SOLVED EXAMPLE

Ex. $1 \quad \int \sin ^{2}(x / 2) d x$ equals-
(A) $\frac{1}{2}(x+\sin x)+c$
(B) $\frac{1}{2}(x+\cos x)+c$
(C) $\frac{1}{2}(x-\sin x)+c$
(D) None of these

Sol. Here $\mathrm{I}=\int \frac{1-\cos \mathrm{x}}{2} \mathrm{dx}$
$=\frac{1}{2}(\mathrm{x}-\sin \mathrm{x})+\mathrm{c}$
Ans.[C]

Ex. $2 \quad \int \cot ^{2} x d x$ equals -
(A) $-\sec x+x+c$
(B) $-\cot \mathrm{x}-\mathrm{x}+\mathrm{c}$
(C) $-\sin x+x+c$
(D) None of these

Sol. $\quad \int\left(\operatorname{cosec}^{2} x-1\right) d x$
$=-\cot \mathrm{x}-\mathrm{x}+\mathrm{c}$
Ans. [B]

Ex. $3 \int \frac{5 x+7}{x} d x$ equals-
(A) $5 x+7 \log x$
(B) $7 \mathrm{x}+5 \log \mathrm{x}+\mathrm{c}$
(C) $5 x+7 \log x+c$
(D) None of these

Sol. $\quad \int \frac{5 x+7}{x} d x=\int\left(\frac{5 x}{x}+\frac{7}{x}\right) d x$
$=\int 5 d x+\int \frac{7}{x}=5 \int 1 d x+7 \int \frac{1}{x} d x$
$=5 \mathrm{x}+7 \log \mathrm{x}+\mathrm{c}$
Ans.[C]

Ex. $4 \int\left(x-\frac{1}{x}\right)^{3} d x,(x>0)$ equals-
(A) $\frac{x^{3}}{3}-\frac{3}{2} x^{2}+3 \log x+\frac{1}{2 x^{2}}+c$
(B) $\frac{x^{4}}{3}-\frac{3}{2} x^{2}+3 \log x+\frac{1}{2 x^{2}}+c$
(C) $\frac{\mathrm{x}^{4}}{4}+3 \log \mathrm{x}+\frac{1}{2 \mathrm{x}^{2}}+\mathrm{c}$
(D) None of these

Sol. $\quad \int\left(x-\frac{1}{x}\right)^{3} d x$
$=\int\left(x^{3}-3 x^{2} \cdot \frac{1}{x}+3 x \cdot \frac{1}{x^{2}}-\frac{1}{x^{3}}\right) E d x$

$$
\left[\because(a-b)^{3}=\left(a^{3}-3 a^{2} b+3 a b^{2}-b^{3}\right)\right]
$$

$=\int\left(x^{3}-3 x+\frac{3}{x}-\frac{1}{x^{3}}\right) d x$
$=\int x^{3} d x-3 \int x d x+3 \int \frac{1}{x} d x-\int \frac{1}{x^{3}} d x$
$=\frac{x^{3+1}}{3+1}-3 \cdot \frac{x^{1+1}}{1+1}+3 \log x-\frac{x^{-3+1}}{-3+1}+c$
$=\frac{x^{4}}{4}-\frac{3}{2} x^{2}+3 \log x+\frac{1}{2 x^{2}}+c \quad$ Ans.[B]
Ex. 5 The value of $\int\left(\frac{6}{1+x^{2}}+10^{x}\right) d x$ is -
(A) $6 \tan ^{-1} \mathrm{x}+10^{\mathrm{x}} \log _{\mathrm{e}} 10+\mathrm{c}$
(B) $6 \tan ^{-1} \mathrm{x}+\frac{10^{\mathrm{x}}}{\log _{e} 10}+\mathrm{c}$
(C) $3 \tan ^{-1} \mathrm{x}+\frac{10^{\mathrm{x}}}{\log _{\mathrm{e}} 10}+\mathrm{c}$
(D) None of these

Sol. $\int\left(\frac{6}{1+x^{2}}+10^{x}\right) d x$
$=6 \int \frac{1}{1+\mathrm{x}^{2}} \mathrm{dx}+\int 10^{\mathrm{x}} \mathrm{dx}$
$=6 \tan ^{-1} x+\frac{10^{x}}{\log _{e} 10}+C$
Ans.[B]

Ex. $6 \quad \int(\tan \mathrm{x}+\cot \mathrm{x})^{2} \mathrm{dx}$ is equal to-
(A) $\tan x-\cot x+c$
(B) $\tan x+\cot x+c$
(C) $\cot x-\tan x+c$
(D) None of these

Sol. $\quad I=\int\left(\tan ^{2} x+\cot ^{2} x+2\right) d x$
$=\int\left(\sec ^{2} x+\operatorname{cosec}^{2} x\right) d x$
$=\tan \mathrm{x}-\cot \mathrm{x}+\mathrm{c}$
Ans. [A]

Ex. $7 \int \sin 2 \mathrm{x} \sin 3 \mathrm{x} d \mathrm{x}$ equals-
(A) $\frac{1}{2}(\sin x-\sin 5 \mathrm{x})+\mathrm{c}$
(B) $\frac{1}{10}(\sin \mathrm{x}-\sin 5 \mathrm{x})+\mathrm{c}$
(C) $\frac{1}{10}(5 \sin x-\sin 5 x)+c$
(D) None of these

Sol. $\quad I=\frac{1}{2} \int[\cos (-x)-\cos 5 x] d x$

$$
\begin{aligned}
& =\frac{1}{2}\left[\sin x-\frac{\sin 5 x}{5}\right]+c \\
& =\frac{1}{10}[5 \sin x-\sin 5 x]+c
\end{aligned}
$$

Ans. [C]

Ex. $8 \int \frac{x^{2}}{x^{2}-1} d x$ equals-
(A) $x+\log \sqrt{\frac{x-1}{x+1}}+c$
(B) $x+\log \sqrt{\frac{x+1}{x-1}}+c$
(C) $x+\log \left(\frac{x-1}{x+1}\right)+c(D) x+\log \left(\frac{x+1}{x-1}\right)+c$

Sol. $\int \frac{x^{2}-1+1}{x^{2}-1} d x$
$=\int\left(1+\frac{1}{x^{2}-1}\right) d x$
$=x+\frac{1}{2} \log \left(\frac{x-1}{x+1}\right)+c$
$=x+\log \sqrt{\frac{x-1}{x+1}}+c$
Ans.[A]

Ex. $9 \quad \int \sec ^{2}(\mathrm{ax}+\mathrm{b}) \mathrm{dx}$ equals-
(A) $\tan (a x+b)+c$
(B) $\frac{1}{2} \tan \mathrm{x}+\mathrm{c}$
(C) $\frac{1}{a} \tan (a x+b)+c$
(D) None of these

Sol. $\int \sec ^{2}(a x+b) d x$, putting $a x+b=t$,
$a d x+0=d t \quad$ or $d x=\frac{d t}{a}$
$\therefore \int \sec ^{2}(a x+b) d x=\int \sec ^{2} t \frac{d t}{a}$
$=\frac{1}{\mathrm{a}} \int \sec ^{2} \mathrm{t} d \mathrm{dt}$
$=\frac{1}{\mathrm{a}} \tan \mathrm{t}+\mathrm{c}$
$=\frac{1}{\mathrm{a}} \tan (\mathrm{ax}+\mathrm{b})+\mathrm{c}$
(Putting the value of t)
Ans.[C]

Ex. $10 \int \frac{1}{\mathrm{x} \log \mathrm{x}} \mathrm{dx}$ is equal to-
(A) $\log (x \log x)+c$
(B) $\log (\log x+x)+c$
(C) $\log x+c$
(D) $\log (\log x)+c$

Sol. $\int \frac{1}{x \log x} d x=\int \frac{1}{x} \cdot \frac{1}{\log x} d x$
put $\log \mathrm{x}=\mathrm{t}, \frac{1}{\mathrm{x}} \mathrm{dx}=\mathrm{dt}$
$\therefore \int \frac{1}{\mathrm{x}} \cdot \frac{1}{\log \mathrm{x}} \mathrm{dx}=\int \frac{1}{\mathrm{t}} \mathrm{dt}$
$\therefore \int \frac{1}{\mathrm{t}} \mathrm{dt}=\log \mathrm{t}+\mathrm{c}=\log (\log \mathrm{x})+\mathrm{c}$
(putting the value of $t=\log x$) Ans.[D]

Ex. $11 \int \sec ^{2} x \cos (\tan x) d x$ equals-
(A) $\sin (\cos x)+c$
(B) $\sin (\tan x)+c$
(C) $\operatorname{cosec}(\tan x)+c$
(D) None of these

Sol. Let $\tan x=t$, then $\sec ^{2} x d x=d t$
$\therefore \mathrm{I}=\int \cos \mathrm{tdt}=\sin \mathrm{t}+\mathrm{c}$

$$
=\sin (\tan x)+c
$$

Ans.[B]
Ex. $12 \int \tan ^{n} x \sec ^{2} x d x$ equals-
(A) $\frac{\tan ^{n-1} \mathrm{x}}{\mathrm{n}-1}+\mathrm{c}$
(B) $\frac{\tan ^{\mathrm{n}-1} \mathrm{x}}{\mathrm{n}+1}+\mathrm{c}$
(C) $\tan ^{\mathrm{n}+1} \mathrm{x}+\mathrm{c}$
(D) None of these

Sol. $\quad \int \tan ^{n} x \sec ^{2} x d x$
putting $\tan \mathrm{x}=\mathrm{t}, \quad \sec ^{2} \mathrm{xdx}=\mathrm{dt}$

$$
\begin{aligned}
\int \tan ^{\mathrm{n}} \mathrm{x} \sec ^{2} \mathrm{xdx}=\int \mathrm{t}^{\mathrm{n}} \mathrm{dt} & =\frac{\tan ^{\mathrm{n}+1}}{\mathrm{n}+1}+\mathrm{c} \\
& =\frac{(\tan \mathrm{x})^{\mathrm{n}+1}}{\mathrm{n}+1}+\mathrm{c} \quad \text { Ans.[B] }
\end{aligned}
$$

Ex. $13 \int \frac{\sin 2 \mathrm{x}}{1+\cos ^{4} \mathrm{x}} \mathrm{dx}$ is equal to-
(A) $\cos ^{-1}\left(\cos ^{2} x\right)+c \quad$ (B) $\sin ^{-1}\left(\cos ^{2} x\right)+c$
(C) $\cot ^{-1}\left(\cos ^{2} \mathrm{x}\right)+\mathrm{c}$
(D) None of these
(C) $2 / \sqrt{\tan x}+c$
(D) $2 / \sqrt{\sec x}+c$

Sol. Here differential coefficient of
$\cos ^{2} \mathrm{x}$ is $-\sin 2 \mathrm{x}$
Let $\cos ^{2} \mathrm{x}=\mathrm{t}$
$\therefore 2 \cos \mathrm{x}(-\sin \mathrm{x}) \mathrm{dx}=\mathrm{dt}$
or $\sin 2 \mathrm{xdx}=-\mathrm{dt}$

$$
\begin{aligned}
& \therefore \int \frac{\sin 2 \mathrm{x}}{1+\cos ^{4} \mathrm{x}} \mathrm{dx}=\int \frac{-\mathrm{dt}}{1+\mathrm{t}^{2}} \\
&= \cot ^{-1} \mathrm{t}+\mathrm{c} \\
&=\cot ^{-1}\left(\cos ^{2} \mathrm{x}\right)+\mathrm{c}
\end{aligned}
$$

Ans.[C]

Ex. $14 \int \frac{b e^{x}}{\sqrt{a+b e^{x}}} d x$ equals-
(A) $\frac{2}{b} \sqrt{a+b e^{x}}+c$
(B) $\frac{1}{b} \cdot \sqrt{a+b e^{x}}+c$
(C) $2 \sqrt{a+b e^{x}}+c$
(D) None of these

Sol. $\quad \int \frac{b e^{x}}{\sqrt{a+b e^{x}}} d x$, putting $a+b e^{x}=t$
$b e^{x} d x=d t$

$$
\begin{aligned}
\therefore \int \frac{b e^{\mathrm{x}}}{\sqrt{a+b e^{\mathrm{x}}}} & d x=\int \frac{d t}{\sqrt{\mathrm{t}}}=2 \sqrt{\mathrm{t}}+\mathrm{c} \\
= & 2 \sqrt{a+b e^{\mathrm{x}}}+c
\end{aligned}
$$

Ans.[C]
Ex. $15 \int \sqrt{\frac{1+\cos x}{1-\cos x}} d x$ equals-
(A) $\log \cos \left(\frac{x}{2}\right)+c$
(B) $2 \log \sin \left(\frac{x}{2}\right)+c$
(C) $2 \log \sec \left(\frac{x}{2}\right)+c$
(D) None of these

Sol. $I=\int \sqrt{\frac{1+\cos x}{1-\cos x}} d x$
$=\int \sqrt{\frac{2 \cos ^{2}(x / 2)}{2 \sin ^{2}(x / 2)}} d x$
$=\int \cot \left(\frac{x}{2}\right) d x$
$=2 \log \sin \left(\frac{\mathrm{x}}{2}\right)+\mathrm{c}$
Ans.[B]

Ex. $16 \int \frac{\sqrt{\tan x}}{\sin x \cos x} d x$ equals-
(A) $2 \sqrt{\sec x}+c$
(B) $2 \sqrt{\tan x}+c$

Sol. $\quad I=\int \frac{\sqrt{\tan x}}{\tan x} \sec ^{2} x d x$

$$
=\int \frac{\sec ^{2} x}{\sqrt{\tan x}} d x=2 \sqrt{\tan x}+c
$$

Ans. [B]

Ex. $17 \quad \int \sin ^{5} x \cdot \cos ^{3} x d x$ is equal to-
(A) $\frac{\sin ^{6} x}{6}-\frac{\sin ^{8} x}{8}+c$ (B) $\frac{\cos ^{6} x}{6}-\frac{\cos ^{8} x}{8}+c$
(C) $\frac{\cos ^{6} x}{6}-\frac{\sin ^{8} x}{8}+c$ (D) None of these

Sol. $\quad \int \sin ^{5} x \cdot \cos ^{3} x d x$
Assumed that $\sin \mathrm{x}=\mathrm{t}$
$\therefore \cos \mathrm{xdx}=\mathrm{dt}$
$=\int \mathrm{t}^{5}\left(1-\mathrm{t}^{2}\right) \mathrm{dt}=\int\left(\mathrm{t}^{5}-\mathrm{t}^{7}\right) \mathrm{dt}$
$=\frac{\mathrm{t}^{6}}{6}-\frac{\mathrm{t}^{8}}{8}+\mathrm{c}$
$=\frac{\sin ^{6} x}{6}-\frac{\sin ^{8} x}{8}+c$
Ans.[A]

Ex. $18 \int \frac{x^{2}}{1+x^{6}} d x$ is equal to-
(A) $\tan ^{-1} x^{3}+c$
(B) $\tan ^{-1} x^{2}+c$
(C) $\frac{1}{3} \tan ^{-1} \mathrm{x}^{3}+\mathrm{c}$
(D) $3 \tan ^{-1} \mathrm{x}^{3}+\mathrm{c}$

Sol. Put $x^{3}=t \Rightarrow x^{2} d x=\frac{1}{3} d t$
$\therefore \mathrm{I}=\frac{1}{3} \int \frac{\mathrm{dt}}{1+\mathrm{t}^{2}}=\frac{1}{3} \tan ^{-1} \mathrm{x}^{3}+\mathrm{c}$
Ans. [C]
Ex. $19 \int \sqrt{\frac{1+\mathrm{x}}{1-\mathrm{x}}} \mathrm{dx}$ equals-
(A) $\sin ^{-1} x+\sqrt{1-x^{2}}+c$
(B) $\sin ^{-1} \mathrm{x}+\sqrt{\mathrm{x}^{2}-1}+\mathrm{c}$
(C) $\sin ^{-1} x-\sqrt{1-x^{2}}+c$
(D) $\sin ^{-1} x-\sqrt{x^{2}-1}+c$

Sol $\quad I=\int \sqrt{\frac{1+x}{1-x}} d x$

$$
=\int \frac{\mathrm{dx}}{\sqrt{1-\mathrm{x}^{2}}}-\frac{1}{2} \int \frac{-2 \mathrm{xdx}}{\sqrt{1-\mathrm{x}^{2}}}
$$

$=\sin ^{-1} x-\sqrt{1-x^{2}}+c$
Ans. [C]

Ex. 20 The primitive of $\log x$ will be-
(A) $x \log (e+x)+c$
(B) $x \log \left(\frac{e}{x}\right)+c$
(C) $x \log \left(\frac{x}{e}\right)+c$
(D) $x \log (e x)+c$

Sol. $\quad \int \log \mathrm{xdx}=\int \log \mathrm{x} \cdot 1 \mathrm{dx}$
[Integrating by parts, taking $\log \mathrm{x}$ as first part and 1 as second part]
$=(\log x) \cdot x-\int\left\{\frac{d(\log x)}{d x}\right\} \cdot x d x$
$=x \log x-\int \frac{1}{x} \cdot x d x=(x \log x-x)+c$
$=x(\log x-1)+c=\log \left(\frac{x}{e}\right)+c$
Ans. [C]

Ex. $21 \int x \tan ^{-1} x$ is equal to-
(A) $\frac{1}{2}\left(x^{2}+1\right) \tan ^{-1} x-x+c$
(B) $\frac{1}{2}\left(x^{2}+1\right) \tan ^{-1} x+x+c$
(C) $\frac{1}{2}\left(x^{2}+1\right) \tan ^{-1} x-\frac{1}{2} x+c$
(D) $\frac{1}{2}\left(x^{2}-1\right) \tan ^{-1} x-\frac{1}{2} x+c$

Sol. Integrating by parts taking x as second part

$$
\begin{aligned}
I & =\frac{x^{2}}{2} \tan ^{-1} x-\int \frac{1}{1+x^{2}} \cdot \frac{x^{2}}{2} d x \\
& =\frac{1}{2} x^{2} \tan ^{-1} x-\frac{1}{2}\left(1-\frac{1}{1-x^{2}}\right) d x \\
& =\frac{1}{2} x^{2} \tan ^{-1} x-\frac{1}{2} x+\frac{1}{2} \tan ^{-1} x+c \\
& =\frac{1}{2}\left(x^{2}+1\right) \tan ^{-1} x-\frac{1}{2} x+c \quad \text { Ans. }[C]
\end{aligned}
$$

Ex. $22 \int \sin (\log \mathrm{x}) \mathrm{dx}$ equals-
(A) $\frac{x}{\sqrt{2}} \sin \left(\log x+\frac{\pi}{8}\right)+c$
(B) $\frac{\mathrm{x}}{\sqrt{2}} \sin \left(\log \mathrm{x}-\frac{\pi}{4}\right)+\mathrm{c}$
(C) $\frac{x}{\sqrt{2}} \cos \left(\log x-\frac{\pi}{4}\right)+c$
(D) None of these

Sol. $\quad \int \sin (\log \mathrm{x}) \mathrm{dx}$, assumed that $\mathrm{x}=\mathrm{e}^{\mathrm{t}}$
$\therefore \mathrm{dx}=\mathrm{e}^{\mathrm{t}} \mathrm{dt}$
$=\int \sin t . e^{t} \cdot d t$
$=\frac{\mathrm{e}^{\mathrm{t}}}{\sqrt{1+1}} \sin \left(\mathrm{t}-\tan ^{-1} 1\right)+\mathrm{c}$
$\Rightarrow \int \sin (\log x) d x$

$$
=\frac{\mathrm{x}}{\sqrt{2}} \sin \left(\log \mathrm{x}-\frac{\pi}{4}\right)+\mathrm{c}
$$

Ans. [B]
Ex. $23 \int \frac{\mathrm{xe}^{\mathrm{x}}}{(\mathrm{x}+1)^{2}} \mathrm{dx}$ is equal to-
(A) $\frac{e^{x}}{(x+1)^{2}}+c$
(B) $\frac{e^{x}}{x+1}+c$
(C) $\frac{e^{x}}{(x+1)^{2}}+c$
(D) None of these

Sol. $\quad I=\int e^{x}\left[\frac{(x+1)-1}{(x+1)^{2}}\right] d x$
$=\int \mathrm{e}^{\mathrm{x}}\left(\frac{1}{\mathrm{x}+1}+\frac{-1}{(\mathrm{x}+1)^{2}}\right) \mathrm{dx}$
$=e^{x} f(x)+c$
$=\frac{e^{x}}{x+1}+c$
Ans. [B]
Ex. $24 \int x^{3}(\log x)^{2} d x$ equals-
(A) $\frac{1}{32} x^{4}\left[8(\log x)^{2}-4 \log x+1\right]+c$
(B) $\frac{1}{32} x^{4}\left[8(\log x)^{2}-4 \log x-1\right]+c$
(C) $\frac{1}{32} \mathrm{x}^{4}\left[8(\log \mathrm{x})^{2}+4 \log \mathrm{x}+1\right]+\mathrm{c}$
(D) None of these

Sol. Integrating by parts taking x^{3} as second part $I=\frac{1}{4} x^{4}(\log x)^{2}-\frac{1}{2} \int x^{3} \log x d x$
$=\frac{1}{4} x^{4}(\log x)^{2}-\frac{1}{2}\left(\frac{1}{4} x^{4} \log x-\frac{1}{16} x^{4}\right)+c$
$=\frac{1}{32} x^{4}\left[8(\log x)^{2}-4 \log x+1\right]+c$

Ans. [A]

Ex. 25 The value of $\int x \sec x \tan x d x$ is-
(A) $x \sec x+\log (\sec x+\tan x)+c$
(B) $x \sec x-\log (\sec x-\tan x)+c$
(C) $x \sec x+\log (\sec x-\tan x)+c$
(D) None of the above

Sol. $\quad \int x .(\sec x \tan x) d x$
$=(x \cdot \sec x)-\int(1 \cdot \sec x) d x$
(Integrating by parts, taking x as first function)
$=\mathrm{x} \sec \mathrm{x}-\log (\sec \mathrm{x}+\tan \mathrm{x})+\mathrm{c}$
$=x \sec x-\log \left\{(\sec x+\tan x) \frac{\sec x-\tan x}{\sec x-\tan x}\right\}+c$
$=x \sec x-\log \left(\frac{\sec ^{2} x-\tan ^{2} x}{\sec x-\tan x}\right)+c$
$=\mathrm{x} \sec \mathrm{x}+\log (\sec \mathrm{x}-\tan \mathrm{x})+\mathrm{c} \quad$ Ans. [C]

Ex. $26 \int \frac{x+\sin x}{1+\cos x} d x$ equals-
(A) $\frac{x}{2} \tan \left(\frac{x}{2}\right)+c$
(B) $\frac{\mathrm{x}}{2} \tan \mathrm{x}+\mathrm{c}$
(C) $x \tan \left(\frac{x}{2}\right)+c$
(D) $x \tan x+c$

Sol. $\quad I=\int \frac{x+2 \sin (x / 2) \cos (x / 2)}{2 \cos ^{2}(x / 2)} d x$
$=\frac{1}{2} \int x \sec ^{2}(x / 2) d x+\int \tan (x / 2) d x$
$=x \tan (x / 2)-\int \tan (x / 2) d x+\int \tan (x / 2) d x$
$=\mathrm{x} \tan \left(\frac{\mathrm{x}}{2}\right)+\mathrm{c}$.
Ans.[C]

Ex. $27 \int \mathrm{e}^{\mathrm{x}} \frac{\mathrm{x}-1}{(\mathrm{x}+1)^{3}} \mathrm{dx}$ equals-
(A) $-\frac{e^{x}}{x+1}+c$
(B) $\frac{e^{x}}{x+1}+c$
(C) $\frac{e^{x}}{(x+1)^{2}}+c$
(D) $-\frac{e^{x}}{(x+1)^{2}}+c$

Sol. $\quad I=\int e^{x}\left[\frac{x+1-2}{(x+1)^{3}}\right] d x$
$=\int e^{x}\left(\frac{1}{(x+1)^{2}}-\frac{2}{(x+1)^{3}}\right) d x$
Thus the given integral is of the form
$=\int \mathrm{e}^{\mathrm{x}}\left\{\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})\right\} \mathrm{dx}$
$\therefore \mathrm{I}=\mathrm{e}^{\mathrm{x}} \mathrm{f}(\mathrm{x})=\frac{\mathrm{e}^{\mathrm{x}}}{(\mathrm{x}+1)^{2}}+\mathrm{c}$
Ans.[C]

Ex. $28 \int \sec ^{3} \theta \mathrm{~d} \theta$ is equal to-
(A) $\frac{1}{2}[\tan \theta \sec \theta+\log (\tan \theta+\sec \theta)]+\mathrm{c}$
(B) $\frac{1}{2} \tan \theta \sec \theta+\log (\tan \theta+\sec \theta)+\mathrm{c}$
(C) $\frac{1}{2}[\tan \theta \sec \theta-\log (\tan \theta+\sec \theta)]+\mathrm{c}$
(D) None of these

Sol. $\quad I=\int \sec \cdot \sec ^{2} \theta . d \theta$

$$
\begin{aligned}
& =\int \sqrt{\tan ^{2} \theta+1} \sec ^{2} \theta \mathrm{~d} \theta \\
& =\int \sqrt{\mathrm{t}^{2}+1} \mathrm{dt}, \text { where } \mathrm{t}=\tan \theta \\
& =\frac{\mathrm{t}}{2} \sqrt{\mathrm{t}^{2}+1}+\frac{1}{2} \log \left(\mathrm{t}+\sqrt{\mathrm{t}^{2}+1}\right)+\mathrm{c} \\
& =\frac{1}{2}[\tan \theta \sec \theta+\log (\tan \theta+\sec \theta)]+\mathrm{c}
\end{aligned}
$$

Ans. [A]
Ex. $29 \int \frac{\cos x+x \sin x}{x(x+\cos x)} d x$ is equal to-
(A) $\log \{x(x+\cos x)\}+c$
(B) $\log \left(\frac{x}{x+\cos x}\right)+c$
(C) $\log \left(\frac{x+\cos x}{x+\cos x}\right)+c$
(D) None of these

Sol. $\quad I=\int \frac{(x+\cos x)-x+x \sin x}{x(x+\cos x)} d x$
$=\int \frac{1}{x} d x-\int \frac{1-\sin x}{x+\cos x} d x$
$=\log \mathrm{x}-\log (\mathrm{x}+\cos \mathrm{x})+\mathrm{c}$
$=\log \left(\frac{x}{x+\cos x}\right)+c$
Ans. [B]

Ex. $30 \int \sqrt{\sec x-1} d x$ is equal to-
(A) $2 \sin ^{-1}(\sqrt{2} \cos x / 2)+c$
(B) $-2 \sinh ^{-1}(\sqrt{2} \cos x / 2)+c$
(C) $-2 \cosh ^{-1}(\sqrt{2} \cos x / 2)+c$
(D) None of these

Sol. $\quad I=\int \sqrt{\frac{1-\cos x}{\cos x} d x}$
$=\int \frac{\sqrt{2} \sin x / 2}{\sqrt{2 \cos ^{2} x / 2-1}} d x$
$=-2 \int \frac{\mathrm{dt}}{\sqrt{\mathrm{t}^{2}-1}}$ where $\mathrm{t}=\sqrt{2} \cos \mathrm{x} / 2$
$=-2 \cosh ^{-1} \mathrm{t}+\mathrm{c}$
$=-2 \cosh ^{-1}+(\sqrt{2} \cos \mathrm{x} / 2)+\mathrm{c}$
Ans. [C]
Ex. $31 \int \frac{\mathrm{x}^{2}+1}{(\mathrm{x}-1)(\mathrm{x}-2)} d x$ equals-
(A) $\log \left[\frac{(x-2)^{5}}{(x-1)^{2}}\right]+c$
(B) $x+\log \left[\frac{(x-2)^{5}}{(x-1)^{2}}\right]+c$
(C) $x+\log \left[\frac{(x-1)^{5}}{(x-2)^{5}}\right]+c$
(D) None of these

Sol. Here since the highest powers of x in Num ${ }^{r}$ and
Den ${ }^{r}$ are equal and coefficients of x^{2} are also equal, therefore
$\frac{x^{2}+1}{(x-1)(x-2)} \equiv 1+\frac{A}{x-1}+\frac{B}{x-2}$
On solving we get $A=-2, B=5$
Thus $\frac{x^{2}+1}{(x-1)(x-2)} \equiv 1-\frac{2}{x-1}+\frac{5}{x-2}$
The above method is used to obtain the value of constant corresponding to non repeated linear factor in the Den ${ }^{\text {r }}$.

Now $I=\left(1-\frac{2}{x-1}+\frac{5}{x-2}\right) d x$
$=\mathrm{x}-2 \log (\mathrm{x}-1)+5 \log (\mathrm{x}-2)+\mathrm{c}$
$=x+\log \left[\frac{(x-2)^{5}}{(x-1)^{2}}\right]+c$
Ans.[B]

Ex. 32 The value of $\int \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$ is-
(A) $\frac{1}{b^{2}-a^{2}}\left[b \tan ^{-1} \frac{x}{b}-a \tan ^{-1} \frac{x}{a}\right]+c$
(B) $\frac{1}{b^{2}-a^{2}}\left[a \tan ^{-1} \frac{x}{b}-b \tan ^{-1} \frac{x}{a}\right]+c$
(C) $\frac{1}{b^{2}-a^{2}}\left[b \tan ^{-1} \frac{x}{b}+a \tan ^{-1} \frac{x}{a}\right]+c$
(D) None of these

Sol. Putting $\mathrm{x}^{2}=\mathrm{y}$ in integrand, we obtain
$\frac{y}{\left(y+a^{2}\right)\left(y+b^{2}\right)}=\frac{1}{b^{2}-a^{2}}\left[\frac{b^{2}}{y+b^{2}}-\frac{a^{2}}{y+a^{2}}\right]$
$\therefore I=\frac{1}{b^{2}-a^{2}} \cdot\left[\int \frac{b^{2}}{x^{2}+b^{2}} d x-\int \frac{a^{2}}{x^{2}+a^{2}} d x\right]$
$=\frac{1}{b^{2}-a^{2}}\left[b \tan ^{-1} \frac{x}{b}-a \tan ^{-1} \frac{x}{a}\right]+c$
Ans.[A]
Ex. $33 \int \frac{d x}{3 x^{2}+2 \mathrm{x}+1}$ equals-
(A) $\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right)+c$
(B) $\frac{1}{\sqrt{2}} \sin ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right)+c$
(C) $\frac{1}{\sqrt{2}} \cot ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right)+c$
(D) None of these

Sol. $I=\frac{1}{3} \frac{d x}{x^{2}+\frac{2}{3} x+\frac{1}{3}}$
$=\frac{1}{3} \int \frac{d x}{\left(x+\frac{1}{3}\right)^{2}+\frac{2}{9}}$
$=\frac{1}{3} \times \frac{3}{\sqrt{2}} \tan ^{-1}+\left(\frac{x+\left(\frac{1}{3}\right)}{\sqrt{2} / 3}\right) c$

$$
\begin{equation*}
=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right)+c \tag{A}
\end{equation*}
$$

Ex. $34 \int \sqrt{1+\mathrm{x}-2 \mathrm{x}^{2}} \mathrm{dx}$ equals-
(A) $\frac{1}{8}(4 x-1) \sqrt{1+x-2 x^{2}}+\frac{9 \sqrt{2}}{32} \sin ^{-1}\left(\frac{4 x-1}{3}\right)+c$
(B) $\frac{1}{8}(4 x+1) \sqrt{1+x-2 x^{2}}-\frac{9 \sqrt{2}}{32} \sin ^{-1}\left(\frac{4 x-1}{3}\right)+c$
(C) $\frac{1}{8}(4 x-1) \sqrt{1+x-2 x^{2}}+\frac{9 \sqrt{2}}{32} \cos ^{-1}\left(\frac{4 x-1}{3}\right)+c$
(D) None of these

Sol. $\quad I=\sqrt{2} \int \sqrt{\frac{1}{2}-\left(x^{2}-\frac{x}{2}\right)} d x$

$$
\begin{aligned}
& =\sqrt{2} \int \sqrt{\left\{\frac{9}{16}-\left(x-\frac{1}{4}\right)^{2}\right\}} d x \\
& = \\
& =\sqrt{2}\left[\frac{1}{2}\left(x-\frac{1}{4}\right) \sqrt{\left\{\frac{9}{16}-\left(x-\frac{1}{4}\right)^{2}\right\}}\right. \\
& \left.\quad+\frac{9}{32} \sin ^{-1}\left\{\frac{4}{3}\left(x-\frac{1}{4}\right)\right\}\right]+c \\
& =\frac{1}{8}(4 x-1) \sqrt{1+x-2 x^{2}}+\frac{9 \sqrt{2}}{32} \sin ^{-1}\left(\frac{4 x-1}{3}\right)+c
\end{aligned}
$$

Ans. [A]
Ex. $35 \int \frac{\mathrm{dx}}{\sqrt{3-5 x-\mathrm{x}^{2}}}$ equals-
(A) $\sin ^{-1}\left(\frac{2 x+5}{\sqrt{37}}\right)+c$
(B) $\cos ^{-1}\left(\frac{2 x+5}{\sqrt{37}}\right)+c$
(C) $\sin ^{-1}(2 x+5)+c$
(D) None of these

Sol. $I=\int \frac{d x}{\sqrt{\frac{37}{4}-\left(x+\frac{5}{2}\right)^{2}}}$
$=\sin ^{-1}\left(\frac{x+5 / 2}{\sqrt{37} / 2}\right)+c$
$=\sin ^{-1}\left(\frac{2 x+5}{\sqrt{37}}\right)+c$
Ans. [A]

Ex. $36 \int \sqrt{\mathrm{e}^{2 \mathrm{x}}-1} \mathrm{dx}$ is equal to-
(A) $\sqrt{\mathrm{e}^{2 \mathrm{x}}-1}+\sec ^{-1} \mathrm{e}^{2 \mathrm{x}}+\mathrm{c}$
(B) $\sqrt{\mathrm{e}^{2 \mathrm{x}}-1}-\sec ^{-1} \mathrm{e}^{2 \mathrm{x}}+\mathrm{c}$
(C) $\sqrt{\mathrm{e}^{2 \mathrm{x}}-1}-\sec ^{-1} \mathrm{e}^{\mathrm{x}}+\mathrm{c}$
(D) None of these

Sol. $\int \frac{\mathrm{e}^{2 \mathrm{x}}-1}{\sqrt{\mathrm{e}^{2 \mathrm{x}}-1}} \mathrm{dx}$
$=\frac{1}{2} \int \frac{2 e^{2 \mathrm{x}}}{\sqrt{\mathrm{e}^{2 \mathrm{x}}-1}} d x-\int \frac{\mathrm{e}^{\mathrm{x}}}{e^{x} \sqrt{\mathrm{e}^{2 \mathrm{x}}-1}} d x$
$=\sqrt{\mathrm{e}^{2 \mathrm{x}}-1}-\sec ^{-1} \mathrm{e}^{\mathrm{x}}+\mathrm{c}$
Ans.[C]

Ex. $37 \int \sqrt{\frac{\mathrm{e}^{\mathrm{x}}+\mathrm{a}}{\mathrm{e}^{\mathrm{x}}-\mathrm{a}}} d x$ is equal to-
(A) $\cosh ^{-1}\left(\frac{e^{x}}{a}\right)+\sec ^{-1}\left(\frac{e^{x}}{a}\right)+c$
(B) $\sinh ^{-1}\left(\frac{e^{x}}{a}\right)+\sec ^{-1}\left(\frac{e^{x}}{a}\right)+c$
(C) $\tanh ^{-1}\left(\frac{e^{x}}{a}\right)+\cos ^{-1}\left(\frac{e^{x}}{a}\right)+c$
(D) None of these

Sol. $\int \frac{e^{x}+a}{\sqrt{e^{2 x}-a^{2}}} d x$
$=\int \frac{e^{x}}{\sqrt{e^{2 x}-a^{2}}} d x+a \int \frac{e^{x}}{e^{x} \sqrt{e^{2 x}-a^{2}}} d x$
$=\cosh ^{-1}\left(\frac{e^{x}}{a}\right)+\sec ^{-1}\left(\frac{e^{x}}{a}\right)+c \quad$ Ans. $[\mathbf{A}]$
Ex. $38 \int \frac{d x}{4 \sin ^{2} x+4 \sin x \cos x+5 \cos ^{2} x}$ is equal to-
(A) $\tan ^{-1}\left(\tan x+\frac{1}{2}\right)+c$
(B) $\frac{1}{4} \tan ^{-1}\left(\tan \mathrm{x}+\frac{1}{2}\right)+\mathrm{c}$
(C) $4 \tan ^{-1}\left(\tan \mathrm{x}+\frac{1}{2}\right)+\mathrm{c}$
(D) None of these

Sol. After dividing by $\cos ^{2} \mathrm{x}$ to numerator and denominator of integration
$I=\int \frac{\sec ^{2} x d x}{4 \tan ^{2} x+4 \tan x+5}$
$=\int \frac{\sec ^{2} x d x}{(2 \tan x+1)^{2}+4}$
$=\frac{1}{2.2} \tan ^{-1}\left(\frac{2 \tan \mathrm{x}+1}{2}\right)+\mathrm{c}$
Ans. [B]
Ex. $39 \int\left(\frac{1-x}{1+x}\right)^{2} d x$ is equal to-
(A) $x-4 \log (x+1)+\frac{4}{x+1}+c$
(B) $x-\log (x+1)+\frac{4}{x+1}+c$
(C) $x-4 \log (x+1)-\frac{4}{x+1}+c$
(D) $x+\log (x+1)-\frac{4}{x+1}+c$

Sol. $\quad \int \frac{[2-(x+1)]^{2}}{(x+1)^{2}} d x$
$=\int\left[\frac{4}{(x+1)^{2}}-\frac{4}{x+1}+1\right] d x$
$=-\frac{4}{x+1}-4 \log (x+1)+x+c$
Ex. $40 \quad \int \frac{\mathrm{e}^{\mathrm{x}}}{\mathrm{e}^{2 \mathrm{x}}+5 \mathrm{e}^{\mathrm{x}}+6}$ equals-
(A) $\log \left(\frac{e^{x}+3}{e^{x}+2}\right)+c$
(B) $\log \left(\frac{e^{x}+2}{e^{x}+3}\right)+c$
(C) $\frac{1}{2} \log \left(\frac{\mathrm{e}^{\mathrm{x}}+2}{\mathrm{e}^{\mathrm{x}}+3}\right)+\mathrm{c}$
(D) None of these

Ans. [C]

Put $e^{x}=t \Rightarrow e^{x} d x=d t$

$$
\begin{aligned}
\therefore I & =\int \frac{d t}{t^{2}+5 t+6}=\int \frac{d t}{(1+2)(t+3)} \\
& =\int\left(\frac{1}{t+2}-\frac{1}{t+3}\right) d t \\
& =\log \left(\frac{t+2}{t+3}\right)+c=\log \left(\frac{e^{x}+2}{e^{x}+3}\right)+c
\end{aligned}
$$

Ans. [B]
Ex. $41 \int \frac{d x}{x+\sqrt{x}}$ equals-
(A) $2 \log (\sqrt{x}-1)+c$
(B) $2 \log (\sqrt{\mathrm{x}}+1)+\mathrm{c}$
(C) $\tan ^{-1} x+c$
(D) None of these

Sol. $\quad I=\int \frac{d x}{x+\sqrt{x}}$
$=\int \frac{2 \mathrm{tdt}}{\mathrm{t}^{2}+\mathrm{t}}$ where $\mathrm{t}^{2}=\mathrm{x}$
$=2 \int \frac{\mathrm{dt}}{\mathrm{t}+1}=2 \log (\sqrt{\mathrm{x}}+1)+\mathrm{c}$
Ans.[B]
Ex. $42 \quad I=\int \frac{4 e^{x}+6 e^{-x}}{9 e^{x}-4 e^{-x}} d x$ is equal to-
(A) $\frac{19}{36} x+\frac{35}{36} \log \left(9 e^{x}-4 e^{-x}\right)+c$
(B) $-\frac{19}{36} \mathrm{x}+\frac{35}{36} \log \left(9 \mathrm{e}^{\mathrm{x}}-4 \mathrm{e}^{-\mathrm{x}}\right)+\mathrm{c}$
(C) $\frac{1}{36} \mathrm{x}+\frac{1}{36} \log \left(9 \mathrm{e}^{\mathrm{x}}-4 \mathrm{e}^{-\mathrm{x}}\right)+\mathrm{c}$
(D) None of these

Sol. \quad Suppose $4 e^{x}+6 e^{-x}=A\left(9 e^{x}-4 e^{-x}\right)+$

$$
\mathrm{B}\left(9 \mathrm{e}^{\mathrm{x}}+4 \mathrm{e}^{-\mathrm{x}}\right)
$$

By comparing $4=9 \mathrm{~A}+9 \mathrm{~B}$,
$6=-4 \mathrm{~A}+4 \mathrm{~B}$
or $\mathrm{A}+\mathrm{B}=\frac{4}{9},-\mathrm{A}+\mathrm{B}=\frac{3}{2}$
After solving $\mathrm{A}=-\frac{19}{36}, \mathrm{~B}=\frac{35}{36}$
$\begin{aligned} \therefore I & =\int\left[-\frac{19}{36}+\frac{35}{36}\left(\frac{9 e^{x}+4 e^{-x}}{9 e^{x}-4 e^{-x}}\right)\right] d x \\ & =-\frac{19}{36} x+\frac{35}{36} \log \left(9 e^{x}-4 e^{-x}\right)+c\end{aligned}$
Ans.[B]
Ex. $43 \int \frac{\sin ^{-1} \sqrt{x}}{\sqrt{1-x}} d x$ equals-
(A) $2\left[\sqrt{x}-\sqrt{1-x} \sin ^{-1} \sqrt{x}\right]+c$
(B) $2\left[\sqrt{x}+\sqrt{1-x} \sin ^{-1} \sqrt{x}\right]+c$
(C) $\left[\sqrt{x}-\sqrt{1-x} \sin ^{-1} \sqrt{x}\right]+c$
(D) None of these

Sol. Let $x=\sin ^{2} t$, then

$$
d x=2 \sin t \cos t d t
$$

$\therefore \mathrm{I}=\int \frac{\mathrm{t}}{\cos \mathrm{t}} .2 \sin \mathrm{t} \cos \mathrm{tdt}$

$$
=2 \int \mathrm{t} \sin \mathrm{t} \mathrm{dt}
$$

$$
=2[-t \cos t+\sin t]+c
$$

$$
=2\left[\sqrt{x}-\sqrt{1-x} \sin ^{-1} \sqrt{x}\right]+c
$$

Ans. [A]
Ex. $44 \int \frac{\sqrt{x}-\sqrt{a}}{\sqrt{x+a}} d x$ equals-
(A) $\sqrt{x^{2}+a x}-2 \sqrt{a x+a^{2}}-a \cosh ^{-1}\left(\sqrt{\frac{x+a}{a}}\right)+c$
(B) $\sqrt{\mathrm{x}^{2}+\mathrm{ax}}+\sqrt{\mathrm{ax}+\mathrm{a}^{2}}-\mathrm{a} \cosh ^{-1}+\left(\sqrt{\frac{\mathrm{x}+\mathrm{a}}{\mathrm{a}}}\right)$ c
(C) $\sqrt{x^{2}+a x}-2 \sqrt{a x+a^{2}}+a \cosh ^{-1}\left(\sqrt{\frac{x+a}{a}}\right)+c$
(D) None of these

Sol. Let $x=a \tan ^{2} \theta \Rightarrow d x=2 a \tan \theta \sec ^{2} \theta d \theta$

$$
\begin{aligned}
& \therefore I=\int \frac{\sqrt{a}(\tan \theta-1) \cdot 2 a \tan \theta \sec ^{2} \theta}{\sqrt{a} \sec \theta} d \theta \\
& =2 a\left[\int \tan ^{2} \theta \sec \theta d \theta-\int \sec \theta \tan \theta d \theta\right] \\
& =2 a\left[\int \sqrt{\sec ^{2} \theta-1} \tan \theta \sec \theta d \theta-\sec \theta\right] \\
& =2 a \int \sqrt{t^{2}-1} d t-2 a \sec \theta+c[\text { Where } \sec \theta=t] \\
& =2 a\left[\frac{t}{2} \sqrt{t^{2}-1}-\frac{1}{2} \cosh ^{-1}(t)\right]-2 a \sqrt{\frac{a+x}{a}}+c \\
& =a \sqrt{\frac{x+a}{a} \cdot \frac{x}{a}}-a \cosh ^{-1}\left(\sqrt{\frac{x+a}{a}}\right) \\
& -2 \sqrt{a x+a^{2}}+c \\
& =\sqrt{x^{2}+a x}-2 \sqrt{a x+a^{2}}-a \cosh ^{-1}\left(\sqrt{\frac{x+a}{a}}\right)+c
\end{aligned}
$$

Ans. [A]
Ex. $45 \int \frac{x^{5}}{\sqrt{1+x^{3}}} d x$ equals-
(A) $\frac{2}{9}\left(\mathrm{x}^{3}-2\right) \sqrt{1+\mathrm{x}^{3}}+\mathrm{c}$
(B) $\frac{2}{9}\left(\mathrm{x}^{3}+2\right) \sqrt{1+\mathrm{x}^{3}}+\mathrm{c}$
(C) $\left(\mathrm{x}^{3}+2\right) \sqrt{1+\mathrm{x}^{3}}+\mathrm{c}$
(D) None of these

Sol. Put $1+x^{3}=t^{2} \Rightarrow 3 x^{2} d x=2 t d t$

$$
\therefore \mathrm{I}=\int \frac{\mathrm{x}^{3}}{\sqrt{1+\mathrm{x}^{3}}}\left(\mathrm{x}^{2} \mathrm{dx}\right)=\frac{2}{3} \int\left(\mathrm{t}^{2}-1\right) \mathrm{dt}
$$

$=\frac{2}{3}\left[\frac{\mathrm{t}^{3}}{3}-\mathrm{t}\right]+\mathrm{c}$
$=\frac{2}{3}\left[\frac{1}{3}\left(1+\mathrm{x}^{3}\right)^{3 / 2}-\sqrt{1+\mathrm{x}^{3}}\right]+\mathrm{c}$
$=\frac{2}{9} \sqrt{1+\mathrm{x}^{3}}\left(1+\mathrm{x}^{3}-3\right)+\mathrm{c}$
$=\frac{2}{9}\left(\mathrm{x}^{3}-2\right) \sqrt{1+\mathrm{x}^{3}}+\mathrm{c}$
Ans. [A]
Ex. $46 \int \frac{\mathrm{e}^{2 \tan ^{-1} \mathrm{x}}(1+\mathrm{x})^{2}}{\left(1+\mathrm{x}^{2}\right)} d x$ is equal to-
(A) $\mathrm{xe}^{\tan ^{-1} \mathrm{x}}+\mathrm{c}$
(B) $\mathrm{xe}^{2 \tan ^{-1} \mathrm{x}}+\mathrm{c}$
(C) $2 \mathrm{xe}^{2 \tan ^{-1} \mathrm{x}}+\mathrm{c}$
(D) None of these

Sol. Putting the value of $2 \tan ^{-1} \mathrm{x}=\mathrm{t}$

$$
\begin{aligned}
\mathrm{I} & =\frac{1}{2} \int \mathrm{e}^{\mathrm{t}}\{1+\tan (\mathrm{t} / 2)\}^{2} \mathrm{dt} \\
& =\frac{1}{2} \int \mathrm{e}^{\mathrm{t}}\left[\sec ^{2} \frac{\mathrm{t}}{2}+2 \tan \frac{\mathrm{t}}{2}\right] \mathrm{dt} \\
& =\frac{1}{2} \mathrm{e}^{\mathrm{t}}(2 \tan \mathrm{t} / 2) \\
& =\mathrm{e}^{\mathrm{t}} \tan \frac{\mathrm{t}}{2}=\mathrm{xe}^{2 \tan ^{-1} \mathrm{x}}+\mathrm{c}
\end{aligned}
$$

Ans. [B]

Ex. 47 If $I=\int \cos ^{-1} \sqrt{\mathrm{x}} \mathrm{dx}$ and
$J=\int \frac{\sin ^{-1} \sqrt{x}-\cos ^{-1} \sqrt{x}}{\sin ^{-1} \sqrt{x}+\cos ^{-1} \sqrt{x}} d x$, then J equals-
(A) $\mathrm{x}-4 \mathrm{I}$
(B) $x+I$
(C) $x-\frac{4}{\pi} \mathrm{I}$
(D) $\frac{\pi}{4}$

Sol. Here

$$
\begin{aligned}
\mathrm{J} & =\frac{2}{\pi} \int\left\{\sin ^{-1} \sqrt{\mathrm{x}}-\cos ^{-1} \sqrt{\mathrm{x}}\right\} \mathrm{dx} \\
& =\frac{2}{\pi}\left(\frac{\pi}{2}-2 \cos ^{-1} \sqrt{\mathrm{x}}\right) \mathrm{dx} \\
& {\left[\because \sin ^{-1} \sqrt{\mathrm{x}}+\cos ^{-1} \sqrt{\mathrm{x}}=\frac{\pi}{2}\right] } \\
& =\int \mathrm{dx}-\frac{4}{\pi} \int \cos ^{-1} \sqrt{\mathrm{x}} \mathrm{dx} \\
& =\mathrm{x}-\frac{4}{\pi} \mathrm{I} .
\end{aligned}
$$

Ans. [C]

Ex. 48 Which value of the constant of integration will make the integral of $\sin 3 x \cos 5 x$ zero at $x=0$
(A) 0
(B) $-3 / 16$
(C) $-5 / 16$
(D) $1 / 8$

Sol. $\quad I=\frac{1}{2} \int(\sin 8 x-\sin 2 x) d x$

$$
=\frac{1}{2}\left[-\frac{\cos 8 x}{8}+\frac{\cos 2 x}{2}\right]+c
$$

At $x=0, I=-\frac{1}{16}+\frac{1}{4}+c$
$\therefore \mathrm{I}=0 \Rightarrow \mathrm{c}=-3 / 16$
Ans. [B]
$\therefore \mathrm{I}=\frac{5}{2} \int \frac{\mathrm{dx}}{\mathrm{x}-1}+\int \frac{-\frac{5}{2} \mathrm{x}-\frac{1}{2}}{\mathrm{x}^{2}+1} \mathrm{dx}$
$=\frac{5}{2} \log (\mathrm{x}-1)-\frac{5}{4} \int \frac{2 \mathrm{x}}{\mathrm{x}^{2}+1} \mathrm{dx}-\frac{1}{2} \int \frac{1}{\mathrm{x}^{2}+1} \mathrm{dx}$
$=\frac{5}{2} \log (\mathrm{x}-1)-\frac{5}{4} \log \left(\mathrm{x}^{2}+1\right)-\frac{1}{2} \tan ^{-1} \mathrm{x}+\mathrm{c}$
$=\log \left[(\mathrm{x}-1)^{5 / 2}\left(\mathrm{x}^{2}+1\right)^{-5 / 4}\right]-\frac{1}{2} \tan ^{-1} \mathrm{x}+\mathrm{c}$
$\therefore \mathrm{a}=-5 / 4$.
Ans. [D]

Ex. 49 If $\int \frac{d x}{1+\sin x}=\tan \left(\frac{x}{2}+a\right)+c$, then value of a is
(A) $\frac{\pi}{4}$
(B) $-\frac{\pi}{4}$
(C) π
(D) $\frac{\pi}{2}$

Sol. $\quad I=\int \frac{d x}{1+\sin x}$

$$
\begin{aligned}
& =\int \frac{\mathrm{dx}}{1+\cos \{(\pi / 2)-\mathrm{x}\}} \\
& =\frac{1}{2} \int \sec ^{2}\left(\frac{\pi}{4}-\frac{\mathrm{x}}{2}\right) \mathrm{dx} \\
& =-\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)+c=\tan \left(-\frac{\pi}{4}+\frac{x}{2}\right)+c
\end{aligned}
$$

$$
\therefore \alpha=-\frac{\pi}{4}
$$

Ans. [B]
Ex. 50 If $\int \frac{2 x+3}{(x-1)\left(x^{2}+1\right)} d x=\log \left[(x-1)^{5 / 2}\left(x^{2}+1\right)^{a}\right]$ $-\frac{1}{2} \tan ^{-1} \mathrm{x}+\mathrm{k}$ where k is any arbitrary constant, then a is equal to
(A) $5 / 4$
(B) $-5 / 3$
(C) $-5 / 6$
(D) $-5 / 4$

Sol. Let $=\frac{2 x+3}{(x-1)\left(x^{2}+1\right)}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+1}$
$\Rightarrow 2 \mathrm{x}+3=\mathrm{A}\left(\mathrm{x}^{2}+1\right)+(\mathrm{Bx}+\mathrm{C})(\mathrm{x}-1) \ldots(1)$
Now putting $x=1$, we get $5=2 \mathrm{~A} \Rightarrow \mathrm{~A}=5 / 2$
Equating coefficients of similar terms on both sides of (1),
we get,
$-\mathrm{B}+\mathrm{C}=2, \mathrm{~A}-\mathrm{C}=3$
$\Rightarrow \mathrm{C}=5 / 2-3=-1 / 2$
$\mathrm{B}=-1 / 2-2=-5 / 2$

