = x\hat{i} + y\hat{j} + 2\hat{k}$$

 $|\vec{d}| = 1$
 $\Rightarrow x^2 + y^2 + z^2 = 1$... (1)
 $\vec{a} \cdot \vec{d} = 0$
 $\Rightarrow x - y = 0$... (2)
 $[\vec{b} \ \vec{c} \ \vec{d}] = 0$
 $\Rightarrow \begin{vmatrix} x & y & z \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{vmatrix} = 0$
 $\Rightarrow x + y + z = 0$... (3)
Solving (1), (2) & (3)
 $\vec{d} = \pm \frac{(\hat{i} + \hat{j} - 2\hat{k})}{\sqrt{6}}$
 $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$

$$(\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} = \frac{b+c}{\sqrt{2}}$$
$$\vec{a} \cdot \vec{c} = \frac{1}{\sqrt{2}} \qquad \vec{a} \cdot \vec{b} = -\frac{1}{\sqrt{2}}$$

$$|\vec{a} ||\vec{c}| \cos \theta = \frac{1}{\sqrt{2}} \quad |\vec{a} ||\vec{b}| \cos \phi = -\frac{1}{\sqrt{2}}$$

$$\cos \theta = \frac{1}{\sqrt{2}} \quad \cos \phi = -\frac{1}{\sqrt{2}}$$

$$\theta = \frac{\pi}{4} \qquad \theta = \frac{3\pi}{4}$$
angle b/w $\vec{a} \ll \vec{c}$ angle b/w $\vec{a} \ll \vec{b}$
5.[B] Magnitude will remain same
$$\sqrt{(2p)^2 + (1)^2} = \sqrt{(p+1)^2 + (1)^2}$$

$$(2p)^2 = (p+1)^2$$

$$\pm 2p = p+1$$

$$p = 1, -\frac{1}{3}$$
6.[B] $p = \text{area of quadrilateral OABC} = \frac{1}{2} |\vec{OB} \times \vec{AC}|$

$$= \frac{1}{2} |(10\vec{a} + 2\vec{b}) \times (\vec{b} - \vec{a})|$$

$$= \frac{1}{2} |10(\vec{a} \times \vec{b}) - 2(\vec{b} \times \vec{a})|$$

$$= \frac{1}{2} |12(\vec{a} \times \vec{b})|$$

$$p = 6q$$

$$\frac{p}{q} = 6$$
7.[C] $[(\vec{a} + \vec{b}) \times (\vec{a} + \vec{c})] \times (\vec{b} \times \vec{c}).(\vec{b} + \vec{c})$

$$= [\vec{a} \times \vec{c} + \vec{b} \times \vec{a} + \vec{b} \times \vec{c}] \times (\vec{b} \times \vec{c}).(\vec{b} + \vec{c})$$

$$= [(\vec{a} \times \vec{c}) . \vec{b} \times \vec{c} + (\vec{b} \times \vec{a}) . \vec{c} \times \vec{b}].(\vec{b} + \vec{c})$$

$$= [-\{(\vec{a} \times \vec{c}).\vec{b} \times \vec{c} + (\vec{b} \times \vec{a}).\vec{c} \times \vec{b}].(\vec{b} + \vec{c})$$

$$= \{+[\vec{a} \ \vec{b} \ \vec{c}] \vec{c} - [\vec{a} \ \vec{b} \ \vec{c}] \vec{b} \times \vec{c}]$$

 $= \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} \begin{bmatrix} \vec{c} & |^2 - |\vec{b} & |^2 \end{bmatrix}$

8.[B] $|\vec{a}| = |\vec{b}| = 1, |\vec{c}| = 2$

 $= 0 \qquad (\because |\vec{\mathbf{b}}| = |\vec{\mathbf{c}}|)$

$$\vec{a} \times (\vec{a} \times \vec{c}) = \vec{b}$$

$$|\vec{a} ||\vec{a} \times \vec{c} |\sin 90^{\circ} = 1$$

$$1.|\vec{a} ||\vec{c} |\sin \theta = 1$$

$$\sin \theta = 1/2$$

$$\theta = \frac{\pi}{6}$$
9.[D] $\vec{a} , \vec{b} , \vec{c} \text{ are linearly dependent}$

$$\therefore \vec{a} \vec{b} \vec{c} \text{ are coplanar}$$

$$\therefore [\vec{a} \vec{b} \vec{c}] = 0$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 4 & 3 & 4 \\ 1 & \alpha & \beta \end{vmatrix} = 0$$

$$\beta = 1$$

$$|\vec{c}| = 3$$

$$1 + \alpha^{2} + \beta^{2} = 3$$

$$\alpha = \pm 1 \quad (\because \beta = 1)$$
10.[B]
$$|(\vec{a} \times \vec{b}) \times \vec{c}|$$

$$= |\vec{a} \times \vec{b}| |\vec{c}| \sin 30^{\circ}$$

$$= \frac{|\vec{a} \times \vec{b}| |\vec{c}| \sin 30^{\circ}$$

$$= \frac{|\vec{a} \times \vec{b}| |\vec{c}| = 3$$

$$1 + \frac{1}{2} = \frac{3}{2}$$

$$|\vec{c}|^{2} - 2|\vec{c}| = 8$$

$$|\vec{c}|^{2} - 2|\vec{c}| + 1 = 0$$

$$(|\vec{c}| - 1)^{2} = 0$$

$$|\vec{c}| = 1$$

$$\vec{a} \times \vec{b} = 2\hat{1} - 2\hat{j} + \hat{k}$$

$$|\vec{a} \times \vec{b}| = 3$$

11.[C] If \vec{a} , \vec{b} , \vec{c} Position vector of three vertices of ΔABC

Then area of
$$\Delta = \frac{1}{2} |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|$$

12.[C] $[\vec{a} \ \vec{b} \ \vec{c}] = \begin{vmatrix} 1 & 0 & -1 \\ x & 1 & 1-x \\ y & x & 1+x-y \end{vmatrix}$
 $= 1.(1 + x - y - x + x^2) - 1(x^2 - y)$
 $= 1$
 $\therefore [\vec{a} \ \vec{b} \ \vec{c}]$ depends neither x nor y

13.[B] $|\vec{a} + \vec{b} + \vec{c}| \ge 0$

$$|\vec{a}|^{2} + |\vec{b}|^{2} + |\vec{c}|^{2} + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \ge 0$$

$$2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \ge -3$$

$$\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \ge -\frac{3}{2}$$

$$-2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \le 3$$

$$|\vec{a} - \vec{b}|^{2} + |\vec{b} - \vec{c}|^{2} + |\vec{c} - \vec{a}|^{2}$$

$$= 2\{|\vec{a}|^{2} + |\vec{b}|^{2} + |\vec{c}|^{2}\} - 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a})$$

$$\le 2 (3) + 3$$

$$\le 9$$

$$14.[B] \quad |\vec{a}| = |\vec{b}| = 1$$

$$\vec{a} + 2\vec{b} \perp 5\vec{a} - 4\vec{b}$$

$$(\vec{a} + 2\vec{b}) \cdot (5\vec{a} - 4\vec{b}) = 0$$

$$5|\vec{a}|^{2} + 6\vec{a} \cdot \vec{b} - 8|\vec{b}|^{2} = 0$$

$$5(1) + 6|\vec{a}| ||\vec{b}| \cos \theta - 8 = 0$$

$$\cos \theta = 1/2$$

$$\theta = 60^{\circ}$$

$$15.[C] \quad [\vec{U} \ \vec{\nabla} \ \vec{W}] = \vec{U} \cdot (\vec{\nabla} \times \vec{W})$$

$$= |\vec{U}| | \ \vec{\nabla} \times \vec{W} | \cos \theta$$

$$\vec{\nabla} \times \vec{W} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -1 \\ 1 & 0 & 3 \end{vmatrix} = 3\hat{i} - 7\hat{j} - \hat{k}$$

$$|\vec{\nabla} \times \vec{W}| = \sqrt{9 + 49 + 1} = \sqrt{59}$$

$$[\vec{U} \ \vec{\nabla} \ \vec{W}] = \sqrt{59} \cos\theta$$
max of $[\vec{U} \ \vec{\nabla} \ \vec{W}] = \sqrt{59} (\because \cos \theta = 1)$

$$16.[C] \quad V = Volume of parallelopiped = [\vec{a} \ \vec{b} \ \vec{c}]$$

$$V = \begin{vmatrix} 1 & a & 1 \\ a & 0 & 1 \end{vmatrix} = a^{3} - a + 1$$
for max. or min. $V' = 3a^{2} - 1 = 0 \implies a = \pm \frac{1}{\sqrt{3}}$

$$V'' = 6a$$

$$V'' = +vc \quad \text{if } a = \frac{1}{\sqrt{3}}$$

$$V \text{ is min. if } a = \frac{1}{\sqrt{3}}$$

$$17.[C] \quad \vec{a} = \hat{i} + \hat{j} + \hat{k} \text{ we take } \vec{b} \text{ by option s.t } \vec{a} \cdot \vec{b} = 1$$

$$\& \vec{a} \times \vec{b} = \hat{j} - \hat{k}$$

18.[A] Let the required unit vector $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$

$$\begin{aligned} a_{1}^{2} + a_{2}^{2} + a_{3}^{2} = 1 & \dots(1) \\ \vec{a} \text{ is orthogonal to } 3\hat{i} + 2\hat{j} + 6\hat{k} \\ \therefore 3a_{1} + 2a_{2} + 6a_{3} = 0 & \dots(2) \\ \vec{a}, 2\hat{i} + \hat{j} + \hat{k} \text{ and } \hat{i} - \hat{j} + \hat{k} \text{ are coplanar} \\ \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ 2 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix} = 0 \\ 2a_{1} - a_{2} - 3a_{3} = 0 & \dots(3) \\ \text{from (2) and (3)} \\ a_{1} = 0, \quad a_{2} = -3a_{3}, \quad \text{Put in equation (1)} \\ 9a_{3}^{2} + a_{3}^{2} = 1 & \Rightarrow a_{3} = \pm \frac{1}{\sqrt{10}} \\ a_{1} = 0, \quad a_{2} = \mp \frac{3}{\sqrt{10}}, a_{3} = \pm \frac{1}{\sqrt{10}} \\ \vec{a} = \pm \left(\frac{3}{\sqrt{10}}\hat{j} - \frac{\hat{k}}{\sqrt{10}}\right) \end{aligned}$$
19.[B] $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}, \vec{b} = \hat{i} - \hat{j} + \hat{k} & \vec{c} = \hat{i} + \hat{j} - \hat{k} \\ \text{Let } \vec{d} \text{ is a vector lie in plane of } \vec{a} \text{ and } \vec{b} \\ \text{therefore } \vec{d} \text{ can be written as} \\ \vec{d} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k}) \\ \vec{d} = (\lambda + 1)\hat{i} + (2 - \lambda)\hat{j} + (\lambda + 1)\hat{k} \\ \text{Projection of } \vec{d} \text{ on } \vec{c} = \frac{\vec{d}\vec{c}}{|\vec{c}|} = \frac{1}{\sqrt{3}} \\ \frac{(\lambda + 1) + (2 - \lambda) - (\lambda + 1)}{\sqrt{3}} = \pm \frac{1}{\sqrt{3}} \\ \text{taking (-ive sign) we get } \lambda = 3 \\ \text{Required vector } \vec{d} = 4\hat{i} - \hat{j} + 4\hat{k} \\ \text{Aliter} \\ \text{Let } \vec{d} \text{ is coplanar with } \vec{a} & \vec{b} \\ \Rightarrow \begin{vmatrix} x & y & z \\ 1 & 2 & 1 \\ 1 & -1 & 1 \end{vmatrix} = 0 \\ \Rightarrow 3x - 3z = 0 \\ \Rightarrow x = z \qquad \dots(1) \\ \text{Projection of } \vec{d} \text{ on } \vec{c} \\ \begin{vmatrix} \frac{\vec{d}\vec{c}}{|\vec{c}|} = \frac{1}{\sqrt{3}} \\ \end{vmatrix}$

$$\frac{x+y-z}{\sqrt{3}} = \pm \frac{1}{\sqrt{3}}$$
$$x+y-z = \pm 1$$
$$\Rightarrow y = \pm 1 \qquad \dots (2)$$
Now check the options.

$$\begin{aligned} \textbf{20.[C]} \quad \text{given vector are coplanar} \begin{vmatrix} -\lambda^2 & 1 & 1 \\ 1 & -\lambda^2 & 1 \\ 1 & 1 & -\lambda^2 \end{vmatrix} = 0 \\ \\ \begin{matrix} C_1 \to C_1 + C_2 + C_3 \\ 2 - \lambda^2 & 1 & 1 \\ 2 - \lambda^2 & -\lambda^2 & 1 \\ 2 - \lambda^2 & 1 & -\lambda^2 \end{vmatrix} = 0 \\ \\ \Rightarrow (2 - \lambda^2) \begin{vmatrix} 1 & 1 & 1 \\ 1 & -\lambda^2 & 1 \\ 1 & 1 & -\lambda^2 \end{vmatrix} = 0 \\ \\ R_1 \to R_1 - R_3, R_2 \to R_2 - R_3 \\ \Rightarrow (2 - \lambda^2) \begin{vmatrix} 0 & 0 & 1 + \lambda^2 \\ 0 & -\lambda^2 - 1 & 1 + \lambda^2 \\ 1 & 1 & -\lambda^2 \end{vmatrix} = 0 \\ \\ (2 - \lambda^2) (1 + \lambda^2)^2 = 0 \quad \lambda = \pm \sqrt{2} \end{aligned}$$

$$\begin{aligned} \textbf{21.[B]} \quad \vec{a} + \vec{b} + \vec{c} = 0 \\ \vec{a} \times \vec{b} + \vec{a} \times \vec{c} = 0 \\ \vec{a} \times \vec{b} + \vec{a} \times \vec{c} = 0 \\ \vec{a} \times \vec{b} + \vec{a} \times \vec{c} = 0 \\ \vec{b} \times \vec{a} + \vec{b} \times \vec{c} = 0 \\ \vec{b} \times \vec{a} + \vec{b} \times \vec{c} = 0 \\ \vec{b} \times \vec{a} + \vec{b} \times \vec{c} = 0 \\ \vec{b} \times \vec{a} + \vec{b} \times \vec{c} = 0 \\ \vec{b} \times \vec{a} + \vec{b} \times \vec{c} = 0 \\ \vec{c} \times \vec{a} + \vec{c} \times \vec{b} = 0 \\ \vec{c} \times \vec{a} + \vec{c} \times \vec{b} = 0 \\ \vec{c} \times \vec{a} = \vec{b} \times \vec{c} \qquad ...(3) \end{aligned}$$

$$\vec{c} \times \vec{a} = b \times \vec{c}$$
 ...(2
From (1), (2), (3) we get
 $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a} \neq 0$

22.[A] Volume of parallelopiped = [$\hat{a} \ \hat{b} \ \hat{c}$]

$$= \sqrt{\begin{vmatrix} \hat{a}.\hat{a} & \hat{a}.\hat{b} & \hat{a}.\hat{c} \\ \hat{b}.\hat{a} & \hat{b}.\hat{b} & \hat{b}.\hat{c} \\ \hat{c}.\hat{a} & \hat{c}.\hat{b} & \hat{c}.\hat{c} \end{vmatrix}}$$
$$= \sqrt{\begin{vmatrix} 1 & 1/2 & 1/2 \\ 1/2 & 1 & 1/2 \\ 1/2 & 1/2 & 1 \end{vmatrix}} = \frac{1}{\sqrt{2}}$$

24.[A]
$$PQ = 6i + j; RS = 6i + j$$

 $\overrightarrow{RQ} = i - 3j; \overrightarrow{SP} = i - 3j$
 $\left|\overrightarrow{PQ}\right| \neq \left|\overrightarrow{RQ}\right| (\therefore \text{ not a rhombus or a rectangle})$
 $PQ \parallel RS; RQ \parallel SP$
Also $\overrightarrow{PQ} \cdot \overrightarrow{RQ} \neq 0$
 \therefore PQRS is not a square
 \Rightarrow PQRS is a parallelogram

25.[5]
$$|\overline{a}| = |\overline{b}| = 1 \& \overline{a} \cdot \overline{b} = 0$$

 $(2\overline{a} + \overline{b}) \cdot [(\overline{a} \times \overline{b}) \times (\overline{a} - 2\overline{b})]$
 $= (2\overline{a} + \overline{b}) \cdot [\overline{b} + 2\overline{a}] = |\overline{b}|^2 + 4 |\overline{a}|^2 = 5$

26.[B]

27.[C] Let
$$\vec{v} = x\hat{i} + y\hat{j} + z\hat{k}$$

 $\therefore [\vec{a} \quad \vec{b} \quad \vec{v}] = 0$
 $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ x & y & z \end{vmatrix} = 0$
On solving $x = z$ (1)
 \therefore projection of \vec{v} on \vec{c} is $\frac{1}{\sqrt{3}}$
So, $\frac{1}{\sqrt{3}} = \frac{\vec{v} \cdot \vec{c}}{|\vec{c}|} \Rightarrow \frac{x - y - z}{\sqrt{3}} = \frac{1}{\sqrt{3}}$
 $\Rightarrow x - y - z = 1$ (2)
So solving (1) & (2)
 $y = -1 \& x = z$

28.[A, D] $\overline{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is coplanar with the given vector so

$$\begin{array}{c} \begin{vmatrix} x & y & z \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{vmatrix} = 0 \\ \\ \text{So, } 3x = y + z & \dots(1) \\ \therefore \overrightarrow{r} \perp \hat{i} + \hat{j} + \hat{k} \\ \\ \text{So, } \overrightarrow{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 0 \\ \\ \text{So, } x + y + z = 0 & \dots(2) \\ \\ \text{On solving (1) & (2)} \\ \\ \text{So, } x = 0 & \therefore y + z = 0 \therefore \text{ (A) & (D) Satisfy} \end{aligned}$$

29.[D]
$$\vec{a} = -\hat{i} - \hat{k}, \ \vec{b} = -\hat{i} + \hat{j}, \ \vec{c} = \hat{i} + 2\hat{j} + 3\hat{k}$$

 $(\vec{r} - \vec{c}) \times \vec{b} = 0 \Rightarrow \vec{r} - \vec{c} = \lambda \vec{b} \Rightarrow \vec{r} = \vec{c} + \lambda \vec{b}$
 $\because \vec{r} \cdot \vec{a} = 0$
 $\Rightarrow \vec{a}.\vec{c} + \lambda \vec{b}.\vec{a} = 0$
 $\Rightarrow \lambda = -\frac{\vec{a}.\vec{c}}{\vec{b}.\vec{a}} = 4$
 $\Rightarrow \vec{r}.\vec{b} = \vec{c}.\vec{b} + \lambda |\vec{b}|^2 = 9$

30.[A]

31.[3]
$$|\vec{a} - \vec{b}|^2 + |\vec{b} - \vec{c}|^2 + |\vec{c} - \vec{a}|^2 = 9$$

a.b + b.c + c.a = -3/2(1)
 $\therefore |\vec{a} + \vec{b} + \vec{c}|^2 \ge 0$ (2)
a.b + b.c + c.a $\ge \frac{-3}{2}$ (3)
 \therefore from (1) & (3)
so $|\vec{a} + \vec{b} + \vec{c}| = 0$
 $\vec{a} + \vec{b} + \vec{c} = 0$
 $\vec{a} = -\vec{b} - \vec{c}$
on squaring
 $1 = 2 + 2 \cos B$
 $\cos B = -\frac{1}{2} \forall B = \vec{b} \wedge \vec{c}$.
Let $T = |2\vec{a} + 5\vec{b} + 5\vec{c}|$
 $= |3\vec{b} + 3\vec{c}|$
 $= 3|\vec{b} + \vec{c}|$
 $= 3\sqrt{2 + 2\cos B}$
 $= 3$
32.[C] $|\vec{a} + \vec{b}| = \sqrt{29}$
 $\vec{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \vec{b}$
 $(\vec{a} + \vec{b}) \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = \vec{0}$
 $\vec{a} + \vec{b} = \lambda (2\hat{i} + 3\hat{j} + 4\hat{k})$
 $|\vec{a} + \vec{b}| = \sqrt{4\lambda^2 + 9\lambda^2 + 16\lambda^2} = |\lambda| \sqrt{29}$
 $\Rightarrow \lambda = 1, -1$
 $\vec{a} + \vec{b} = \pm (2\hat{i} + 3\hat{j} + 4\hat{k})$
 $= \pm (2\hat{i} + 3\hat{j} + 4\hat{k}) .(-7\hat{i} + 2\hat{j} + 3\hat{k}) = \pm 4$

33.[C]

$$\overrightarrow{PQ} + \overrightarrow{QR} = 3\hat{i} + \hat{j} - 2\hat{k} \dots(i)$$

$$\overrightarrow{PQ} + \overrightarrow{RQ} = \hat{i} - 3\hat{j} - 4\hat{k} \dots(ii)$$

$$\overrightarrow{PQ} - \overrightarrow{QR} = \hat{i} - 3\hat{j} - 4\hat{k} \dots(iii)$$

$$2 \overrightarrow{QR} = 4\hat{i} - 2\hat{j} - 6\hat{k}$$

$$\overrightarrow{QR} = 2\hat{i} - \hat{j} - 3\hat{k} \dots(iv)$$

$$\overrightarrow{PQ} = (3\hat{i} + \hat{j} - 2\hat{k}) - (2\hat{i} - \hat{j} - 3\hat{k})$$

$$\overrightarrow{PQ} = \hat{i} + 2\hat{j} + \hat{k}$$

$$\overrightarrow{PT} = \hat{i} + 2\hat{j} + 3\hat{k} \text{ (given)}$$
and

$$\overrightarrow{PQ} = \hat{i} + 2\hat{j} + \hat{k}$$

$$\overrightarrow{QR} = 2\hat{i} - \hat{j} - 3\hat{k}$$

$$\therefore Volume = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & -1 & -3 \end{vmatrix}$$

$$= 1(-6+1) - 2(-3-2) + 3(-1-4)$$

$$= -5+10 - 15 = -10$$

$$= 10$$
34.[C] (P) $[\vec{a} \ \vec{b} \ \vec{c}] = 2$

$$2(\vec{a} \times \vec{b}) \cdot [3(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})]$$

$$= 6(\vec{a} \times \vec{b}) \cdot [3(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})]$$

$$= 6(\vec{a} \times \vec{b}) \cdot [(\vec{d} \times \vec{a})\vec{c} - (\vec{d} \cdot \vec{c})\vec{a}]$$

$$= 6(\vec{a} \times \vec{b}) \cdot [(\vec{d} \times \vec{a})\vec{c} - (\vec{d} \cdot \vec{c})\vec{a}]$$

$$= 6(\vec{a} \times \vec{b}) \cdot [(\vec{d} \times \vec{a})\vec{c} - (\vec{d} \cdot \vec{c})\vec{a}]$$

$$= 6(\vec{a} \times \vec{b}) \cdot [(\vec{b} \times \vec{c}) + (\vec{b} \times \vec{a}) + (\vec{c} \times \vec{c}) + (\vec{c} \times \vec{a})]$$

$$= 6(\vec{a} \times \vec{b}) \cdot [(\vec{b} \times \vec{c}) + (\vec{b} \times \vec{a}) + (\vec{c} \times \vec{c}) + (\vec{c} \times \vec{a})]$$

$$= 6([\vec{a} \vec{b}\vec{c}] + [\vec{a} \vec{b}\vec{c}]) = 12[\vec{a} \vec{b}\vec{c}] = 12 \times 5 = 60$$
(R) $\frac{1}{2} |\vec{a} \times \vec{b}| = 20$
then $\frac{1}{2} |(2\vec{a} + 3\vec{b}) \times (\vec{a} - \vec{b})|$

$$= \frac{1}{2} |-2(\vec{a} \times \vec{b}) + 3(\vec{b} \times \vec{a})|$$

$$= \frac{1}{2} |5(\vec{b} \times \vec{a})| = 5 \times 20 = 100$$
(S) $|\vec{a} \times \vec{b}| = 30$
Then $|(\vec{a} + \vec{b}) \times \vec{a}|$

$$= |\vec{a} \times \vec{a} + \vec{b} \times \vec{a}|$$

$$= 30$$
35.[5] Total no. of vectors = {}^{8}C_{3} = 56
Let consider following pairs of vectors
(i) $\hat{i} + \hat{j} + \hat{k}$ and $-\hat{i} - \hat{j} - \hat{k}$
(ii) $-\hat{i} + \hat{j} + \hat{k}$ and $-\hat{i} - \hat{j} - \hat{k}$
(iii) $\hat{i} + \hat{j} - \hat{k}$ and $-\hat{i} - \hat{j} - \hat{k}$
(iv) $\hat{i} - \hat{j} + \hat{k}$ and $-\hat{i} - \hat{j} - \hat{k}$
If we select any one pair out of these pairs and one vector from remaining 6 vectors then these 3 vectors will be coplanar. So, total no. of coplanar vectors = {}^{4}C_{1} \times {}^{6}C_{1} = 24

So, total no. of non coplanar vectors = 56 - 24= $32 = 2^5$ \therefore p = 5