JEE MAIN + ADVANCED

 MATHEMATICS
TOPIC NAME

 INVERSE
TRIGOMETRIC

FUNCTIONS
(PRACTICE SHEET)

LEVEL- 1

Question based on
 Properties of Inverse Trigonometric Function

Q. $1 \quad \sin ^{-1} x+\sin ^{-1} \frac{1}{x}+\cos ^{-1} x+\cos ^{-1} \frac{1}{x}=$
(A) π
(B) $\frac{\pi}{2}$
(C) $\frac{3 \pi}{2}$
(D) None of these
Q. 2 If $x>0, \sin ^{-1}(2 \pi+x)+\cos ^{-1}(2 \pi+x)$
(A) $2 \pi+\frac{\pi}{2}$
(B) $\frac{\pi}{2}$
(C) $x+\frac{\pi}{2}$
(D) None of these
Q. $3 \sin ^{-1} \sin 15+\cos ^{-1} \cos 20+\tan ^{-1} \tan 25=$
(A) $19 \pi-60$
(B) $30-9 \pi$
(C) $19-60 \pi$
(D) $60 \pi-19$
Q. $4 \quad \cos ^{-1}\left(\frac{\pi}{3}+\sec ^{-1}(-2)\right)=$
(A) -1
(B) 1
(C) 0
(D) None of these
Q. $5 \sin ^{-1} \sin \frac{23 \pi}{7}+\cos ^{-1} \cos \frac{39 \pi}{7}$
(A) $\frac{\pi}{7}$
(B) $\frac{2 \pi}{7}$
(C) $\frac{3 \pi}{7}$
(D) $\frac{4 \pi}{7}$
Q. $6 \cos ^{-1}\left[\cos \left(-\frac{17}{15} \pi\right)\right]$ is equal to-
(A) $-\frac{17 \pi}{15}$
(B) $\frac{17 \pi}{15}$
(C) $\frac{2 \pi}{15}$
(D) $\frac{13 \pi}{15}$
Q. $7 \sin \left[\frac{\pi}{6}+\sin ^{-1}\left(-\frac{1}{2}\right)\right]=$
(A) 0
(B) $\frac{1}{3}$
(C) $\frac{1}{4}$
(D) 1
Q. $8 \tan \left(90^{\circ}-\cot ^{-1} \frac{1}{3}\right)=$
(A) 3
(B) $2 / 3$
(C) $1 / 3$
(D) $\frac{1}{\sqrt{10}}$
Q. $9 \sin \left[\frac{\pi}{2}-\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right]=$
(A) $\frac{\sqrt{3}}{2}$
(B) $-\frac{\sqrt{3}}{2}$
(C) $\frac{1}{2}$
(D) $-\frac{1}{2}$
Q. $10 \sin \left(\cos ^{-1} \frac{12}{13}\right)=$
(A) $\frac{5}{13}$
(B) $\frac{12}{13}$
(C) $\frac{13}{5}$
(D) $\frac{5}{12}$
Q. 11 If $\sin ^{-1} x+\sin ^{-1} y=\frac{2 \pi}{3}$, then $\cos ^{-1} \mathrm{x}+\cos ^{-1} \mathrm{y}=$
(A) $\frac{2 \pi}{3}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{6}$
(D) π
Q. 12 If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2}$, then the value of $x^{100}+y^{100}+z^{100}-\frac{9}{x^{101}+y^{101}+z^{101}}$ is equal to -
(A) 0
(B) 3
(C) -3
(D) 9
Q. 13 If $\cos ^{-1} \frac{3}{5}-\sin ^{-1} \frac{4}{5}=\cos ^{-1} x$, then $x=$
(A) 0
(B) 1
(C) $1 / 2$
(D) $1 / 4$
Q. $14 \cos \left[\cos ^{-1}(\sqrt{3} / 2)+\sin ^{-1}(1 / \sqrt{2})\right]$ is equal to-
(A) $(\sqrt{3}+1) / 2 \sqrt{2}$
(B) $(\sqrt{3}-1) / 2 \sqrt{2}$
(C) $(-\sqrt{3}+1) / 2 \sqrt{2}$
(D) $(-\sqrt{3}-1) / 2 \sqrt{2}$
Q. 15 The value of $\sin ^{-1}(\sin 10)$ is -
(A) 10
(B) $10-3 \pi$
(C) $3 \pi-10$
(D) None of these
Q. $16 \cos ^{-1} \sqrt{\frac{1+\cos x}{2}} ; \forall 0<x<\pi$ is
(A) x
(B) $\frac{x}{2}$
(C) 2 x
(D) None of these
(A) $\frac{3-\sqrt{5}}{2}$
(B) $\frac{3+\sqrt{5}}{2}$
(C) $\frac{2}{3-\sqrt{5}}$
(D) $\frac{2}{3+\sqrt{5}}$
Q. 19 sin $\cot ^{-1} \operatorname{tancos}^{-1} \mathrm{x}$ is equal to
(A) x
(B) $\sqrt{1-\mathrm{x}^{2}}$
(C) $\frac{1}{\mathrm{x}}$
(D) none of these
Q. 20 Let $f(x)=\sin ^{-1} x+\cos ^{-1} x$. Then $\frac{\pi}{2}$ is equal to
(A) $\mathrm{f}(-2)$
(B) $f\left(k^{2}-2 k+3\right), k \in R$
(C) $\mathrm{f}\left(\frac{1}{1+\mathrm{k}^{2}}\right), \mathrm{k} \in \mathrm{R}$
(D) none

Question based on
 Formulae for sum $\&$ difference of Inverse Trigonometric Function

Q. $21 \tan ^{-1} \frac{a-b}{1+a b}+\tan ^{-1} \frac{b-c}{1+b c}=$
(A) $\tan ^{-1} a-\tan ^{-1} b$
(B) $\tan ^{-1} \mathrm{a}-\tan ^{-1} \mathrm{c}$
(C) $\tan ^{-1} \mathrm{~b}-\tan ^{-1} \mathrm{c}$
(D) $\tan ^{-1} \mathrm{c}-\tan ^{-1} \mathrm{a}$
Q. 22 If $\sin ^{-1} \frac{1}{3}+\sin ^{-1} \frac{2}{3}=\sin ^{-1} x$, then x is equal to -
(A) 0
(B) $\frac{\sqrt{5}-4 \sqrt{2}}{9}$
(C) $\frac{\sqrt{5}+4 \sqrt{2}}{9}$
(D) $\frac{\pi}{2}$
Q. $17 \quad \sec ^{2}\left(\tan ^{-1} 2\right)+\operatorname{cosec}^{2}\left(\cot ^{-1} 3\right)=$
(A) 5
(B) 13
(C) 15
(D) 6
Q. $18 \tan \left[\frac{1}{2} \cos ^{-1}\left(\frac{\sqrt{5}}{3}\right)\right]=$
Q. 23 If $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$ then $x=$
(A) -1
(B) $\frac{1}{6}$
(C) $-1, \frac{1}{6}$
(D) None of these
Q. $24 \quad \cot ^{-1} \frac{x y+1}{x-y}+\cot ^{-1} \frac{y z+1}{y-z}+\cot ^{-1} \frac{z x+1}{z-x}=$
(A) 0
(B) 1
(C) $\cot ^{-1} \mathrm{x}+\cot ^{-1} \mathrm{y}+\cot ^{-1} \mathrm{z}$ (D) None of these
Q. 26 The value of $\tan \left\{\cos ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{2}{\sqrt{13}}\right)\right\}$ is
(A) $\frac{7}{16}$
(B) $\frac{17}{6}$
(C) $\frac{6}{17}$
(D) none
Q. $25 \cot \left[\tan ^{-1}(1 / 7)+\tan ^{-1}(1 / 13)\right]$ is equal to -
(A) $2 / 9$
(B) $9 / 2$
(C) 7/9
(D) $9 / 7$

LEVEL- 2

Q. 1 The value of $\sin ^{-1}\left(\cos \frac{33 \pi}{5}\right)$ is -
(A) $\frac{3 \pi}{5}$
(B) $\frac{7 \pi}{5}$
(C) $\frac{\pi}{10}$
(D) $-\frac{\pi}{10}$
Q. 2 If $\theta=\cot ^{-1} \sqrt{\cos x}-\tan ^{-1} \sqrt{\cos x}$, then $\sin \theta=$
(A) $\tan \frac{1}{2} \mathrm{x}$
(B) $\tan ^{2}(\mathrm{x} / 2)$
(C) $\frac{1}{2} \tan ^{-1}(\mathrm{x} / 2)$
(D) None of these
Q. 3 If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be positive real numbers and the value of $\theta=\tan ^{-1} \sqrt{\frac{a(a+b+c)}{b c}}+\tan ^{-1} \sqrt{\frac{b(a+b+c)}{c a}}+$ $\tan ^{-1} \sqrt{\frac{c(a+b+c)}{a b}}$ then $\tan \theta$ is equal to -
(A) 0
(B) 1
(C) $\frac{a+b+c}{a b c}$
(D) None of these
Q. 4 The value of $\tan ^{-1}(1)+\cos ^{-1}(-1 / 2)+\sin ^{-1}(-1 / 2)$ is equal to -
(A) $\pi / 4$
(B) $5 \pi / 12$
(C) $3 \pi / 4$
(D) $13 \pi / 12$
Q. 5 If $x^{2}+y^{2}+z^{2}=r^{2}$, then $\tan ^{-1}\left(\frac{\mathrm{xy}}{\mathrm{zr}}\right)+\tan ^{-1}\left(\frac{\mathrm{yz}}{\mathrm{xr}}\right)+\tan ^{-1}\left(\frac{\mathrm{xz}}{\mathrm{yr}}\right)=$
(A) π
(B) $\pi / 2$
(C) 0
(D) None of these
Q. 6 If $x y+y z+z x=1$, then, $\tan ^{-1} \mathrm{x}+\tan ^{-1} \mathrm{y}+\tan ^{-1} \mathrm{z}=$
(A) π
(B) $\pi / 2$
(C) 1
(D) None of these
Q. 7 The principal value of $\cos ^{-1}\left(\cos \frac{2 \pi}{3}\right)+\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$ is-
(A) π
(B) $\pi / 2$
(C) $\pi / 3$
(D) $4 \pi / 3$
Q. 8 If $3 \cos ^{-1}\left(x^{2}-7 x+25 / 2\right)=\pi$, then $x=$
(A) only 3
(B) only 4
(C) 3 or 4
(D) None of these
Q. 9 If $\tan (x+y)=33$ and $x=\tan ^{-1} 3$, then y will be
(A) 0.3
(B) $\tan ^{-1}(1.3)$
(C) $\tan ^{-1}(0.3)$
(D) $\tan ^{-1}\left(\frac{1}{18}\right)$
Q. $10 \tan \left(\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} \mathrm{x}\right)+\tan \left(\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} \mathrm{x}\right),(\mathrm{x} \neq 0)$ is equal to -
(A) x
(B) 2 x
(C) $2 / \mathrm{x}$
(D) None
Q. 11 The value of $3 \tan ^{-1}\left(\frac{1}{2}\right)+2 \tan ^{-1}\left(\frac{1}{5}\right)$ is-
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{2}$
(C) π
(D) None
Q. 12 The value of $\sin ^{2}\left(\cos ^{-1} \frac{1}{2}\right)+\cos ^{2}\left(\sin ^{-1} \frac{1}{3}\right)$ is-
(A) $\frac{17}{36}$
(B) $\frac{59}{36}$
(C) $\frac{36}{59}$
(D) None
Q. 13 Solution of equation $\tan \left(\cos ^{-1} \mathrm{x}\right)=\sin \left(\cot ^{-1} 1 / 2\right)$ is-
(A) $x=\frac{\sqrt{7}}{3}$
(B) $x=\frac{\sqrt{5}}{3}$
(C) $x=\frac{3 \sqrt{5}}{2}$
(D) None of these
Q. $14 \cos \left[\tan ^{-1}\left\{\sin \left(\cot ^{-1} x\right)\right\}\right]$ is equal to-
(A) $\sqrt{\frac{x^{2}+2}{x^{2}+3}}$
(B) $\sqrt{\frac{\mathrm{x}^{2}+2}{\mathrm{x}^{2}+1}}$
(C) $\sqrt{\frac{x^{2}+1}{x^{2}+2}}$
(D) None of these
Q. 15 If $\mathrm{a} \leq \tan ^{-1} \mathrm{x}+\cot ^{-1} \mathrm{x}+\sin ^{-1} \mathrm{x} \leq \mathrm{b}$. Then-
(A) $\mathrm{a}=0, \mathrm{~b}=\pi$
(B) $b=\frac{\pi}{2}$
(C) $\mathrm{a}=\frac{\pi}{4}$
(D) None of these
Q. 16 If $\sin ^{-1} \alpha+\sin ^{-1} \beta+\sin ^{-1} \gamma=\frac{3 \pi}{2}$. Then $\alpha \beta+\beta \gamma+\gamma \alpha$ is -
(A) 1
(B) 0
(C) 3
(D) -3
Q. 17 If $\cos ^{-1} \mathrm{x}>\sin ^{-1} \mathrm{x}$, then-
(A) $x<0$
(B) $-1<x<0$
(C) $0 \leq x<\frac{1}{\sqrt{2}}$
(D) $-1 \leq x<\frac{1}{\sqrt{2}}$
Q. 18 The principal value of
$\cos ^{-1}\left\{\frac{1}{\sqrt{2}}\left(\cos \frac{9 \pi}{10}-\sin \frac{9 \pi}{10}\right)\right\}$ is-
(A) $\frac{3 \pi}{20}$
(B) $\frac{7 \pi}{20}$
(C) $\frac{7 \pi}{10}$
(D) none

LEVEL- 3

Q. 1 If $\left(\tan ^{-1} \mathrm{x}\right)^{2}+\left(\cot ^{-1} \mathrm{x}\right)^{2}=\frac{5 \pi^{2}}{8}$, then x equals-
(A) -1
(B) 1
(C) 0
(D) None of these
Q. $2 \sum_{\mathrm{r}=1}^{\mathrm{n}} \tan ^{-1}\left(\frac{2^{\mathrm{r}-1}}{1+2^{2 \mathrm{r}-1}}\right)$ is equal to -
(A) $\tan ^{-1}\left(2^{n}\right)$
(B) $\tan ^{-1}\left(2^{n}\right)-\frac{\pi}{4}$
(C) $\tan ^{-1}\left(2^{n+1}\right)$
(D) $\tan ^{-1}\left(2^{n+1}\right)-\frac{\pi}{4}$
Q. 3 If $\tan ^{-1} \frac{1}{a-1}=\tan ^{-1} \frac{1}{x}+\tan ^{-1} \frac{1}{a^{2}-x+1}$, then x is-
(A) $\frac{a}{2}$
(B) a^{3}
(C) $a^{2}-a+1$
(D) $a^{2}+a-1$
Q. $4 \quad \tan ^{-1} \mathrm{n}+\cot ^{-1}(\mathrm{n}+1)$ is equal to-
(A) $\cot ^{-1}\left(\mathrm{n}^{2}+\mathrm{n}+1\right)$
(B) $\cot ^{-1}\left(\mathrm{n}^{2}-\mathrm{n}+1\right)$
(C) $\tan ^{-1}\left(\mathrm{n}^{2}+\mathrm{n}+1\right)$
(D) None of these
Q. 5 The value of $\sin \left[\cot ^{-1}\left(\cot \frac{17 \pi}{3}\right)\right]$ is-
(A) $-\frac{\sqrt{3}}{2}$
(B) $\frac{\sqrt{3}}{2}$
(C) $\frac{1}{\sqrt{2}}$
(D) None of these
Q. $6 \sec \left(\operatorname{cosec}^{-1} x\right)$ is equal to-
(A) $\operatorname{cosec}\left(\sec ^{-1} x\right)$
(B) $\cot x$
(C) π
(D) None of these
Q. 7 If $\sum_{i=1}^{20} \sin ^{-1} x_{i}=10 \pi$ then $\sum_{i=1}^{20} x_{i}$ is equal to-
(A) 20
(B) 10
(C) 0
(D) None of these
Q. 8 The value of $\cot ^{-1} 3+\sec ^{-1} \frac{\sqrt{5}}{2}$ is-
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{2}$
(D) None of these
Q. $9-\frac{2 \pi}{5}$ is the principal value of -
(A) $\cos ^{-1}\left(\cos \frac{7 \pi}{5}\right)$
(B) $\sin ^{-1}\left(\sin \frac{7 \pi}{5}\right)$
(C) $\sec ^{-1}\left(\sec \frac{7 \pi}{5}\right)$
(D) None of these
Q. 10 If $\theta=\sin ^{-1}\left(\sin \left(-600^{\circ}\right)\right)$, then one of the possible value of θ is-
(A) $\frac{\pi}{3}$
(B) $\frac{\pi}{2}$
(C) $\frac{2 \pi}{3}$
(D) $-\frac{2 \pi}{3}$
Q. $11 \sin \left[2 \cos ^{-1}\left(-\frac{3}{5}\right)\right]$ is equal to -
(A) $\frac{6}{25}$
(B) $\frac{24}{25}$
(C) $\frac{4}{5}$
(D) $-\frac{24}{25}$
Q. 12 If $\sin ^{-1} \sin x=\cos ^{-1} \cos x ; \forall 0<x<\pi$ then $x=$
(A) $\left[0, \frac{\pi}{4}\right]$
(B) $\left(0, \frac{\pi}{2}\right]$
(C) $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
(D) $\left[0, \frac{\pi}{2}\right)$
Q. 13 If $\sin ^{-1} x-\cos ^{-1} x=\frac{\pi}{6}$, then x is-
(A) $\frac{1}{2}$
(B) $\frac{\sqrt{3}}{2}$
(C) $-\frac{1}{2}$
(D) None of these
Q. 14 The principal value of $\cos ^{-1}\left(-\sin \frac{7 \pi}{6}\right)$ is-
(A) $\frac{5 \pi}{3}$
(B) $\frac{7 \pi}{6}$
(C) $\frac{\pi}{3}$
(D) None of these
Q. 15 The number of positive integral solutions of the equation $\tan ^{-1} x+\cos ^{-1} \frac{y}{\sqrt{1+y^{2}}}=\sin ^{-1} \frac{3}{\sqrt{10}}$ is-
(A) one
(B) two
(C) zero
(D) None of these
Q. 16 The value of

$$
\begin{aligned}
& \sin ^{-1}\left[\operatorname { c o t } \left(\sin ^{-1} \sqrt{\left(\frac{2-\sqrt{3}}{4}\right)}\right.\right. \\
& \left.\left.+\cos ^{-1}\left(\frac{\sqrt{12}}{4}\right)+\sec ^{-1} \sqrt{2}\right)\right] \text { is - }
\end{aligned}
$$

(A) 0
(B) $\pi / 4$
(C) $\pi / 6$
(D) $\pi / 2$
Q. 17 The value of $\tan \left\{\left(\cos ^{-1}\left(-\frac{2}{7}\right)-\pi / 2\right)\right\}$ is-
(A) $\frac{2}{3 \sqrt{5}}$
(B) $\frac{2}{3}$
(C) $\frac{1}{\sqrt{5}}$
(D) $\frac{4}{\sqrt{5}}$
Q. 18 If $\cos ^{-1}(\mathrm{a})+\cos ^{-1}(\mathrm{~b})+\cos ^{-1}(\mathrm{c})=3 \pi$ and $f(1)=2, f(x+y)=f(x) f(y)$ for all x, y; then
$a^{2 f(1)}+b^{2 f(2)}+c^{2 f(3)}+\frac{(a+b+c)}{a^{2 f(1)}+b^{2 f(2)}+c^{2 f(3)}}$ is equal to -
(A) 0
(B) 1
(C) 2
(D) 3
Q. $19 \tan ^{-1} \tan \left(\frac{5 \pi}{7}\right)$ is equal to-
(A) $\frac{2 \pi}{7}$
(B) $\frac{5 \pi}{7}$
(C) $-\frac{2 \pi}{7}$
(D) $\frac{\pi}{7}$
Q. 20 The principal value of
$\sin ^{-1}\left(-\frac{1}{2}\right)+\tan ^{-1}(1)+\cos ^{-1} \cos \left(-\frac{\pi}{2}\right)$ is -
(A) $\frac{5 \pi}{12}$
(B) $-\frac{5 \pi}{12}$
(C) $\frac{\pi}{12}$
(D) $\frac{7 \pi}{12}$
Q. 21 If $\sin ^{-1} x+\tan ^{-1} x=y(-1<x<1)$, then which is not possible -
(A) $y=\frac{3 \pi}{2}$
(B) $y=0$
(C) $\mathrm{y}=\frac{\pi}{2}$
(D) $\mathrm{y}=-\frac{\pi}{2}$
Q. 22 The number of positive integral solutions of $\cos ^{-1}\left(4 \mathrm{x}^{2}-8 \mathrm{x}+\frac{7}{2}\right)=\frac{\pi}{3}$ is -
(A) one
(B) two
(C) three
(D) None of these

Statement type Questions

Each of the questions given below consists of Statement-I and Statement-II. Use the following Key to choose the appropriate answer.
(A) If both Statement-I and Statement-II are true, and Statement-II is the correct explanation of Statement-I.
(B) If both Statement-I and Statement-II are true but Statement-II is not the correct explanation of Statement - I.
(C) If Statement-I is true but Statement-II is false.
(D) If Statement- I is false but Statement-II is true.

Q. 23 Statement I : The equation

$\sec ^{-1} \mathrm{X}+\cot ^{-1} \mathrm{x}<\frac{-\pi}{2}$ has no solution.
Statement II : $\sec \mathrm{x}$ is not defined at $\frac{\pi}{2}$.
Q. 24 Statement I: The equation $\sin ^{-1} \mathrm{x}=\cos ^{-1} \mathrm{x}$ has one and only one solution.
Statement II : The equation $\tan ^{-1} \mathrm{x}=1$ has only one solution.
Q. 25 Statement I : $\sin ^{-1} \sin x \neq \sin \sin ^{-1} x$, if $-1 \leq x \leq 1$
Statement II : $\sin \theta$ and $\sin ^{-1} \theta$ are different functions
Q. 26 Statement I : Equation $2 \sin ^{-1} \mathrm{x}+3 \sin ^{-1} \mathrm{y}=\frac{5 \pi}{2}$ and $y=p x-5$ hold simultaneously when p is equal to 6 .

Statement II :

The range of $\sin ^{-1} \mathrm{x}$ is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
Q. 27 Statement I : The maximum value or $\sin ^{-1} x+\operatorname{cosec}^{-1} x+\cos ^{-1} x+\sec ^{-1} x+\tan ^{-1} x$ is $\frac{3 \pi}{2}$

Statement II :

$\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$ and $\sec ^{-1} x+\operatorname{cosec}^{-1} x=\frac{\pi}{2}$

Passage based Questions

Passage

Every bijection $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ there exists a bijection $\mathrm{g}: \mathrm{B} \rightarrow$ A defined by $\mathrm{g}(\mathrm{y})=\mathrm{x}$ if and only if $f(x)=y$. The function $g: B \rightarrow A$ is called the inverse of function $f: A \rightarrow B$ and is denoted by f^{-1}.
Q. 28 The value of $\cos \left[\tan ^{-1} \tan 2\right]$ is -
(A) $\frac{1}{\sqrt{5}}$
(B) $-\frac{1}{\sqrt{5}}$
(C) $\cos 2$
(D) $-\cos 2$
Q. 29 If $\pi \leq x \leq 2 \pi$ then $\cos ^{-1} \cos x$ is equal to -
(A) x
(B) $-x$
(C) $2 \pi+x$
(D) $2 \pi-x$
Q. 30 If $x+\frac{1}{x}=2$, the principal value of $\sin ^{-1} x$ is -
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{2}$
(C) π
(D) $\frac{3 \pi}{2}$

Passage

The inverse of a function $f: A \rightarrow B$ exists iff f is one-one onto i.e. a bijection and is given by $f(x)=y^{-1}(y)=x$
Q. 31 The trigonometric equation $\sin ^{-1} \mathrm{X}=2 \sin ^{-1}$ a has a solution for -
(A) $\frac{1}{2}<|a|<\frac{1}{\sqrt{2}}$
(B) All real values of a
(C) \mid a $\left\lvert\,<\frac{1}{2}\right.$
(D) \mid a $\left\lvert\, \leq \frac{1}{\sqrt{2}}\right.$
Q. 32 The value of $\sin \left[\frac{\pi}{6}-\sin ^{-1}\left(-\frac{1}{2}\right)\right]$ is equal to -
(A) $\frac{\sqrt{3}}{2}$
(B) $\frac{1}{2}$
(C) $-\frac{\sqrt{3}}{2}$
(D) 0
Q. 33 If $\sin ^{-1}(\sin x)=\pi-x$ then x belongs to -
(A) R
(B) $[0, \pi]$
(C) $\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$
(D) $[\pi, 2 \pi]$

LEVEL- 4

(Question asked in previous AIEEE and IIT-JEE)

SECTION -A

Q. 1 The value of $\cos ^{-1}(-1)-\sin ^{-1}(1)$ is-
[AIEEE - 2002]
(A) π
(B) $\frac{\pi}{2}$
(C) $\frac{3 \pi}{2}$
(D) $-\frac{3 \pi}{2}$
Q. 2 If $\cos ^{-1} x-\cos ^{-1} \frac{y}{2}=\alpha$, then $4 x^{2}-4 x y \cos \alpha+y^{2}$ is equal to -
[AIEEE - 2005]
(A) $2 \sin 2 \alpha$
(B) 4
(C) $4 \sin ^{2} \alpha$
(D) $-4 \sin ^{2} \alpha$
Q. 3 If $\sin ^{-1}\left(\frac{x}{5}\right)+\operatorname{cosec}^{-1}\left(\frac{5}{4}\right)=\frac{\pi}{2}$ then a value of x is-
[AIEEE - 2007]
(A) 1
(B) 3
(C) 4
(D) 5
Q. 4 The value of $\cot \left(\operatorname{cosec}^{-1} \frac{5}{3}+\tan ^{-1} \frac{2}{3}\right)$ is -
[AIEEE-2008]
(A) $\frac{3}{17}$
(B) $\frac{2}{17}$
(C) $\frac{5}{17}$
(D) $\frac{6}{17}$

SECTION -B

Q. 1 If $\sin ^{-1} x=\frac{\pi}{5}, x \in(-1,1)$, then $\cos ^{-1} x=$
[IIT Scr. 1992]
(A) $\frac{3 \pi}{10}$
(B) $\frac{5 \pi}{10}$
(C) $-\frac{3 \pi}{10}$
(D) $\frac{9 \pi}{10}$
Q. $2 \tan \left(\cos ^{-1} \mathrm{x}\right)$ is equal to-
[IIT Scr. 1993]
(A) $\frac{\sqrt{1-x^{2}}}{x}$
(B) $\frac{x}{1+x^{2}}$
(C) $\frac{\sqrt{1+x^{2}}}{x}$
(D) $\sqrt{1-x^{2}}$
Q. 3 If we consider only the principal values of the inverse trigonometric functions, then the value of $\tan \left(\cos ^{-1} \frac{1}{5 \sqrt{2}}-\sin ^{-1} \frac{4}{\sqrt{17}}\right)$ is-
[IIT - 1994]
(A) $\frac{\sqrt{29}}{3}$
(B) $\frac{29}{3}$
(C) $\frac{\sqrt{3}}{29}$
(D) $\frac{3}{29}$
Q. 4 The number of real solution of
$\tan ^{-1} \sqrt{\mathrm{x}(\mathrm{x}+1)}+\sin ^{-1} \sqrt{\mathrm{x}^{2}+\mathrm{x}+1}=\frac{\pi}{2}$ is-
[IIT - 1999]
(A) zero
(B) one
(C) two
(D) Infinite
Q. 5 If $\sin ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{4}-\ldots\right)+$
$\cos ^{-1}\left(x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4}-\ldots\right)=\frac{\pi}{2}$ for
$0<|\mathrm{x}|<\sqrt{2}$, then x equals
[IIT - 2001]
(A) $\frac{1}{2}$
(B) 1
(C) $-\frac{1}{2}$
(D) -1
Q. 6 For which value of x, $\sin \left(\cot ^{-1}(x+1)\right)=\cos \left(\tan ^{-1} x\right)$ [IIT Scr. 2004]
(A) $1 / 2$
(B) 0
(C) 1
(D) $-1 / 2$
Q. 7 Let (x, y) be such that
$\sin ^{-1}(a x)+\cos ^{-1}(y)+\cos ^{-1}(b x y)=\frac{\pi}{2}$.
Match the statement in Column I with statements in Column II and indicate your answer by darkening the appropriate bubbles in the 4×4 matrix given in the ORS. [IIT - 2007]

Column I

Column II

(A) If $\mathrm{a}=1$ and $\mathrm{b}=0$, then (x, y)
(P) lies on the circle
$x^{2}+y^{2}=1$
(B) If $\mathrm{a}=1$ and $\mathrm{b}=1$, then (x, y)
(Q) lies on $\left(x^{2}-1\right)$
$\left(y^{2}-1\right)=0$
(C) If $\mathrm{a}=1$ and $\mathrm{b}=2$,
(R) lies on $y=x$ then (x, y)
(D) If $\mathrm{a}=2$ and $\mathrm{b}=2$, then (x, y)
(S) lies on $\left(4 x^{2}-1\right)$

$$
\left(y^{2}-1\right)=0
$$

Q. 8 If $0<x<1$, then $\sqrt{1+\mathrm{x}^{2}}\left[\left\{\mathrm{x} \cos \left(\cot ^{-1} \mathrm{x}\right)+\sin \left(\cot ^{-1} \mathrm{x}\right)\right\}^{2}-1\right]^{1 / 2}$ is equal to-
[IIT - 2008]
(A) $\frac{x}{\sqrt{1+x^{2}}}$
(B) x
(C) $x \sqrt{1+x^{2}}$
(D) $\sqrt{1+x^{2}}$
Q. 9 The value of $\cot \left(\sum_{n=1}^{23} \cot ^{-1}\left(1+\sum_{k=1}^{n} 2 k\right)\right)$ is -
[JEE - Advance 2013]
(A) $\frac{23}{25}$
(B) $\frac{25}{23}$
(C) $\frac{23}{24}$
(D) $\frac{24}{23}$
Q. 10 Match List-I with List-II and select the correct answer using the code given below the lists :
[JEE - Advance 2013]
List - I
List - II
(P) $\left(\frac{1}{y^{2}}\left(\frac{\cos \left(\tan ^{-1} \mathrm{y}\right)+\mathrm{y} \sin \left(\tan ^{-1} \mathrm{y}\right)}{\cot \left(\sin ^{-1} \mathrm{y}\right)+\tan \left(\sin ^{-1} \mathrm{y}\right)}\right)^{2}+\mathrm{y}^{4}\right)^{1 / 2}$
takes value
(1) $\frac{1}{2} \sqrt{\frac{5}{3}}$
(Q) If $\cos x+\cos y+\cos z=0$
(2) $\sqrt{2}$
$=\sin x+\sin y+\sin z$
then possible value of $\cos \frac{x-y}{2}$ is
(R) If $\cos \left(\frac{\pi}{4}-x\right) \cos 2 x+\sin x \sin 2 x \sec x(3) \frac{1}{2}$
$=\cos x \sin 2 x \sec x+\cos \left(\frac{\pi}{4}+x\right) \cos 2 x$
then possible value of $\sec \mathrm{x}$ is
(S) If $\cot \left(\sin ^{-1} \sqrt{1-\mathrm{x}^{2}}\right)$
(4) 1
$=\sin \left(\tan ^{-1}(\mathrm{x} \sqrt{6})\right), \mathrm{x} \neq 0$, then
possible value of x is

Codes :

P	Q	R	S
(A) 4	3	1	2
(B) 4	3	2	1
(C) 3	4	2	1
(D) 3	4	1	2

ANSWER KEY

LEVEL-1

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
Ans.	A	D	B	D	A	D	A	C	C	A	B	A	B	B	C
Q.No.	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$				
Ans.	B	C	A, D	A	C	B	C	B	A	B	B				

LEVEL-2

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$
Ans.	D	B	A	C	B	B	A	C	C	C	D	B	B	C	A	C	D	D

LEVEL-3

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
Ans.	A	B	C	C	B	A	A	A	B	A	D	B	B	C	B	A	A	C	C	D
Q.No.	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$							
Ans.	A	D	B	B	D	A	D	D	D	B	D	A	C							

LEVEL-4
SECTION-A

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Ans.	B	C	B	D

SECTION-B

1.[A] $\sin ^{-1} \mathrm{X}=\pi / 5$
$\pi / 2-\cos ^{-1} \mathrm{x}=\pi / 5$
$\cos ^{-1} \mathrm{x}=\pi / 2-\pi / 5$
$\cos ^{-1} \mathrm{x}=3 \pi / 10$
2.[A] $\tan \left(\cos ^{-1} \mathrm{x}\right)$

$$
=\tan ^{-1} \tan ^{-1} \frac{\sqrt{1-\mathrm{x}^{2}}}{\mathrm{x}}=\frac{\sqrt{1-\mathrm{x}^{2}}}{\mathrm{x}}
$$

3.[D] $\tan \left(\cot ^{-1} \frac{1}{5 \sqrt{2}}-\sin ^{-1} \frac{4}{\sqrt{17}}\right)$

$$
\begin{aligned}
& =\tan \left(\cos ^{-1} \frac{1}{5 \sqrt{2}}-\cos ^{-1} \frac{1}{\sqrt{17}}\right) \\
& =\tan \cos ^{-1}\left(\frac{1}{5 \sqrt{2}} \frac{1}{\sqrt{17}}+\frac{7}{5 \sqrt{2}} \times \frac{4}{\sqrt{17}}\right)
\end{aligned}
$$

$$
=\tan \cos ^{-1}\left(\frac{+29}{5 \sqrt{34}}\right)=\tan \cos ^{-1} \frac{29}{5 \sqrt{34}}
$$

$$
=\tan \tan ^{-1} \frac{3}{29}=\frac{3}{29}
$$

4.[C] $\tan ^{-1} \sqrt{\mathrm{x}(\mathrm{x}+1)}+\sin ^{-1} \sqrt{\mathrm{x}^{2}+\mathrm{x}+1}=\pi / 2$
$\cos ^{-1} \frac{1}{\sqrt{\mathrm{x}^{2}+\mathrm{x}+1}}+\sin ^{-1} \sin ^{-1} \sqrt{\mathrm{x}^{2}+\mathrm{x}+1}=\pi / 2$
is true if $\frac{1}{\sqrt{x^{2}+x+1}}=\sqrt{x^{2}+x+1}$
$1=x^{2}+x^{1}+1$
$\Rightarrow \mathrm{x}(\mathrm{x}+1)=0 \quad \Rightarrow \mathrm{x}=0,-1$
5.[B] $\sin ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{4}-\ldots . ..\right)+$
$\cos ^{-1}\left(x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4} \ldots \ldots . ..\right)=\pi / 2$
is hold then
$x-\frac{x^{2}}{2}+\frac{x^{3}}{4}-\ldots=x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4} \ldots \ldots$.
$\Rightarrow \frac{x}{1+x / 2}=\frac{x}{1+x^{2} / 2}$
$\Rightarrow \frac{2 \mathrm{x}}{2+\mathrm{x}}=\frac{2 \mathrm{x}^{2}}{2+\mathrm{x}^{2}}$
$\Rightarrow \frac{2 \mathrm{x}^{2}}{2+\mathrm{x}^{2}}-\frac{2 \mathrm{x}}{2+\mathrm{x}}=0$
$\Rightarrow 2 x\left(\frac{\mathrm{x}}{2+\mathrm{x}^{2}}-\frac{1}{2+\mathrm{x}}\right)=0$
$x \neq 0$
$2 x+x^{2}-2-x^{2}=0$
$\mathrm{x}=1$
6.[D] $\quad \sin \cot ^{-1}(x+1)=\cos \tan ^{-1} x$
$\Rightarrow \sin \tan ^{-1} \frac{1}{x+1}=\cos \tan ^{-1} x$
$\Rightarrow \sin \sin ^{-1} \frac{\frac{1}{x+1}}{\sqrt{1+\frac{1}{(x+1)^{2}}}}=\cos \cos ^{-1} \frac{1}{\sqrt{1+x^{2}}}$
$\Rightarrow \frac{1}{\sqrt{(x+1)^{2}+1}}=\frac{1}{\sqrt{1+x^{2}}}$
$\Rightarrow \mathrm{x}+\mathrm{x}^{2}=\mathrm{x}+(\mathrm{x}+1)^{2} \Rightarrow \mathrm{x}^{2}=\mathrm{x}^{2}+2 \mathrm{x}+1$
$\Rightarrow \quad \mathrm{x}=-1 / 2$
7. $[\mathrm{A} \rightarrow \mathrm{P} ; \mathbf{B} \rightarrow \mathbf{Q} ; \mathbf{C} \rightarrow \mathbf{P} ; \mathbf{D} \rightarrow \mathrm{S}]$
(A) If $\mathrm{b}=0$ and $\mathrm{a}=1$ then
$\sin ^{-1} \mathrm{x}+\cos ^{-1} \mathrm{y}=\pi / 2$
$\Rightarrow \sin ^{-1} \mathrm{x}=\pi / 2-\cos ^{-1} \mathrm{y}$
$\Rightarrow \sin ^{-1} \mathrm{x}=\sin ^{-1} \mathrm{y}$
$\Rightarrow \mathrm{x}=\mathrm{y}$
(B) If $\mathrm{a}=1$ and $\mathrm{b}=1$ then

$$
\begin{aligned}
& \sin ^{-1} x+\cos ^{-1} y+\cos ^{-1} x y=\pi / 2 \\
\Rightarrow & \cos ^{-1}\left(y \cdot x y-\sqrt{1-y^{2}} \sqrt{1-x^{2} y^{2}}\right) \\
& =\pi / 2-\sin ^{-1} x \\
& x y^{2}-\sqrt{1-y^{2}} \sqrt{1-x^{2} y^{2}}=x \\
& x^{2}\left(y^{2}-1\right)^{2}=\left(1-y^{2}\right)\left(1-x^{2} y^{2}\right) \\
\Rightarrow & \left(x^{2}-1\right)\left(y^{2}-1\right)=0
\end{aligned}
$$

(C) If $\mathrm{a}=1$ and $\mathrm{b}=2$ then
$\sin ^{-1} \mathrm{x}+\cos ^{-1} \mathrm{y}+\cos ^{-1} 2 \mathrm{xy}=\pi / 2$

$$
\cos ^{-1}\left[2 x y^{2}-\sqrt{1-y^{2}} \sqrt{1-4 x^{2} y^{2}}\right]=\cos ^{-1} x
$$

$x^{2}\left(2 y^{2}-1\right)^{2}=\left(1-y^{2}\right)\left(1-4 x^{2} y^{2}\right)$
$\Rightarrow x^{2}+y^{2}=1$
(D) If $\mathrm{a}=2$ and $\mathrm{b}=2$ then

$$
\begin{aligned}
& 2 x y^{2}-\sqrt{1-y^{2}} \sqrt{1-4 x^{2} y^{2}}=2 x \\
\Rightarrow & 4 x^{2}\left(y^{2}-1\right)^{2}=\left(1-y^{2}\right)\left(1-4 x^{2} y^{2}\right) \\
\Rightarrow & \left(y^{2}-1\right)\left[4 x^{2}\left(y^{2}-1\right)+\left(1-4 x^{2} y^{2}\right)\right]=0 \\
& \left(4 x^{2}-1\right)\left(y^{2}-1\right)
\end{aligned}
$$

8.[C]

$=\sqrt{1+x^{2}}\left[x \cos \left(\cos ^{-1} x\right)+\sin \left(\cos ^{-1} x\right)^{2}-1\right]^{1 / 2}$
$=\sqrt{1+x^{2}}\left[\left\{x \cos ^{-1} \frac{1}{\sqrt{1+\frac{1}{x^{2}}}}+\sin \sin ^{-1} \frac{1 / x}{\sqrt{1+\frac{1}{x^{2}}}}\right\}^{2}-1\right]^{1 / 2}$
$=\sqrt{1+x^{2}}\left[\left(x . \frac{x}{\sqrt{1+x^{2}}}+\frac{1}{\sqrt{1+x^{2}}}\right)^{2}-1\right]^{1 / 2}$
$=\sqrt{1+x^{2}}\left[1+x^{2}-1\right]^{1 / 2}=x \sqrt{1+x^{2}}$

$$
\begin{align*}
& \text { 9.[B] } \quad \cot \left(\sum_{\mathrm{n}=1}^{23} \cot ^{-1}\left(1+\sum_{\mathrm{k}=1}^{\mathrm{n}} 2 \mathrm{k}\right)\right) \\
& =\cot \left(\sum_{\mathrm{n}=1}^{23} \cot ^{-1}(1+\mathrm{n}(\mathrm{n}+1))\right) \\
& =\cot \left(\sum_{\mathrm{n}=1}^{23} \cot ^{-1}\left(\frac{1+\mathrm{n}(\mathrm{n}+1)}{(\mathrm{n}+1)-\mathrm{n}}\right)\right) \\
& =\cot \left(\sum_{n=1}^{23}\left(\cot ^{-1}(n+1)-\cot ^{-1}(n)\right)\right. \\
& =\cot \left(\cot ^{-1} 2-\cot ^{-1} 1+\cot ^{-1} 3-\cot ^{-1} 2+\ldots . .+\right. \\
& \cot ^{-1} 24-\cot ^{-1} 23 \text {) } \\
& =\cot \left(\cot ^{-1} 24-\cot ^{-1} 1\right) \\
& =\frac{1+\cot \left(\cot ^{-1} 24\right) \cot \left(\cot ^{-1} 1\right)}{\cot \left(\cot ^{-1} 24\right)-\cot \left(\cot ^{-1} 1\right)} \\
& =\frac{1+24 \times 1}{24-1}=\frac{25}{23} \\
& \text { 10.[B] } P:\left[\frac{1}{y^{2}}\left[\frac{1}{\frac{\sqrt{1+\mathrm{y}^{2}}}{\sqrt{1-\mathrm{y}^{2}}}+\frac{\mathrm{y}}{\mathrm{y}}+\frac{\sqrt{1+\mathrm{y}^{2}}}{\sqrt{1-\mathrm{y}^{2}}}}\right]^{2}+\mathrm{y}^{4}\right]^{1 / 2} \\
& {\left[\frac{1}{\mathrm{y}^{2}}\left(\frac{\sqrt{1+\mathrm{y}^{2}}}{1} \cdot \mathrm{y} \sqrt{1-\mathrm{y}^{2}}\right)^{2}+\mathrm{y}^{4}\right]^{1 / 2}=\left[1-\mathrm{y}^{4}+\mathrm{y}^{4}\right]^{1 / 2}=1} \\
& \text { Q: } \quad \cos x+\cos y=-\cos z \tag{i}\\
& \sin x+\sin y=-\sin z \tag{ii}\\
& \text { square \& add equation (i) \& (ii) } \\
& 2+2 \cos (x-y)=1 \\
& \cos (\mathrm{x}-\mathrm{y})=\frac{-1}{2} \\
& 2 \cos ^{2}\left(\frac{x-y}{2}\right)-1=\frac{-1}{2} \\
& \cos ^{2}\left(\frac{\mathrm{x}-\mathrm{y}}{2}\right)=\frac{1}{4} \\
& \cos \left(\frac{\mathrm{x}-\mathrm{y}}{2}\right)= \pm \frac{1}{2}
\end{align*}
$$

