MATRICES

(KEY CONCEPTS \& SOLVED EXAMPELS)

-MATRICES-

1. Definition
2. Order of a matrix
3. Types of matrices
4. Addition and subtraction of matrices
5. Scalar multiplication of matrices
6. Multiplication of matrices
7. Transpose of a matrix
8. Symmetric and skew-symmetric matrix
9. Determinant of a matrix
10. Adjoint of a matrix
11. Inverse of a matrix

KEY CONCEPTS

1. Definition

A rectangular arrangement of numbers in rows and columns, is called a Matrix. This arrangement is enclosed by small () or big [] brackets. A matrix is represented by capital letters $\mathrm{A}, \mathrm{B}, \mathrm{C}$ etc. and its element are by small letters $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}$ etc.

2. Order of a Matrix

A matrix which has m rows and n columns is called a matrix of order $m \times n$.

A matrix A of order $m \times n$ is usually written in the following manner-
$A=\left[\begin{array}{ccccc}a_{11} & a_{12} & a_{13} & \ldots a_{1 j} & \ldots a_{1 n} \\ a_{21} & a_{23} & a_{23} & \ldots a_{2 j} & \ldots a_{2 n} \\ \ldots . . & \ldots . & \ldots . . & \ldots . & \ldots . . \\ a_{i 1} & a_{i 2} & a_{i 3} & \ldots a_{i j} & \ldots a_{i n} \\ \ldots . . & \ldots . . & \ldots . . & \ldots . & \ldots . . \\ a_{m 1} & a_{m 2} & a_{m 3} & \ldots a_{m j} & \ldots a_{m n}\end{array}\right]$ or
$A=\left[a_{i j}\right]_{m \times n}$ where $\begin{array}{ll}i=1, & 2, \ldots \ldots m \\ i=1, & 2, \ldots . . n\end{array}$
Here a_{ij} denotes the element of $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column.

3. Types of Matrices

3.1 Row matrix :

If in a Matrix, there is only one row, then it is called a Row Matrix.

Thus $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ is a row matrix if $\mathrm{m}=1$.

3.2 Column Matrix :

If in a Matrix, there is only one column, then it is called a Column Matrix.

Thus $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ is a Column Matrix if $\mathrm{n}=1$.

3.3 Square Matrix :

If number of rows and number of column in a Matrix are equal, then it is called a Square Matrix.

Thus $A=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ is a Square Matrix if $\mathrm{m}=\mathrm{n}$

Note :

(a) If $\mathrm{m} \neq \mathrm{n}$ then Matrix is called a Rectangular Matrix.
(b) The elements of a Square Matrix A for which $i=j$ i.e. $a_{11}, a_{22}, a_{33}, \ldots . a_{n n}$ are called diagonal elements and the line joining these elements is called the principal diagonal or of leading diagonal of Matrix A.
(c) Trance of a Matrix : The sum of diagonal elements of a square matrix . A is called the trance of Matrix A which is denoted by $\operatorname{tr} \mathrm{A}$.
$\operatorname{tr} \mathrm{A}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ii}}=\mathrm{a}_{11}+\mathrm{a}_{22}+\ldots \mathrm{a}_{\mathrm{nn}}$

3.4 Singleton Matrix :

If in a Matrix there is only one element then it is called Singleton Matrix. Thus
$\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ is a Singleton Matrix if $\mathrm{m}=\mathrm{n}=1$.

3.5 Null or Zero Matrix :

If in a Matrix all the elements are zero then it is called a zero Matrix and it is generally denoted by O .

Thus $A=\left[a_{i j}\right]_{m \times n}$ is a zero matrix if $a_{i j}=0$ for all i and j .

3.6 Diagonal Matrix :

If all elements except the principal diagonal in a Square Matrix are zero, it is called a Diagonal Matrix. Thus a Square Matrix
$\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ is a Diagonal Matrix if $\mathrm{a}_{\mathrm{ij}}=0$, when $\mathrm{i} \neq \mathrm{j}$

Note :

(a) No element of Principal Diagonal in diagonal Matrix is zero.
(b) Number of zero in a diagonal matrix is given by $n^{2}-n$ where n is a order of the Matrix.

3.7 Scalar Matrix :

If all the elements of the diagonal of a diagonal matrix are equal, it is called a scalar matrix. Thus a Square Matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ is a Scalar Matrix is
$a_{i j}=\left\{\begin{array}{ll}0 & i \neq j \\ k & i=j\end{array}\right.$ where k is a constant.

3.8 Unit Matrix :

If all elements of principal diagonal in a Diagonal Matrix are 1, then it is called Unit Matrix. A unit Matrix of order n is denoted by I_{n}.

Thus a square Matrix
$\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ is a unit Matrix if
$a_{i j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}$

Note :

Every unit Matrix is a Scalar Matrix.

3.9 Triangular Matrix :

A Square Matrix $\left[\mathrm{a}_{\mathrm{ij}}\right]$ is said to be triangular matrix if each element above or below the principal diagonal is zero it is of two types-
(a) Upper Triangular Matrix : A Square Matrix $\left[a_{i j}\right]$ is called the upper triangular Matrix, if $\mathrm{a}_{\mathrm{ij}}=0$ when $\mathrm{i}>\mathrm{j}$.
(b) Lower Triangular Matrix : A Square Matrix [a_{ij}] is called the lower Triangular Matrix, if $\mathrm{a}_{\mathrm{ij}}=0$ when $\mathrm{i}<\mathrm{j}$

Note :

Minimum number of zero in a triangular matrix is given by $\frac{\mathrm{n}(\mathrm{n}-1)}{2}$ where n is order of Matrix.

3.10 Equal Matrix :

Two Matrix A and B are said to be equal Matrix if they are of same order and their corresponding elements are equal.

3.11 Singular Matrix :

Matrix A is said to be singular matrix if its determinant $|\mathrm{A}|=0$, otherwise non- singular matrix i.e.

If $\operatorname{det}|\mathrm{A}|=0 \Rightarrow$ Singular
and $\operatorname{det}|\mathrm{A}| \neq 0 \Rightarrow$ non-singular

4. Addition and Subtraction of Matrices

If $A\left[a_{i j}\right]_{m \times n}$ and $\left[b_{i j}\right]_{m \times n}$ are two matrices of the same order then their sum $A+B$ is a matrix whose each element is the sum of corresponding element.
i.e. $\quad A+B=\left[a_{i j}+b_{i j}\right]_{m \times n}$

Similarly their subtraction A-B is defined as

$$
\mathrm{A}-\mathrm{B}=\left[\mathrm{a}_{\mathrm{ij}}-\mathrm{b}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}
$$

Note :

Matrix addition and subtraction can be possible only when Matrices are of same order.

4.1 Properties of Matrices addition :

If A, B and C are Matrices of same order, then-
(i) $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}($ Commutative Law)
(ii) $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})($ Associative Law)
(iii) $\mathrm{A}+\mathrm{O}=\mathrm{O}+\mathrm{A}=\mathrm{A}$, where O is zero matrix which is additive identity of the matrix.
(iv) $\mathrm{A}+(-\mathrm{A})=0=(-\mathrm{A})+\mathrm{A}$ where $(-\mathrm{A})$ is obtained by changing the sign of every element of A which is additive inverse of the Matrix
(v) $\left.\begin{array}{l}\mathrm{A}+\mathrm{B}=\mathrm{A}+\mathrm{C} \\ \mathrm{B}+\mathrm{A}=\mathrm{C}+\mathrm{A}\end{array}\right\} \Rightarrow \mathrm{B}=\mathrm{C}$ (Cancellation Law)
(vi) $\operatorname{tr}(\mathrm{A} \pm \mathrm{B})=\operatorname{tr}(\mathrm{A}) \pm \operatorname{tr}(\mathrm{B})$

5. Scalar Multiplication of Matrices

Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ be a matrix and k be a number then the matrix which is obtained by multiplying every element of A by k is called scalar multiplication of A by k and it is denoted by
kA thus if $A=\left[a_{i j}\right]_{m \times n}$ then

$$
\mathrm{kA}=\mathrm{Ak}=\left[\mathrm{ka}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}
$$

5.1 Properties of Scalar Multiplication :

If A, B are Matrices of the same order and λ, μ are any two scalars then -
(i) $\lambda(\mathrm{A}+\mathrm{B})=\lambda \mathrm{A}+\lambda \mathrm{B}$
(ii) $(\lambda+\mu) \mathrm{A}=\lambda \mathrm{A}+\mu \mathrm{A}$
(iii) $\lambda(\mu \mathrm{A})=(\lambda \mu) \mathrm{A}=\mu(\lambda \mathrm{A})$
(iv) $(-\lambda \mathrm{A})=-(\lambda \mathrm{A})=\lambda(-\mathrm{A})$
(v) $\operatorname{tr}(\mathrm{kA})=\mathrm{k} \operatorname{tr}(\mathrm{A})$

6. Multiplication of Matrices

If A and B be any two matrices, then their product AB will be defined only when number of column in A is equal to the number of rows in B. If $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ and $\mathrm{B}=\left[\mathrm{b}_{\mathrm{ij}}\right]_{\mathrm{n} \times \mathrm{p}}$ then their product $\mathrm{AB}=\mathrm{C}=\left[\mathrm{c}_{\mathrm{ij}}\right]$, will be matrix of order $\mathrm{m} \times \mathrm{p}$, where

$$
(\mathrm{AB})_{\mathrm{ij}}=\mathrm{C}_{\mathrm{ij}}=\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ir}} \mathrm{~b}_{\mathrm{rj}}
$$

6.1 Properties of Matrix Multiplication :

If A, B and C are three matrices such that their product is defined, then
(i) $\mathrm{AB} \neq \mathrm{BA} \quad$ (Generally not commutative)
(ii) $(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})$ (Associative Law)
(iii) $\mathrm{IA}=\mathrm{A}=\mathrm{AI}$

I is identity matrix for matrix multiplication
(iv) $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC}$ (Distributive Law)
(v) If $\mathrm{AB}=\mathrm{AC} \Rightarrow \mathrm{B}=\mathrm{C}$
(Cancellation Law is not applicable)
(vi) If $\mathrm{AB}=0$. It does not mean that $\mathrm{A}=0$ or $\mathrm{B}=0$, again product of two non- zero matrix may be zero matrix.
(vii) $\operatorname{tr}(\mathrm{AB})=\operatorname{tr}(\mathrm{BA})$

Note :

(i) The multiplication of two diagonal matrices is again a diagonal matrix.
(ii) The multiplication of two triangular matrices is again a triangular matrix.
(iii) The multiplication of two scalar matrices is also a scalar matrix.
(iv) If A and B are two matrices of the same order, then
(a) $(\mathrm{A}+\mathrm{B})^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{AB}+\mathrm{BA}$
(b) $(\mathrm{A}-\mathrm{B})^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}-\mathrm{AB}-\mathrm{BA}$
(c) $(\mathrm{A}-\mathrm{B})(\mathrm{A}+\mathrm{B})=\mathrm{A}^{2}-\mathrm{B}^{2}+\mathrm{AB}-\mathrm{BA}$
(d) $(\mathrm{A}+\mathrm{B})(\mathrm{A}-\mathrm{B})=\mathrm{A}^{2}-\mathrm{B}^{2}-\mathrm{AB}+\mathrm{BA}$
(e) $\mathrm{A}(-\mathrm{B})=(-\mathrm{A}) \mathrm{B}=-(\mathrm{AB})$

6.2 Positive Integral powers of a Matrix :

The positive integral powers of a matrix A are defined only when A is a square matrix. Also then

$$
\mathrm{A}^{2}=\mathrm{A} \cdot \mathrm{~A} \quad \mathrm{~A}^{3}=\mathrm{A} \cdot \mathrm{~A} \cdot \mathrm{~A}=\mathrm{A}^{2} \mathrm{~A}
$$

Also for any positive integers m,n
(i) $\mathrm{A}^{\mathrm{m}} \mathrm{A}^{\mathrm{n}}=\mathrm{A}^{\mathrm{m}+\mathrm{n}}$
(ii) $\left(\mathrm{A}^{\mathrm{m}}\right)^{\mathrm{n}}=\mathrm{A}^{\mathrm{mn}}=\left(\mathrm{A}^{\mathrm{n}}\right)^{\mathrm{m}}$
(iii) $\mathrm{I}^{\mathrm{n}}=\mathrm{I}, \mathrm{I}^{\mathrm{m}}=\mathrm{I}$
(iv) $A^{o}=I_{n}$ where A is a square matrices of order n.

7. Transpose of a Matrix

The matrix obtained from a given matrix A by changing its rows into columns or columns into rows is called transpose of Matrix A and is denoted by A^{T} or A^{\prime}.

From the definition it is obvious that
If order of A is $m \times n$, then order of A^{T} is $n \times m$.

7.1 Properties of Transpose :

(i) $\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}$
(ii) $(A \pm B)^{T}=A^{T} \pm B^{T}$
(iii) $(A B)^{T}=B^{T} A^{T}$
(iv) $(\mathrm{kA})^{\mathrm{T}}=\mathrm{k}(\mathrm{A})^{\mathrm{T}}$
(v) $\left(A_{1} A_{2} A_{3} \ldots \ldots A_{n-1} A_{n}\right)^{T}$

$$
=\mathrm{A}_{\mathrm{n}}{ }^{\mathrm{T}} \mathrm{~A}_{\mathrm{n}-1}{ }^{\mathrm{T}} \ldots . . . \mathrm{A}_{3}{ }^{\mathrm{T}} \mathrm{~A}_{2}{ }^{\mathrm{T}} \mathrm{~A}_{1}{ }^{\mathrm{T}}
$$

(vi) $I^{T}=I$
(vii) $\operatorname{tr}(\mathrm{A})=\operatorname{tr}\left(\mathrm{A}^{\mathrm{T}}\right)$

8. Symmetric \& Skew-Symmetric Matrix

(a) Symmetric Matrix : A square matrix $A=\left[a_{i j}\right]$ is called symmetric matrix if $a_{i j}=a_{j i}$ for all i, j or $A^{T}=A$

Note :

(i) Every unit matrix and square zero matrix are symmetric matrices.
(ii) Maximum number of different element in a symmetric matrix is $\frac{\mathrm{n}(\mathrm{n}+1)}{2}$.
(b) Skew - Symmetric Matrix : A square matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ is called
skew - symmetric matrix if

$$
a_{i j}=-a_{j i} \text { for all } i, j
$$

or $\mathrm{A}^{\mathrm{T}}=-\mathrm{A}$

Note :

(i) All Principal diagonal elements of a skew symmetric matrix are always zero because for any diagonal element -

$$
\mathrm{a}_{\mathrm{ii}}=-\mathrm{a}_{\mathrm{ii}} \Rightarrow \mathrm{a}_{\mathrm{ii}}=0
$$

(ii) Trace of a skew symmetric matrix is always 0

8.1 Properties of Symmetric and skew- symmetric matrices :

(i) If A is a square matrix, then $\mathrm{A}+\mathrm{A}^{\mathrm{T}}, \mathrm{AA}^{\mathrm{T}}$, $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ are symmetric matrices while $\mathrm{A}-\mathrm{A}^{\mathrm{T}}$ is Skew-Symmetric Matrices.
(ii) If A is a Symmetric Matrix, then -A, KA, $\mathrm{A}^{\mathrm{T}}, \mathrm{A}^{\mathrm{n}}, \mathrm{A}^{-1}, \mathrm{~B}^{\mathrm{T}} \mathrm{AB}$ are also symmetric matrices where $n \in N, K \in R$ and B is a square matrix of order that of A .
(iii) If A is a skew symmetric matrix, then-
(a) $\mathrm{A}^{2 \mathrm{n}}$ is a symmetric matrix for $\mathrm{n} \in \mathrm{N}$
(b) $\mathrm{A}^{2 \mathrm{n}+1}$ is a skew-symmetric matrices for $\mathrm{n} \in \mathrm{N}$
(c) kA is also skew-symmetric matrix where $k \in R$.
(d) $\mathrm{B}^{\mathrm{T}} \mathrm{AB}$ is also skew-symmetric matrix where B is a square matrix of order that of A
(iv) If A, B are two symmetric matrices, then-
(a) $\mathrm{A} \pm \mathrm{B}, \mathrm{AB}+\mathrm{BA}$ are also symmetric matrices.
(b) $\mathrm{AB}-\mathrm{BA}$ is a skew - symmetric matrix.
(c) AB is a symmetric matrix when $\mathrm{AB}=\mathrm{BA}$.
(v) If A, B are two skew-symmetric matrices, then-
(a) $\mathrm{A} \pm \mathrm{B}, \mathrm{AB}-\mathrm{BA}$ are skew-symmetric matrices.
(b) $\mathrm{AB}+\mathrm{BA}$ is a symmetric matrix.
(vi) If A is a skew - symmetric matrix and C is a column matrix, then $\mathrm{C}^{\mathrm{T}} \mathrm{AC}$ is a zero matrix.
(vii) Every square matrix A can uniquelly be expressed as sum of a symmetric and skew symmetric matrix i.e.

$$
\mathrm{A}=\left[\frac{1}{2}\left(\mathrm{~A}+\mathrm{A}^{\mathrm{T}}\right)\right]+\left[\frac{1}{2}\left(\mathrm{~A}-\mathrm{A}^{\mathrm{T}}\right)\right]
$$

9. Determinant of a Matrix

If $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ be a square matrix, then its determinant, denoted by $|\mathrm{A}|$ or $\operatorname{Det}(\mathrm{A})$ is defined as

$$
|A|=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

9.1 Properties of the Determinant of a matrix :

(i) $|\mathrm{A}|$ exists $\Leftrightarrow \mathrm{A}$ is a square matrix
(ii) $|\mathrm{AB}|=|\mathrm{A}||\mathrm{B}|$
(iii) $\left|\mathrm{A}^{\mathrm{T}}\right|=|\mathrm{A}|$
(iv) $|\mathrm{kA}|=\mathrm{k}^{\mathrm{n}}|\mathrm{A}|$, if A is a square matrix of order n .
(v) If A and B are square matrices of same order then $|\mathrm{AB}|=|\mathrm{BA}|$
(vi) If A is a skew symmetric matrix of odd order then $|\mathrm{A}|=0$
(vii)If $A=\operatorname{diag}\left(a_{1}, a_{2} \ldots \ldots . a_{n}\right)$ then $|A|=a_{1} a_{2} \ldots a_{n}$
(viii) $|\mathrm{A}|^{\mathrm{n}}=\left|\mathrm{A}^{\mathrm{n}}\right|, \mathrm{n} \in \mathrm{N}$.

10. Adjoint of a Matrix

If every element of a square matrix A be replaced by its cofactor in $|\mathrm{A}|$, then the transpose of the matrix so obtained is called the adjoint of matrix A and it is denoted by adj A

Thus if $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be a square matrix and F^{ij} be the cofactor of a_{ij} in $|\mathrm{A}|$, then
$\operatorname{Adj} \mathrm{A}=\left[\mathrm{F}^{\mathrm{ij}}\right]^{\mathrm{T}}$

$$
\begin{aligned}
& \text { Hence if } A=\left[\begin{array}{ccc}
a_{11} & a_{12} & \ldots a_{1 n} \\
a_{21} & a_{22} & \ldots a_{2 n} \\
\ldots . . & \ldots . & \ldots . . . \\
\ldots . & \ldots . & \ldots \ldots . . \\
a_{n 1} & a_{n 2} & \ldots a_{n n}
\end{array}\right] \text {, then } \\
& \operatorname{Adj} A=\left[\begin{array}{ccc}
\mathrm{F}_{11} & \mathrm{~F}_{12} & \ldots \mathrm{~F}_{1 \mathrm{n}} \\
\mathrm{~F}_{21} & \mathrm{~F}_{22} & \ldots . \mathrm{F}_{2 \mathrm{n}} \\
\ldots . & \ldots . & \ldots \ldots . . \\
\ldots . & \ldots . . & \ldots \ldots . . \\
\mathrm{F}_{\mathrm{n} 1} & \mathrm{~F}_{\mathrm{n} 2} & \ldots \mathrm{~F}_{\mathrm{nn}}
\end{array}\right]^{\mathrm{T}}
\end{aligned}
$$

10.1 Properties of adjoint matrix :

If A, B are square matrices of order n and I_{n} is corresponding unit matrix, then
(i) $\mathrm{A}(\operatorname{adj} \mathrm{A})=|\mathrm{A}| \mathrm{I}_{\mathrm{n}}=(\operatorname{adj} \mathrm{A}) \mathrm{A}$ (Thus A (adj A) is always a scalar matrix)
(ii) $|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{\mathrm{n}-1}$
(iii) $\operatorname{adj}(\operatorname{adj} \mathrm{A})=|\mathrm{A}|^{\mathrm{n}-2} \mathrm{~A}$
(iv) $|\operatorname{adj}(\operatorname{adj} \mathrm{A})|=|\mathrm{A}|^{(\mathrm{n}-1)^{2}}$
(v) $\operatorname{adj}\left(A^{T}\right)=(\operatorname{adj} A)^{T}$
$(\mathrm{vi}) \operatorname{adj}(\mathrm{AB})=(\operatorname{adj} \mathrm{B})(\operatorname{adj} \mathrm{A})$
(vii) $\operatorname{adj}\left(\mathrm{A}^{\mathrm{m}}\right)=(\operatorname{adj} \mathrm{A})^{\mathrm{m}}, \mathrm{m} \in \mathrm{N}$
(viii) $\operatorname{adj}(k A)=k^{n-1}(\operatorname{adj} A), k \in R$
(ix) $\operatorname{adj}\left(\mathrm{I}_{\mathrm{n}}\right)=\mathrm{I}_{\mathrm{n}}$
(x) adj $0=0$
(xi) A is symmetric $\Rightarrow \operatorname{adj} \mathrm{A}$ is also symmetric
(xii) A is diagonal \Rightarrow adj A is also diagonal
(xiii) A is triangular \Rightarrow adj A is also triangular
(xiv) A is singular $\Rightarrow|\operatorname{adj} \mathrm{A}|=0$

11. Inverse of a Matrix

If A and B are two matrices such that

$$
\mathrm{AB}=\mathrm{I}=\mathrm{BA}
$$

then B is called the inverse of A and it is denoted by A^{-1}, thus

$$
\mathrm{A}^{-1}=\mathrm{B} \Leftrightarrow \mathrm{AB}=\mathrm{I}=\mathrm{BA}
$$

To find inverse matrix of a given matrix A we use following formula

$$
\mathrm{A}^{-1}=\frac{\operatorname{adj} \mathrm{A}}{|\mathrm{~A}|}
$$

Thus A^{-1} exists $\Leftrightarrow|\mathrm{A}| \neq 0$

Note :

(i) Matrix A is called invertible if A^{-1} exists.
(ii) Inverse of a matrix is unique.

11.1 Properties of Inverse Matrix :

Let A and B are two invertible matrices of the same order, then
(i) $\left(\mathrm{A}^{\mathrm{T}}\right)^{-1}=\left(\mathrm{A}^{-1}\right)^{\mathrm{T}}$
(ii) $(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}$
(iii) $\left(\mathrm{A}^{\mathrm{k}}\right)^{-1}=\left(\mathrm{A}^{-1}\right)^{\mathrm{k}}, \mathrm{k} \in \mathrm{N}$
(iv) $\operatorname{adj}\left(\mathrm{A}^{-1}\right)=(\operatorname{adj} \mathrm{A})^{-1}$
(v) $\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A}$
(vi) $\left|\mathrm{A}^{-1}\right|=\frac{1}{|\mathrm{~A}|}=|\mathrm{A}|^{-1}$
(vii) If $A=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, then

$$
\mathrm{A}^{-1}=\operatorname{diag}\left(\mathrm{a}_{1}^{-1}, \mathrm{a}_{2}^{-1}, \ldots ., \mathrm{a}_{\mathrm{n}}^{-1}\right)
$$

(viii) A is symmetric matrix $\Rightarrow \mathrm{A}^{-1}$ is symmetric matrix.
(ix) A is triangular matrix and $|\mathrm{A}| \neq 0 \Rightarrow \mathrm{~A}^{-1}$ is a triangular matrix.
(x) A is scalar matrix $\Rightarrow A^{-1}$ is scalar matrix.
(xi) A is diagonal matrix $\Rightarrow A^{-1}$ is diagonal matrix.
(xii) $\mathrm{AB}=\mathrm{AC} \Rightarrow \mathrm{B}=\mathrm{C}$, iff $|\mathrm{A}| \neq 0$.

SOLVED EXAMPLES

Ex. 1 If $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and a and b are arbitrary constants then $(\mathrm{aI}+\mathrm{bA})^{2}=$
(A) $a^{2} I+a b A$
(B) $a^{2} I+2 a b A$
(C) $a^{2} I+b^{2} A$
(D) None of these

Sol. Here $\mathrm{aI}+\mathrm{bA}=\left(\begin{array}{ll}\mathrm{a} & 0 \\ 0 & \mathrm{a}\end{array}\right)+\left(\begin{array}{ll}0 & \mathrm{~b} \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ 0 & \mathrm{a}\end{array}\right)$
$\therefore(a I+b A)^{2}=\left(\begin{array}{cc}a^{2}+0 & a b+b a \\ 0+0 & 0+a^{2}\end{array}\right)$
$=\left(\begin{array}{cc}\mathrm{a}^{2} & 2 \mathrm{ab} \\ 0 & \mathrm{a}^{2}\end{array}\right)=\mathrm{a}^{2} \mathrm{I}+2 \mathrm{abA} \quad$ Ans. $[\mathbf{B}]$
Ex. 2 If $\mathrm{A}=\left[\begin{array}{ccc}1 & -3 & 2 \\ 2 & 1 & -3 \\ 4 & -3 & -1\end{array}\right], \mathrm{B}=\left[\begin{array}{cccc}1 & 4 & 1 & 0 \\ 2 & 1 & 1 & 1 \\ 1 & -2 & 1 & 2\end{array}\right]$ and $C=\left[\begin{array}{cccc}2 & 1 & -1 & -2 \\ 3 & -2 & -1 & -1 \\ 2 & -5 & -1 & 0\end{array}\right]$, then which of the following statement is true ?
(A) $A B \neq A C$
(B) $\mathrm{AB}=\mathrm{AC}$
(C) $\mathrm{B} \neq \mathrm{C} \Rightarrow \mathrm{AB} \neq \mathrm{AC}$
(D) None of these

Sol. Here

$$
\begin{aligned}
\mathrm{AB} & =\left[\begin{array}{cccc}
1-6+2 & 4-3-4 & 1-3+2 & -3+4 \\
2+2-3 & 8+1+6 & 2+1-3 & 1-6 \\
4-6-1 & 16-3+2 & 4-1-3 & -3-2
\end{array}\right] \\
& =\left[\begin{array}{cccc}
-3 & -3 & 0 & 1 \\
1 & 15 & 0 & -5 \\
-3 & 15 & 0 & -5
\end{array}\right]
\end{aligned}
$$

Also AC

$$
\begin{aligned}
& =\left[\begin{array}{cccc}
2-9+4 & 1+6-10 & -1+3-2 & -2+3 \\
4+3-6 & 2-2+15 & -2-1+3 & -4-1 \\
8-9-2 & 4+6+5 & -4+3+1 & -8+3
\end{array}\right] \\
& =\left[\begin{array}{cccc}
-3 & -3 & 0 & 1 \\
1 & 15 & 0 & -5 \\
-3 & 15 & 0 & -5
\end{array}\right]=\mathrm{AB}
\end{aligned}
$$

Hence $A C=A B$ is true

Ex. 3 If $A=\left[\begin{array}{cc}p & q \\ -q & p\end{array}\right], B=\left[\begin{array}{cc}r & s \\ -s & r\end{array}\right]$ then -
(A) $\mathrm{AB}=\mathrm{BA}$
(B) $\mathrm{AB} \neq \mathrm{BA}$
(C) $\mathrm{AB}=-\mathrm{BA}$
(D) None of these

Sol. Here $\mathrm{AB}=\left[\begin{array}{cc}\mathrm{pr}-\mathrm{qs} & \mathrm{ps}+\mathrm{qr} \\ -\mathrm{qr}-\mathrm{ps} & -\mathrm{qs}+\mathrm{pr}\end{array}\right]$
Also $\mathrm{BA}=\left[\begin{array}{cc}\mathrm{rp}-\mathrm{qs} & \mathrm{qr}+\mathrm{sp} \\ -\mathrm{sp}-\mathrm{qr} & -\mathrm{qs}+\mathrm{pr}\end{array}\right]$
Clearly $\mathrm{AB}=\mathrm{BA}$
Ans.[A]
Ex. 4 If $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$ then $\mathrm{A}^{2}-4 \mathrm{~A}=$
(A) 3 I
(B) 4 I
(C) 5 I
(D) None of these

Sol. Here $A^{2}=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$

$$
=\left[\begin{array}{lll}
1+4+4 & 2+2+4 & 2+4+2 \\
2+2+4 & 4+1+4 & 4+2+2 \\
2+4+2 & 4+2+2 & 4+4+1
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
9 & 8 & 8 \\
8 & 9 & 8 \\
8 & 8 & 9
\end{array}\right]
$$

$$
\therefore A^{2}-4 A=\left[\begin{array}{lll}
9-4 & 8-8 & 8-8 \\
8-8 & 9-4 & 8-8 \\
8-8 & 8-8 & 9-4
\end{array}\right]
$$

$$
=5\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=5 \mathrm{I} \quad \text { Ans. }[\mathbf{C}]
$$

Ex. 5. If $f(\alpha)=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$ and if α, β, γ are angles of a triangle, then $f(\alpha) . f(\beta) . f(\gamma)=$
(A) I_{2}
(B) $-\mathrm{I}_{2}$
(C) 0
(D) None of these

Sol. Hence

$$
\begin{gathered}
\mathrm{f}(\alpha) \mathrm{f}(\beta)=\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{cc}
\cos \beta & \sin \beta \\
-\sin \beta & \cos \beta
\end{array}\right] \\
=\left[\begin{array}{cc}
\cos \alpha \cos \beta-\sin \alpha \sin \beta & \cos \alpha \sin \beta+\sin \alpha \cos \beta \\
-\sin \alpha \cos \beta-\cos \alpha \sin \beta & -\sin \alpha \sin \beta+\cos \alpha \cos \beta
\end{array}\right] \\
=\left[\begin{array}{cc}
\cos (\alpha+\beta) & \sin (\alpha+\beta) \\
-\sin (\alpha+\beta) & \cos (\alpha+\beta)
\end{array}\right]
\end{gathered}
$$

similarly

$$
\begin{aligned}
f(\alpha) & f(\beta) f(\gamma)=\left[\begin{array}{cc}
\cos (\alpha+\beta+\gamma) & \sin (\alpha+\beta+\gamma) \\
-\sin (\alpha+\beta+\gamma) & \cos (\alpha+\beta+\gamma)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos \pi & \sin \pi \\
-\sin \pi & \cos \pi
\end{array}\right] \text { as } \alpha+\beta+\gamma=\pi \\
& =\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]=-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=-I_{2} .
\end{aligned}
$$

Ex. 6 If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right]$; $B=\left[\begin{array}{ll}3 & 4 \\ 1 & 6\end{array}\right]$ then which of the following statements is true -
(A) $\mathrm{AB}=\mathrm{BA}$
(B) $\mathrm{A}^{2}=\mathrm{B}$
(C) $(A B)^{T}=\left[\begin{array}{cc}5 & 9 \\ 16 & 12\end{array}\right]$ (D) None of these

Sol. We have $(\mathrm{AB})_{11}=1.3+2.1=5$

$$
\begin{aligned}
& \quad(\mathrm{BA})_{11}=3.1+4.3=15 \\
& \therefore \mathrm{AB} \neq \mathrm{BA} \text { Again }\left(\mathrm{A}^{2}\right)_{11}=1.1+2.3 \\
& =7 \neq 3=(\mathrm{B})_{11}
\end{aligned}
$$

Also $(A B)^{T}=B^{T} A^{T}=\left[\begin{array}{ll}3 & 1 \\ 4 & 6\end{array}\right]\left[\begin{array}{ll}1 & 3 \\ 2 & 0\end{array}\right]$

$$
=\left[\begin{array}{cc}
3+2 & 9+0 \\
4+12 & 12+0
\end{array}\right]=\left[\begin{array}{cc}
5 & 9 \\
16 & 12
\end{array}\right] \text { is correct. }
$$

Ans.[C]

Ex. 7 If $\mathrm{A}=\left(\begin{array}{cc}2 & -1 \\ -7 & 4\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{ll}4 & 1 \\ 7 & 2\end{array}\right)$ then which statement is true?
(A) $\mathrm{AA}^{\mathrm{T}}=1$
(B) $\mathrm{BB}^{\mathrm{T}}=\mathrm{I}$
(C) $\mathrm{AB} \neq \mathrm{BA}$
(D) $(\mathrm{AB})^{\mathrm{T}}=\mathrm{I}$

Sol. \quad Here $\mathrm{A} \mathrm{A}^{\mathrm{T}}=\left(\begin{array}{cc}2 & -1 \\ -7 & 4\end{array}\right)\left(\begin{array}{cc}2 & -7 \\ -1 & 4\end{array}\right) \neq\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\left(\mathrm{BB}^{\mathrm{T}}\right)_{11}=(4)^{2}+(1)^{2} \neq 1$
$(\mathrm{AB})_{11}=8-7=1,(\mathrm{BA})_{11}=8-7=1$
$\therefore \mathrm{AB} \neq \mathrm{BA}$ may be not true
Now

$$
\begin{aligned}
& \mathrm{AB}=\left(\begin{array}{cc}
2 & -1 \\
-7 & 4
\end{array}\right)\left(\begin{array}{ll}
4 & 1 \\
7 & 2
\end{array}\right) \\
&=\left(\begin{array}{cc}
8-7 & 2-2 \\
-28+28 & -7+8
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
&(\mathrm{AB})^{\mathrm{T}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\mathrm{I}
\end{aligned}
$$

Ans.[D]

Ex. 8 If $A=\left[\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right]$, then $|A|$ is equal to -
(A) 12
(B) -10
(C) 10
(D) 5

Sol. $\quad|\mathrm{A}|=\left|\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right|=(4 \times 3-1 \times 2)$

$$
=12-2=10
$$

$\left(\because\right.$ if $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$, then $\left.|A|=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|=\left(a_{11} a_{22}-a_{12} a_{21}\right)\right)$
Ans.[C]
Ex.9. If $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 5 & 0 & 4 \\ 2 & 6 & 7\end{array}\right]$ then $\operatorname{adj} \mathrm{A}$ is equal to -
(A) $\left[\begin{array}{ccc}-24 & 4 & 8 \\ 4 & 1 & 2 \\ 8 & 11 & -11\end{array}\right]$ (B) $\left[\begin{array}{ccc}-24 & 4 & 8 \\ 4 & 1 & 11 \\ 30 & -2 & -10\end{array}\right]$
(C) $\left[\begin{array}{ccc}-24 & 4 & 8 \\ -27 & 1 & 11 \\ 30 & -2 & -10\end{array}\right]$
(D) None of these

Sol. \quad Here $\left[\mathrm{A}_{\mathrm{ij}}\right]=\left[\begin{array}{lll}-\left|\begin{array}{ll}2 & 3 \\ 6 & 7\end{array}\right| & \left|\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right| & -\left|\begin{array}{ll}1 & 2 \\ 2 & 6\end{array}\right| \\ \left|\begin{array}{ll}2 & 3 \\ 0 & 4\end{array}\right|-\left|\begin{array}{ll}1 & 3 \\ 5 & 4\end{array}\right| & \left|\begin{array}{ll}1 & 2 \\ 5 & 0\end{array}\right|\end{array}\right]$

$$
=\left[\begin{array}{ccc}
-24 & -27 & 30 \\
4 & 1 & -2 \\
8 & 11 & -10
\end{array}\right] \text { Hence transposing }
$$

$\left[\mathrm{A}_{\mathrm{ij}}\right]$ we get

$$
\operatorname{adj} A=\left[\begin{array}{ccc}
-24 & 4 & 8 \\
-27 & 1 & 11 \\
30 & -2 & -10
\end{array}\right]
$$

Ans.[C]

Ex. 10 If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{array}\right]$ then $\operatorname{adj}(\operatorname{adj} A)=$
(A) $\left[\begin{array}{ccc}-18 & 36 & -54 \\ 36 & -54 & 18 \\ -54 & 18 & -36\end{array}\right]$
(B) $-\left[\begin{array}{lll}18 & 36 & 54 \\ 36 & 54 & 18 \\ 54 & 18 & 36\end{array}\right]$
(C) $18\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{array}\right]$
(D) None of these

Sol. Hence we know $\operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} A$
Now if $n=3$ then $\operatorname{adj}(\operatorname{adj} A)=|A| A$
$=\left|\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{array}\right| \mathrm{A}$
$=\{1(6-1)-2(4-3)+3(2-9)\} \mathrm{A}$
$=(5-2-21) \mathrm{A}=-18 \mathrm{~A}$
Ans.[B]
Ex. 11 If $\mathrm{A}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ then $\mathrm{A}^{-\mathrm{n}}$ is equal to-
(A) $\left[\begin{array}{ll}1 & 0 \\ \mathrm{n} & 1\end{array}\right]$
(B) $\left[\begin{array}{cc}1 & 0 \\ -\mathrm{n} & -1\end{array}\right]$
(C) $\left[\begin{array}{cc}1 & 0 \\ -\mathrm{n} & 1\end{array}\right]$
(D) None of these

Sol. $\quad A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
$\mathrm{A}^{-1}=\frac{1}{1}\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]$
$A^{-2}=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]$
$\mathrm{A}^{-\mathrm{n}}=\left[\begin{array}{cc}1 & 0 \\ -\mathrm{n} & 1\end{array}\right]$

Ex. 12 If A is idempotent and $\mathrm{A}+\mathrm{B}=\mathrm{I}$, then which of the following is true?
(A) B is idempotent
(B) $\mathrm{AB}=0$
(C) $\mathrm{BA}=0$
(D) All of these

Sol. Here $\mathrm{A}+\mathrm{B}=\mathrm{I} \Rightarrow \mathrm{B}=\mathrm{I}-\mathrm{A}$
Now $B^{2}=(I-A)(I-A)$
$=I^{2}-A I-I A+A^{2}$
$=I-A-A+A^{2}$
$=1-A-A+A$ here $A^{2}=A$ since A is idempotent
$=\mathrm{I}-\mathrm{A}=\mathrm{B}$
$\therefore \mathrm{B}$ is idempotent is true
Again $\mathrm{AB}=\mathrm{A}(\mathrm{I}-\mathrm{A})=\mathrm{Al}-\mathrm{A}^{2}=\mathrm{A}-\mathrm{A}=0$
Also $\mathrm{BA}=(\mathrm{I}-\mathrm{A}) \mathrm{A}=\mathrm{IA}-\mathrm{A}^{2}=\mathrm{A}-\mathrm{A}=0$
Hence all statements are true .
Ans.[D]

Ex. 13 If $k\left[\begin{array}{ccc}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right]$ is an orthogonal matrix then k is equal to -
(A) 1
(B) $1 / 2$
(C) $1 / 3$
(D) None of these

Sol. Here let
$\mathrm{A}=\mathrm{k}\left[\begin{array}{ccc}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right]$
$\therefore \mathrm{A}^{\mathrm{T}}=\mathrm{k}\left[\begin{array}{ccc}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right]$
Since A is orthogonal $\therefore A A^{T}=1$
$\Rightarrow \mathrm{k}^{2}\left[\begin{array}{ccc}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right]\left[\begin{array}{ccc}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right]$
$=\mathrm{k}^{2}\left[\begin{array}{ccc}1+4+4 & -2-2+4 & -2+4-2 \\ -2-2+4 & 4+1+4 & 4-2-2 \\ -2+4-2 & 4-2-2 & 4+4+1\end{array}\right]$
$=\mathrm{k}^{2}\left[\begin{array}{ccc}9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9\end{array}\right]=9 \mathrm{k}^{2}$
$\Rightarrow 9 \mathrm{k}^{2}=1 \Rightarrow \mathrm{k}^{2}=\frac{1}{9} \Rightarrow \mathrm{k}= \pm \frac{1}{3}$
Ans.[C]

Ex. 14 If $A=\left[\begin{array}{cc}\cos ^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}\cos ^{2} \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin ^{2} \phi\end{array}\right]$, and $\mathrm{AB}=0$,
then $\theta-\phi$ is equal to -
(A) 0
(B) even multiple of $(\pi / 2)$
(C) odd multiple of ($\pi / 2$)
(D) odd multiple of π

Sol. Here
$\mathrm{AB}=\left[\begin{array}{l}\cos ^{2} \theta \cos ^{2} \phi+\cos \theta \sin \theta \cos \phi \sin \phi \\ \cos \theta \sin \theta \cos ^{2} \phi+\sin ^{2} \theta \cos \phi \sin \phi\end{array}\right.$ $\left.\begin{array}{l}\cos ^{2} \theta \cos \phi \sin \phi+\cos \theta \sin \theta \sin ^{2} \phi \\ \cos \theta \sin \theta \cos \phi \sin \phi+\sin ^{2} \theta \sin ^{2} \phi\end{array}\right]$
$=\left[\begin{array}{cc}\cos \theta \cos \phi \cos (\theta-\phi) & \cos \theta \sin \phi \cos (\theta-\phi) \\ \sin \theta \cos \phi \cos (\theta-\phi) & \sin \theta \sin \phi \cos (\theta-\phi)\end{array}\right]$
$=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, if $\cos (\theta-\phi)=0$
Now $\cos (\theta-\phi)=0, \theta-\phi$ is an odd multiple of $(\pi / 2)$.
Ans.[C]

Ex. 15 If $\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \mathrm{J}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then B equals -
(A) $I \cos \theta+J \sin \theta$ (B) $I \cos \theta-J \sin \theta$
(C) $\mathrm{I} \sin \theta+\mathrm{J} \cos \theta$
(D) $-\mathrm{I} \cos \theta+\mathrm{J} \sin \theta$

Sol. Here B $=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
$=\left[\begin{array}{cc}\cos \theta & 0 \\ 0 & \cos \theta\end{array}\right]+\left[\begin{array}{cc}0 & \sin \theta \\ -\sin \theta & 0\end{array}\right]$
$=\cos \theta\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\sin \theta\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
$=\mathrm{I} \cos \theta+\mathrm{J} \sin \theta$
Ans.[A]

Ex. 16 If $M(\alpha)=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$
$\mathrm{M}(\beta)=\left[\begin{array}{ccc}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta\end{array}\right]$ then
$[\mathrm{M}(\alpha) \mathrm{M}(\beta)]^{-1}$ is equals to -
(A) $\mathrm{M}(\beta) \mathrm{M}(\alpha)$
(B) $\mathrm{M}(-\alpha) \mathrm{M}(-\beta)$
(C) $\mathrm{M}(-\beta) \mathrm{M}(-\alpha)$
(D) $-\mathrm{M}(\beta) \mathrm{M}(\alpha)$

Sol. $\quad[M(\alpha) M(\beta)]^{-1}=M(\beta)^{-1} M(\alpha)^{-1}$
Now $M(\alpha)^{-1}=\left[\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}\cos (-\alpha) & -\sin (-\alpha) & 0 \\ \sin (-\alpha) & \cos (-\alpha) & 0 \\ 0 & 0 & 1\end{array}\right]=M(-\alpha)$
$\mathrm{M}(\beta)^{-1}=\left[\begin{array}{ccc}\cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta\end{array}\right]$
$=\left[\begin{array}{ccc}\cos (-\beta) & 0 & \sin (-\beta) \\ 0 & 1 & 0 \\ -\sin (-\beta) & 0 & \cos (-\beta)\end{array}\right]=M(-\beta)$
$\therefore[\mathrm{M}(\alpha) \mathrm{M}(\beta)]^{-1}=\mathrm{M}(-\beta) \mathrm{M}(-\alpha)$
Ans.[C]

