DEFINITE INTEGRATION

(KEY CONCEPTS + SOLVED EXAMPLES)

DEFINITE INTEGRATION

1. Definition
2. Properties of Definite Integral
3. Important Formulae
4. Summation of Series by Integration

1. Definition

If $\frac{d}{d x}[f(x)]=\phi(x)$ and a and b, are two values independent of variable x, then
$\int_{a}^{b} \phi(x) d x=[f(x)]_{a}^{b}=f(b)-f(a)$
is called Definite Integral of ϕ (x) within limits a and b. Here a is called the lower limit and \mathbf{b} is called the upper limit of the integral. The interval $[a, b]$ is known as range of integration. It should be noted that every definite integral has a unique value.

2. Properties of Definite Integral

[P-1] $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(t) d t$
i.e. the value af definite integral remains unchanged if its variable is placed by any other symbol.
[P-2] $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
i.e. the interchange of limits of a definite integral changes only its sign.
[P-3] $\quad \int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
where $\mathrm{a}<\mathrm{c}<\mathrm{b}$.
or $\int_{a}^{b} f(x) d x=\int_{a}^{c_{1}} f(x) d x+\int_{c_{1}}^{c_{2}} f(x) d x+\ldots+$
$\int_{c_{n}}^{b} f(x) d x$ where $a<c_{1}<c_{2}<\ldots . c_{n}<b$.
Generally this property is used when the integrand has two or more rules in the integration interval.
[P-4] $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$.

Note :

This property can be used only when lower limit is zero. It is generally used for those complicated integrals whose denominators are unchanged when x is replaced by $a-x$. With the help of above property following integrals can be obtained-
(i) $\int_{0}^{\pi / 2} f(\sin x) d x=\int_{0}^{\pi / 2} f(\cos x) d x$
(ii) $\int_{0}^{\pi / 2} \mathrm{f}(\tan \mathrm{x}) \mathrm{dx}=\int_{0}^{\pi / 2} \mathrm{f}(\cot \mathrm{x}) \mathrm{dx}$
(iii) $\int_{0}^{\pi / 2} f(\sin 2 x) \sin x d x=\int_{0}^{\pi / 2} f(\sin 2 x) \cos x d x$
(iv) $\int_{0}^{1} f(\log x) d x=\int_{0}^{1} f[\log (1-x)] d x$
(v) $\int_{0}^{\pi / 2} \frac{\sin ^{\mathrm{n}} \mathrm{x}}{\sin ^{\mathrm{n}} \mathrm{x}+\cos ^{\mathrm{n}} \mathrm{x}} \mathrm{dx}=$

$$
\int_{0}^{\pi / 2} \frac{\cos ^{\mathrm{n}} \mathrm{x}}{\cos ^{\mathrm{n}} \mathrm{x}+\sin ^{\mathrm{n}} \mathrm{x}} \mathrm{dx}=\pi / 4
$$

(vi) $\int_{0}^{\pi / 2} \frac{\tan ^{\mathrm{n}} \mathrm{x}}{1+\tan ^{\mathrm{n}} \mathrm{x}} \mathrm{dx}=$

$$
\int_{0}^{\pi / 2} \frac{\cot ^{\mathrm{n}}}{1+\cot ^{\mathrm{n}} \mathrm{x}} \mathrm{dx}=\pi / 4
$$

(vii) $\int_{0}^{\pi / 2} \frac{1}{1+\tan ^{\mathrm{n}} \mathrm{x}} \mathrm{dx}=$

$$
\int_{0}^{\pi / 2} \frac{1}{1+\cot ^{n} x} d x=\pi / 4
$$

(viii) $\int_{0}^{\pi / 2} \frac{\sec ^{n} x}{\sec ^{\mathrm{n}} \mathrm{x}+\operatorname{cosec}^{\mathrm{n}} \mathrm{x}} \mathrm{dx}=$

$$
\int_{0}^{\pi / 2} \frac{\operatorname{cosec}^{n} x}{\operatorname{cosec}^{n} x+\sec ^{n} x} d x=\pi / 4
$$

(ix) $\int_{0}^{\pi / 4} \log (1+\tan \mathrm{x}) \mathrm{dx}=(\pi / 8) \log 2$
(x) $\int_{0}^{\pi / 2} \log \cot \mathrm{xdx}=\int_{0}^{\pi / 2} \log \tan \mathrm{xdx}=0$
[P-5] $\int_{-a}^{a} f(x) d x$
$=\left\{\begin{array}{l}0, \text { if } f(-x)=-f(x) \text { i.e. if } f(x) \text { is odd } \\ 2 \int_{0}^{a} f(x) d x, \text { if } f(-x)=f(x) \text { i.e.if } f(x) \text { even }\end{array}\right.$
This property is generally used when integrand is either even or odd function of x .
[P-6]
$\int_{0}^{2 a} f(x) d x=\left\{\begin{array}{cl}2 \int_{0}^{a} f(x) d x, & \text { if } f(2 a-x)=f(x) \\ 0, & \text { if } f(2 a-x)=-f(x)\end{array}\right.$
It is generally used to make half the upper limit.
[P-7] If $f(x)=f(x+a)$, then
$\int_{0}^{\mathrm{na}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\mathrm{n} \int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx}$
[P-8] $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
[P-9] $\frac{d}{d t}\left[\int_{\phi(t)}^{\psi(t)} \mathrm{f}(\mathrm{x}) \mathrm{dx}\right]=\mathrm{f}\{\psi(\mathrm{t})\} \psi^{\prime}(\mathrm{t})-\mathrm{f}\{\phi(\mathrm{t})\} \phi^{\prime}(\mathrm{t})$

3. Some Important Formulae

I. $\int_{0}^{\pi / 2} \log \sin x d x=\int_{0}^{\pi / 2} \log \cos x d x=-(\pi / 2) \log 2$.
II. $\int_{0}^{\pi / 2} \sin ^{m} x \cos ^{n} x d x$

$$
=\frac{\Gamma\left(\frac{\mathrm{m}+1}{2}\right) \Gamma\left(\frac{\mathrm{n}+1}{2}\right)}{2 \Gamma\left(\frac{\mathrm{~m}+\mathrm{n}+2}{2}\right)}
$$

Where $\Gamma(\mathrm{n})$ is called Gamma function which satisfies the following properties
$\Gamma(\mathrm{n}+1)=\mathrm{n} \Gamma(\mathrm{n})=\mathrm{n}!, \Gamma(1)=1, \Gamma(1 / 2)=\sqrt{\pi}$
In place of gamma function, we can also use the following formula:
$\int_{0}^{\pi / 2} \sin ^{m} x \cos ^{n} x d x$
$=\frac{(m-1)(m-3) \ldots .(2 \text { or } 1)(n-1)(n-3) \ldots .(2 \text { or } 1)}{(m+n)(m+n-2) \ldots .(2 \text { or } 1)} \times(1$ or $\pi / 2)$
It is important to note that we multiply by $(\pi / 2)$ when both m and n are even.
III. Walli's formula :
(i) $\int_{0}^{\pi / 2} \sin ^{n} x d x=\int_{0}^{\pi / 2} \cos ^{n} x d x$
$=\left\{\begin{array}{l}\frac{\mathrm{n}-1}{\mathrm{n}} \cdot \frac{\mathrm{n}-3}{\mathrm{n}-2} \cdot \frac{\mathrm{n}-5}{\mathrm{n}-4} \cdots \cdots \cdot \frac{2}{3}, \text { when } \mathrm{n} \text { is odd } \\ \frac{\mathrm{n}-1}{\mathrm{n}} \cdot \frac{\mathrm{n}-3}{\mathrm{n}-2} \cdot \frac{\mathrm{n}-5}{\mathrm{n}-4} \cdots \cdots \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}, \text { when } \mathrm{n} \text { is even }\end{array}\right.$

4. Summation of Series by Integration

For finding sum of an infinite series with the help of definite integration, following formula is used-
$\lim _{\mathrm{n} \rightarrow \infty} \sum_{\mathrm{r}=0}^{\mathrm{n}-1} \mathrm{f}\left(\frac{\mathrm{r}}{\mathrm{n}}\right) \cdot \frac{1}{\mathrm{n}}=\int_{0}^{1} \mathrm{f}(\mathrm{x}) \mathrm{dx}$.
The following method is used to solve the questions on summation of series.
(i) After writing $(r-1)^{\text {th }}$ or $r^{\text {th }}$ term of the series, express it in the form $\frac{1}{n} f\left(\frac{r}{n}\right)$. Therefore the given series will take the form

$$
\lim _{\mathrm{n} \rightarrow \infty} \sum_{\mathrm{r}=0}^{\mathrm{n}-1} \mathrm{f}\left(\frac{\mathrm{r}}{\mathrm{n}}\right) \cdot \frac{1}{\mathrm{n}}
$$

(ii) Now writing \int in place of $\left(\lim _{n \rightarrow \infty} \sum\right)$, x in place of $\left(\frac{r}{n}\right)$ and dx in place of $\frac{1}{n}$, we get the integral $\int f(x) d x$ in place of above series.
(iii) The lower limit of this integral

$$
=\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{\mathrm{r}}{\mathrm{n}}\right)_{\mathrm{r}=0}
$$

where $r=0$ is taken corresponding to first term of the series and upper limit

$$
=\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{\mathrm{r}}{\mathrm{n}}\right)_{\mathrm{r}=\mathrm{n}-1}
$$

where $\mathrm{r}=\mathrm{n}-1$ is taken corresponding to the last term.

SOLVED EXAMPLES

Ex. $1 \int_{0}^{1} \frac{6 x^{2}+1}{4 x^{3}+2 x+3} d x$ is equal to-
(A) $-\frac{1}{2} \log 3$
(B) $\frac{1}{2} \log 3$
(C) $2 \log 3$
(D) None of these

Sol. Let $4 \mathrm{x}^{3}+2 \mathrm{x}+3=\mathrm{t} \quad \therefore 2\left(6 \mathrm{x}^{2}+1\right) \mathrm{dx}=\mathrm{dt}$ Limits -at $\mathrm{x}=0 ; \mathrm{t}=3$, at $\mathrm{x}=1 ; \mathrm{t}=9$

$$
\begin{aligned}
\therefore \mathrm{I} & =\int_{3}^{9} \frac{1}{2} \frac{\mathrm{dt}}{\mathrm{t}}=\frac{1}{2}[\log \mathrm{t}]_{3}^{9} \\
& =\frac{1}{2}[\log 9-\log 3]=\frac{1}{2} \log 3
\end{aligned}
$$

Ex. $4 \int_{0}^{\pi^{2} / 4} \frac{\sin \sqrt{x}}{\sqrt{x}} d x$ is equal to
(A) 2
(B) 1
(C) $\pi / 4$
(D) $\pi^{2} / 8$

Sol. $\quad \sqrt{\mathrm{x}}=\mathrm{t}, \frac{1}{\sqrt{\mathrm{x}}} \mathrm{dx}=2 \mathrm{dt}$
$\therefore \mathrm{I}=2 \int_{0}^{\pi / 2} \sin \mathrm{tdt}=2(-\cos \mathrm{t})_{0}^{\pi / 2}=2(0+1)=2$
Ans. [A]

Ans.[B]
Ex. $2 \int_{0}^{1} \frac{\mathrm{x}}{1+\mathrm{x}^{4}} \mathrm{dx}$ is equal to -
(A) $\frac{\pi}{2}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{8}$
(D) π

Sol. $\quad I=\frac{1}{2} \int_{0}^{1} \frac{2 x}{1+\left(x^{2}\right)^{2}} d x$
$=\frac{1}{2}\left[\tan ^{-1} \mathrm{x}^{2}\right]_{0}^{1}$
$=\frac{1}{2}\left[\tan ^{-1} 1-\tan ^{-1} 0\right]$
$=\frac{1}{2}\left[\frac{\pi}{4}-0\right]=\frac{\pi}{8}$
Ans.[C]
Ex. $3 \int_{2}^{4} \frac{\sqrt{\mathrm{x}^{2}-4}}{\mathrm{x}} \mathrm{dx}$ is equal to
(A) $2(3 \sqrt{3}-\pi)$
(B) $2 \sqrt{3}-\pi$
(C) $\frac{2}{3}(3 \sqrt{3}-\pi)$
(D) π

Sol. Put $x=2 \sec t$, then
$I=\int_{0}^{\pi / 3} \frac{2 \tan t}{2 \sec t} \cdot 2 \sec t \tan t d t$
$=2 \int_{0}^{\pi / 3} \tan ^{2} t d t$
$=2 \int_{0}^{\pi / 3}\left(\sec ^{2} t-1\right) d t=2[\tan t-t]_{0}^{\pi / 3}$
$=2[\sqrt{3}-\pi / 3]=\frac{2}{3}(3 \sqrt{3}-\pi)$
Ans. [C]

Ex. 5 If $f(x)=\left\{\begin{array}{l}2 x+1,0<x<1 \\ x^{2}+2,1 \leq x<2\end{array}\right.$, then the value of $\int_{0}^{2} f(x) d x$ is-
(A) $-\frac{19}{3}$
(B) $\frac{19}{3}$
(C) $\frac{3}{19}$
(D) None of these

Sol. $\quad \int_{0}^{2} f(x) d x=\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x$

$$
\begin{aligned}
& =\int_{0}^{1}(2 x+1) d x+\int_{1}^{2}\left(x^{2}+2\right) d x \\
& =\left[x^{2}+x\right]_{0}^{1}+\left[\frac{x^{3}}{3}+2 x\right]_{1}^{2} \\
& =2-0+\left(\frac{20}{3}-\frac{7}{3}\right)=\frac{19}{3}
\end{aligned}
$$

Ans.[B]
Ex. $6 \quad \int_{0}^{\pi / 2} \log \sin x d x$ is equal to-
(A) $\frac{\pi}{2} \log 2$
(B) $-\frac{\pi}{2} \log 2$
(C) $\frac{\pi}{2} \log _{10} 2$
(D) $-\frac{\pi}{2} \log _{10} 2$

Sol. $I=\int_{0}^{\pi / 2} \log \sin x d x$
$\mathrm{I}=\int_{0}^{\pi / 2} \log \cos x d x($ by $p-4)$
$\therefore 2 \mathrm{I}=\int_{0}^{\pi / 2} \log (\sin \mathrm{x} \cos \mathrm{x}) \mathrm{dx}$
$=\int_{0}^{\pi / 2} \log \left(\frac{\sin 2 x}{2}\right) d x$
$=\int_{0}^{\pi / 2} \log \sin 2 x d x-\frac{\pi}{2} \log 2$
$=\frac{1}{2} \int_{0}^{\pi} \log \sin \mathrm{tdt}-\frac{\pi}{2} \log 2$,
where $\mathrm{t}=2 \mathrm{x}$
$=2 \frac{1}{2} \int_{0}^{\pi / 2} \log \sin t d t-\frac{\pi}{2} \log 2=1-\frac{\pi}{2} \log 2$
$\Rightarrow \mathrm{I}=-\frac{\pi}{2} \log 2$

Ans.[B]

Ex. $7 \int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$ is equal to
(A) $\pi / 2$
(B) $\pi / 4$
(C) π
(D) 2π

Sol. Using prop. $\mathrm{P}-4$, we have

$$
I=\int_{0}^{\pi / 2} \frac{\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}} d x
$$

Adding it to given integral we have
$2 \mathrm{I}=\int_{0}^{\pi / 2} \mathrm{dx}=[\mathrm{x}]_{0}^{\pi / 2}=\pi / 2$
$\therefore \mathrm{I}=\pi / 4$
Ans.[B]

Ex. 8 If $f(x)$ is an odd function of x, then $\int_{-\pi / 2}^{\pi / 2} f(\cos x) d x$ is equal to
(A) 0
(B) $\int_{0}^{\pi / 2} f(\cos x) d x$
(C) $2 \int_{0}^{\pi / 2} f(\sin x) d x$
(D) $\int_{0}^{\pi} f(\cos x) d x$

Sol. Here $f(\cos x)$ will be even function of x,
$I=\int_{-\pi / 2}^{\pi / 2} f(\cos x) d x=2 \int_{0}^{\pi / 2} f(\cos x) d x$
$=2 \int_{0}^{\pi / 2} f(\sin x) d x$

Ans.[C]

Ex. 9 The value of the integral
$\int_{-4}^{4}\left(a x^{3}+b x+c\right) d x$ depend on-
(A) b and c
(B) a, b and c
(C) only c
(D) a and c

Sol. $\quad I=\int_{-4}^{4}\left(a x^{3}+b x\right) d x+\int_{-4}^{4} c d x$
$=0+2 \int_{0}^{4} \mathrm{cdx} \quad($ by $\mathrm{P}-5)$
$=2 \mathrm{c}[\mathrm{x}]_{0}^{4}=8 \mathrm{c}$
Hence the value of I depends on c.

Ans.[C]

Ex. 10 If $f(x)=\frac{x \cos x}{1+\sin ^{2} x}$, then $\int_{-\pi}^{\pi} f(x) d x$ equals-
(A) $\pi / 4$
(B) $\pi / 2$
(C) π
(D) 0

Sol. \quad Since $f(-x)=\frac{-x \cos (-x)}{1+\sin ^{2}(\pi-x)}$

$$
=\frac{-x \cos x}{1+\sin ^{2} x}=-f(x)
$$

$$
\therefore I=\int_{-\pi}^{\pi} f(x) d x=0
$$

Ans.[D]

Ex. $11 \int_{0}^{\pi / 2} \sin ^{2} x \cos ^{3} x d x$ equals-
(A) 1
(B) $2 / 5$
(C) $2 / 15$
(D) $4 / 15$

Sol. Using Walli's formula, we get

$$
I=\frac{1.2}{5.3 .1}=\frac{2}{15}
$$

Ans.[C]

Ex. $12 \int_{\pi / 4}^{3 \pi / 4} \frac{\phi}{1+\sin \phi} \mathrm{d} \phi$ equals-
(A) $\pi(\sqrt{2}-1)$
(B) $\pi(\sqrt{2}+1)$
(C) $\pi(2-\sqrt{2})$
(D) None of these

Sol. $I=\int_{\pi / 4}^{3 \pi / 4} \frac{\phi}{1+\sin \phi} \mathrm{d} \phi$
$\Rightarrow \mathrm{I}=\int_{\pi / 4}^{3 \pi / 4} \frac{\pi-\phi}{1+\sin (\pi-\phi)} \mathrm{d} \phi$
(by $\mathrm{P}-8$)
$=\int_{\pi / 4}^{3 \pi / 4} \frac{\pi-\phi}{1+\sin \phi} \mathrm{d} \phi$
$2 \mathrm{I}=\int_{\pi / 4}^{3 \pi / 4} \frac{\pi}{1+\sin \phi} \mathrm{d} \phi=\pi \int_{\pi / 4}^{3 \pi / 4} \frac{1-\sin \phi}{\cos ^{2} \phi} \mathrm{~d} \phi$
$=\pi[\tan \phi-\sec \phi]_{\pi / 4}^{3 \pi / 4}=2 \pi(\sqrt{2}-1)$
$\mathrm{I}=\pi(\sqrt{2}-1)$

Ans.[A]

Ex. $13 \int_{\pi / 4}^{3 \pi / 4} \frac{\mathrm{dx}}{1+\cos \mathrm{x}}$ is equal to-
(A) 2
(B) -2
(C) $1 / 2$
(D) $-1 / 2$

Sol. By property [P-8]
$I=\int_{\pi / 4}^{3 \pi / 4} \frac{d x}{1+\cos x(\pi-x)}=\int_{\pi / 4}^{3 \pi / 4} \frac{d x}{1-\cos x}$
Adding it with the given integral

$$
\begin{aligned}
2 \mathrm{I} & =\int_{\pi / 4}^{3 \pi / 4} \frac{2 \mathrm{dx}}{1-\cos ^{2} \mathrm{x}}=2 \int_{\pi / 4}^{3 \pi / 4} \operatorname{cosec}^{2} \mathrm{xdx} \\
& =-2[\cot \mathrm{x}]_{\pi / 4}^{3 \pi / 4}=4 \\
& \Rightarrow \mathrm{I}=2
\end{aligned}
$$

Ans.[A]

Ex. 14 The value of $\int_{0}^{\pi / 2} \sin ^{3} x d x$ is -
(A) $2 / 3$
(B) $3 / 2$
(C) 0
(D) $4 \pi / 3$

Sol. We have $\mathrm{I}=\int_{0}^{\pi / 2} \sin ^{3} \mathrm{x} d \mathrm{x}=\frac{(3-1)}{3} \cdot 1$

$$
=2 / 3 \text {. (Since } \mathrm{n}=3 \text { is odd). }
$$

Ans.[A]
Ex. $15 \lim _{n \rightarrow \infty}\left[\frac{n+1}{n^{2}+1^{2}}+\frac{n+2}{n^{2}+2^{2}}+\ldots+\frac{1}{n}\right]$ is equal to-
(A) $\frac{\pi}{4}+\frac{1}{2} \log 2$
(B) $\frac{\pi}{4}-\frac{1}{2} \log 2$
(C) $\frac{\pi}{4}-2 \log \frac{1}{2}$
(D) None of these

Sol. $\quad \mathrm{T}_{\mathrm{r}}=\frac{\mathrm{n}+\mathrm{r}}{\mathrm{n}^{2}+\mathrm{r}^{2}}=\frac{1}{\mathrm{n}}\left[\frac{\left(1+\frac{\mathrm{r}}{\mathrm{n}}\right)^{2}}{1+\left(\frac{\mathrm{r}}{\mathrm{n}}\right)^{2}}\right]$
\therefore given limit $=\int_{0}^{1} \frac{1+\mathrm{x}}{1+\mathrm{x}^{2}} \mathrm{dx}$

$$
\begin{aligned}
& =\left[\tan ^{-1} \mathrm{x}\right]_{0}^{1}+\left[\frac{1}{2} \log \left(1+\mathrm{x}^{2}\right)\right]_{0}^{1} \\
& =\frac{\pi}{4}+\frac{1}{2} \log 2
\end{aligned}
$$

Ans.[A]
Ex. $16 \int_{0}^{\infty} \frac{x^{3}}{\left(1+x^{2}\right)^{9 / 2}} d x$ is equal to-
(A) $2 / 35$
(B) $3 / 35$
(C) $4 / 35$
(D) None of these

Sol. Put $x=\tan t$, then
$\mathrm{I}=\int_{0}^{\pi / 2} \frac{\tan ^{3} \mathrm{t}}{\sec ^{9} \mathrm{t}} \sec ^{2} \mathrm{t} d t=\int_{0}^{\pi / 2} \sin ^{3} \mathrm{t} \cos ^{4} \mathrm{tdt}$
$=\frac{2 \cdot 3 \cdot 1}{7 \cdot 5 \cdot 3 \cdot 1}=\frac{2}{35}$
Ans.[A]

Ex. $17 \int_{0}^{\infty} \frac{d x}{1+\mathrm{e}^{\mathrm{x}}}$ is equal to-

Ans.[A]

(A) $\log 2-1$
(B) $\log 2$
(C) $\log 4-1$
(D) $-\log 2$

Sol. $\quad \mathrm{I}=\int_{0}^{\infty} \frac{\mathrm{e}^{-\mathrm{x}}}{\mathrm{e}^{-\mathrm{x}}+1} \mathrm{dx}=-\left[\log \left(\mathrm{e}^{-\mathrm{x}}+1\right)\right]_{0}^{\infty}$
$=-[\log 1-\log 2]=\log 2$
Ans.[B]
Ex. $18 \int_{0}^{\pi / 2} \frac{\cos x-\sin x}{1+\sin x \cos x} d x$ is equal to-
(A) 0
(B) 1
(C) $\pi / 2$
(D) $\pi / 4$

Sol. Using P-4, given integral becomes

$$
\begin{aligned}
& \mathrm{I}=\int_{0}^{\pi / 2} \frac{\cos (\pi / 2-\mathrm{x})-\sin (\pi / 2-\mathrm{x})}{1+\sin (\pi / 2-\mathrm{x}) \cos (\pi / 2-\mathrm{x})} \mathrm{dx} \\
&=\int_{0}^{\pi / 2} \frac{\sin \mathrm{x}-\cos \mathrm{x}}{1+\cos \mathrm{x} \sin \mathrm{x}} \mathrm{dx}=-\mathrm{I} \\
& \Rightarrow 2 \mathrm{I}=0 \Rightarrow \mathrm{I}=0
\end{aligned}
$$

Ans.[A]
Ex. $19 \int_{0}^{\infty} \frac{x \log x}{\left(1+x^{2}\right)} d x$ equals
(A) 0
(B) $\log 7$
(C) $5 \log 13$
(D) None of these

Sol. Here

$$
\begin{gathered}
\int_{0}^{\infty} \frac{x \log x}{\left(1+x^{2}\right)^{2}} d x=\int_{0}^{1} \frac{x \log x}{\left(1+x^{2}\right)^{2}} d x+\int_{1}^{\infty} \frac{x \log x}{\left(1+x^{2}\right)^{2}} d x \\
I=I_{1}+I_{2}
\end{gathered}
$$

Putting $\mathrm{x}=\frac{1}{\mathrm{t}}$ in second integrand

$$
\mathrm{dx}=-\frac{1}{\mathrm{t}^{2}} \mathrm{dt}
$$

$$
\therefore \mathrm{I}_{2}=\int_{1}^{0} \frac{\frac{1}{\mathrm{t}} \log \left(\frac{1}{\mathrm{t}}\right)}{\left(1+\frac{1}{\mathrm{t}^{2}}\right)^{2}}\left(-\frac{1}{\mathrm{t}^{2}}\right) \mathrm{dt}
$$

$$
=-\int_{0}^{1} \frac{\mathrm{t} \log \mathrm{t}}{\left(1+\mathrm{t}^{2}\right)^{2}} \mathrm{dt}=-\mathrm{I}_{1}
$$

$$
\mathrm{I}=\mathrm{I}_{2}+\mathrm{I}_{1}=-\mathrm{I}_{1}+\mathrm{I}_{1}=0
$$

Ex. $20 \int_{0}^{\pi} x \sin ^{4} x d x$ is equal to-
(A) $3 \pi / 16$
(B) $3 \pi^{2} / 16$
(C) $16 \pi / 3$
(D) $16 \pi^{2} / 3$

Sol. $\quad I=\int_{0}^{\pi} x \sin ^{4} x d x$
$I=\int_{0}^{\pi}(\pi-x) \sin ^{4}(\pi-x) d x$
$I=\int_{0}^{\pi}(\pi-x) \sin ^{4} x d x$
$\therefore 2 \mathrm{I}=\pi \int_{0}^{\pi} \sin ^{4} \mathrm{xdx}$
$\Rightarrow 2 \mathrm{I}=\pi \int_{0}^{\pi} \sin ^{4} \mathrm{xdx} \quad$ [from property P-6]
$\Rightarrow \mathrm{I}=\pi . \frac{3.1}{4.2} \cdot \frac{\pi}{2}=\frac{3 \pi^{2}}{16}$

Ans.[B]

Ex. $21 \int_{1}^{2} \log \mathrm{x} d \mathrm{x}$ equals-
(A) $2 \log 2$
(B) $\log \left(\frac{2}{e}\right)$
(C) $\log \left(\frac{4}{e}\right)$
(D) None of these

Sol. $\quad I=\int_{1}^{2} 1 \cdot \log x d x$ equals
(Intetgrating by parts by taking 1 as a second function)

$$
\begin{aligned}
& =\{x \cdot \log x\}_{1}^{2}-\int_{1}^{2}\left(\frac{1}{x} \cdot x\right) d x \\
& =(2 \log 2-1 \log 1)-[x]_{1}^{2} \\
& =(2 \log 2-0)-(2-1) \\
& =\log 4-\log e=\log \left(\frac{4}{e}\right)
\end{aligned}
$$

Ans.[C]

Ex. $22 \int_{0}^{\pi / 2} \frac{2^{\sin x}}{2^{\sin x}+2^{\cos x}} d x$ equals-
(A) 2
(B) π
(C) $\frac{\pi}{4}$
(D) $\frac{\pi}{2}$

Sol. $I=\int_{0}^{\pi / 2} \frac{2^{\sin x}}{2^{\sin x}+2^{\cos x}} d x$

$$
\mathrm{I}=\int_{0}^{\pi / 2} \frac{2^{\sin (\pi / 2-\mathrm{x})}}{2^{\sin (\pi / 2-\mathrm{x})}+2^{\cos (\pi / 2-\mathrm{x})}} \mathrm{dx}
$$

$=\int \frac{2^{\cos x}}{2^{\cos x}+2^{\sin x}} d x$
$2 \mathrm{I}=\int_{0}^{\pi / 2} \mathrm{dx}=\frac{\pi}{2} \Rightarrow \mathrm{I}=\frac{\pi}{4}$

Ans.[C]

Ex. $23 \int_{0}^{x} f(t)=x+\int_{x}^{1} t f(t) d t$ then $f(1)$ is equal to-
(A) $\frac{1}{2}$
(B) 0
(C) 1
(D) $-\frac{1}{2}$

Sol. $\quad \int_{0}^{x} f(t) d t=x+\int_{x}^{1} t f(t) d t$
$\Rightarrow \mathrm{f}(\mathrm{x})=1+(0-\mathrm{xf}(\mathrm{x})) \quad$ [diff. w.r.t. x]
$\Rightarrow \mathrm{f}(\mathrm{x})=1-\mathrm{xf}(\mathrm{x})$
$\Rightarrow \mathrm{f}(1)=1-1 . \mathrm{f}(\mathrm{x})$
$\Rightarrow \mathrm{f}(1)=\frac{1}{2}$

Ans.[A]

Ex. 24 If $f(3-x)=f(x)$ then $\int_{1}^{2} x f(x) d x$ equals-
(A) $\frac{3}{2} \int_{1}^{2} \mathrm{f}(2-\mathrm{x}) \mathrm{dx}$
(B) $\frac{3}{2} \int_{1}^{2} f(x) d x$
(C) $\frac{1}{2} \int_{1}^{2} f(x) d x$
(D) None of these

Sol. Let $\mathrm{x}=3-\mathrm{y}$

$$
I=\int_{2}^{1}(3-y) f(3-y)(-d y)
$$

$$
\begin{aligned}
& =\int_{1}^{2}(3-x) f(3-x) d x \\
& =\int_{1}^{2}(3-x) f(x) d x \quad[\because f(3-x)=f(x)] \\
& =3 \int_{1}^{2} f(x) d x-I \\
& I=\frac{3}{2} \int_{1}^{2} f(x) d x
\end{aligned}
$$

Ans.[B]

Ex. $25 \int_{0}^{1} \frac{\mathrm{x} \sin ^{-1} \mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}} \mathrm{dx}$ is equal to-
(A) $\pi / 2$
(B) $\pi / 4$
(C) 0
(D) 1

Sol. Put $\sin ^{-1} x=t, \frac{d x}{\sqrt{1-x^{2}}}=d t$ then

$$
\therefore \mathrm{I}=\int_{0}^{\pi / 2} \mathrm{t} \sin \mathrm{tdt}=[\mathrm{t}(-\cos \mathrm{t})]_{0}^{\pi / 2}+[\sin \mathrm{x}]_{0}^{\pi / 2}=1
$$

Ans.[C]
Ex. 26 The value of the integral $\int_{0}^{\pi / 4} \frac{\sin \theta+\cos \theta}{9+16 \sin 2 \theta} d \theta$ is
(A) $\log 3$
(B) $\log 2$
(C) $\frac{1}{20} \log 3$
(D) $\frac{1}{20} \log 2$

Sol. Here
$I=\int_{0}^{\pi / 4} \frac{\sin \theta+\cos \theta}{9+16(\sin 2 \theta+1-1)} d \theta$
$=\int_{0}^{\pi / 4} \frac{\sin \theta+\cos \theta}{25-16(1-\sin 2 \theta)} d \theta$
$=\frac{1}{16} \int_{0}^{\pi / 4} \frac{\sin \theta+\cos \theta}{(25 / 16)-(\sin \theta-\cos \theta)^{2}} d \theta$
$=\frac{1}{16} \int_{-1}^{0} \frac{\mathrm{dt}}{(25 / 16)-\mathrm{t}^{2}}$, where $(\sin \theta-\cos \theta)=\mathrm{t}$
$=\frac{1}{16} \times \frac{1}{2 \times 5 / 4}\left[\log \frac{(5 / 4)+\mathrm{t}}{(5 / 4)-\mathrm{t}}\right]_{-1}^{0}$
$=\frac{1}{40}\left[\log 1-\log \frac{1 / 4}{9 / 4}\right]=\frac{1}{20} \log 3$

Ans.[C]

Ex. $27 \int_{-\pi / 2}^{\pi / 2} \sin ^{2} x \cos ^{2} x(\sin x+\cos x) d x$ is equal to-
(A) $2 / 15$
(B) $4 / 15$
(C) $2 / 5$
(D) $8 / 15$

Sol. $I=\int_{-\pi / 2}^{\pi / 2} \sin ^{3} x \cos ^{2} x d x+\int_{-\pi / 2}^{\pi / 2} \sin ^{2} x \cos ^{3} x d x$
(by $\mathrm{P}-5$)
$=0+2 \int_{0}^{\pi / 2} \sin ^{2} x \cos ^{3} x d x$
=2. $\frac{1.2}{5.3 .1}=\frac{4}{15}$
Ans.[B]
Ex. $28 \int_{0}^{2 a} \frac{f(x)}{f(x)+f(2 a-x)} d x$ is equal to-
(A) a
(B) -a
(C) 0
(D) None of these

Sol. Using P-4, given integral becomes
$I=\int_{0}^{2 a} \frac{f(2 a-x)}{f(2 a-x)+f(x)} d x$
Adding it with the given integral, we get
$2 \mathrm{I}=\int_{0}^{2 \mathrm{a}} 1 \mathrm{dx}=2 \mathrm{a} \Rightarrow \mathrm{I}=\mathrm{a}$

Ans.[A]

Ex. $29 \int_{-1}^{3 / 2}|x \sin \pi x| d x$ is equal to
(A) $\frac{4}{\pi}$
(B) $\frac{3}{\pi}+\frac{1}{\pi^{2}}$
(C) $\frac{3}{\pi^{2}}+\frac{1}{\pi}$
(D) None of these

Sol. Obviously
$|x \sin \pi x|=\left\{\begin{array}{c}x \sin \pi x,-1<x<1 \\ -x \sin \pi x, 1<x<3 / 2\end{array}\right.$
$\therefore \mathrm{I}=\int_{-1}^{1} \mathrm{x} \sin \pi \mathrm{xdx}+\int_{1}^{3 / 2}(-\mathrm{x} \sin \pi \mathrm{x}) \mathrm{dx}$

$$
\begin{aligned}
= & 2 \int_{0}^{1} \mathrm{x} \sin \pi \mathrm{xdx}-\int_{1}^{3 / 2} \mathrm{x} \sin \pi \mathrm{xdx} \\
= & 2\left[-\frac{x}{\pi} \cos \pi x+\frac{1}{\pi^{2}} \sin \pi x\right]_{0}^{1} \\
& -\left[-\frac{x}{\pi} \cos \pi x+\frac{1}{\pi^{2}} \sin \pi x\right]_{1}^{3 / 2} \\
= & 2\left(-\frac{\cos \pi}{\pi}\right)-\left(\frac{\sin (3 \pi / 2)}{\pi^{2}}+\frac{\cos \pi}{\pi}\right)
\end{aligned}
$$

$$
=\frac{3}{\pi}+\frac{1}{\pi^{2}}
$$

Ans.[B]

Ex. 30 The value of $\int_{0}^{100 \pi} \sqrt{1-\cos 2 x} d x$ is
(A) $100 \sqrt{2}$
(B) $200 \sqrt{2}$
(C) $50 \sqrt{2}$
(D) 0

Sol. $\quad I=\sqrt{2} \int_{0}^{100 \pi}|\sin x| d x$
$=100 \sqrt{2} \int_{0}^{\pi}|\sin x| d x$
$=100 \sqrt{2} \int_{0}^{\pi} \sin x d x=100 \sqrt{2}[-\cos x]_{0}^{\pi}$
$=200 \sqrt{2}$
Ans.[B]
Ex. $31 \int_{0}^{2 \pi} \frac{x \sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x(n \in N)$ is equal to-
(A) π^{2}
(B) $2 \pi^{2}$
(C) π
(D) 2π

Sol. $\quad I=\int_{0}^{2 \pi} \frac{x \sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x$
$=\int_{0}^{2 \pi} \frac{(2 \pi-x) \sin ^{2 n}(2 \pi-x)}{\sin ^{2 n} x(2 \pi-x)+\cos ^{2 n}(2 \pi-x)} d x$
(By P-4)
$=\int_{0}^{2 \pi} \frac{(2 \pi-x) \sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x$
$\therefore 2 \mathrm{I}=2 \pi \int_{0}^{2 \pi} \frac{\sin ^{2 n} \mathrm{x}}{\sin ^{2 n} \mathrm{x}+\cos ^{2 n} \mathrm{x}} \mathrm{dx}$

$$
\begin{aligned}
\Rightarrow \mathrm{I} & =4 \pi \int_{0}^{\pi / 2} \frac{\sin ^{2 \mathrm{n}} \mathrm{x}}{\sin ^{2 \mathrm{n}} \mathrm{x}+\cos ^{2 \mathrm{n}} \mathrm{x}} \mathrm{dx} \\
& =4 \pi(\pi / 4)=\pi^{2}
\end{aligned}
$$

Ans.[A]

Ex. $32 \int_{0}^{\pi / 2} \frac{d x}{1+2 \sin x+\cos x}$ equals-
(A) $(1 / 2) \log 3$
(B) $\log 3$
(C) $(4 / 3) \log 3$
(D) None of these

Sol. Here

$$
\begin{aligned}
I & =\int_{0}^{\pi / 2} \frac{d x}{1+2 \frac{2 \tan (x / 2)}{1+\tan ^{2}(x / 2)}+\frac{1-\tan ^{2}(x / 2)}{1+\tan ^{2}(x / 2)}} \\
& =\int_{0}^{\pi / 2} \frac{\sec ^{2}(x / 2)}{2\{1+2 \tan (x / 2)\}} d x
\end{aligned}
$$

Let $1+2 \tan (x / 2)=t$, then
$\sec ^{2}(\mathrm{x} / 2) \mathrm{dx}=\mathrm{dt}$
$\therefore \mathrm{I}=\frac{1}{2} \int_{1}^{3} \frac{\mathrm{dt}}{\mathrm{t}}=\frac{1}{2}(\log \mathrm{t})_{1}^{3}$
$=\frac{1}{2} \log 3$

Ans.[A]

Ex. $33 \int_{0}^{\pi / 2} \frac{\sin 2 x}{a \cos ^{2} x+b \sin ^{2} x} d x-$
(A) $\frac{1}{b-a} \log \left(\frac{b}{a}\right)$
(B) $\frac{1}{b+a} \log \left(\frac{b}{a}\right)$
(C) $\frac{1}{\mathrm{~b}-\mathrm{a}} \log \left(\frac{\mathrm{a}}{\mathrm{b}}\right)$
(D) $\frac{1}{b+a} \log \left(\frac{a}{b}\right)$

Sol. $\quad I=\left(\frac{1}{b-a}\right) \int_{0}^{\pi / 2} \frac{(b-a) 2 \sin x \cos x}{a \cos ^{2} x+b \sin ^{2} x} d x$

$$
\begin{aligned}
& =\frac{1}{b-a}\left[\log \left(a \cos ^{2} x+b \sin ^{2} x\right)\right]_{0}^{\pi / 2} \\
& =\frac{1}{(b-a)}(\log b-\log a) \\
& =\frac{1}{b-a} \log \left(\frac{b}{a}\right)
\end{aligned}
$$

Ans.[A]

Ex. $34 \int_{0}^{\pi / 2}(2 \log \sin x-\log \sin 2 x) d x$ equals-
(A) $\pi \log 2$
(B) $-\pi \log 2$
(C) $(\pi / 2) \log 2$
(D) $-(\pi / 2) \log 2$

Sol. $I=\int_{0}^{\pi / 2}(2 \log \sin x-\log 2 \sin x \cos x) d x$
$=\int_{0}^{\pi / 2}(2 \log \sin x-\log 2-\log \sin x-\log \cos x) d x$
$=\quad \int_{0}^{\pi / 2} \log \sin x d x-\int_{0}^{\pi / 2} \log 2 d x-\int_{0}^{\pi / 2} \log \cos x d x$

$$
=-(\pi / 2) \log 2
$$

Ans.[D]

Ex. $35 \int_{0}^{\pi / 2} \frac{x \sin x \cos x}{\sin ^{4} x+\cos ^{4} x} d x$ equals-
(A) $\frac{\pi^{2}}{8}$
(B) $\frac{\pi^{2}}{16}$
(C) $\frac{\pi^{2}}{4}$
(D) $\frac{\pi^{2}}{2}$

Sol. $\quad I=\frac{\pi}{4} \int_{0}^{\pi / 2} \frac{\sin x \cos x}{\sin ^{4} x+\cos ^{4} x} d x$
$=\frac{\pi}{8} \int_{0}^{\pi / 2} \frac{2 \sin x \cos x}{\left(\sin ^{2} x\right)^{2}+\left(1-\sin ^{2} x\right)^{2}} d x$
Assume $\sin ^{2} \mathrm{x}=\mathrm{t}$
$\therefore 2 \sin \mathrm{x} \cos \mathrm{xdx}=\mathrm{dt}$
$\therefore \mathrm{I}=\frac{\pi}{8} \int \frac{\mathrm{dt}}{\mathrm{t}^{2}+(1-\mathrm{t})^{2}}$

$$
\mathrm{I}=\frac{\pi}{8} \int \frac{\mathrm{dt}}{2 \mathrm{t}^{2}-2 \mathrm{t}+1}
$$

$=\frac{\pi}{16} \int \frac{\mathrm{dt}}{\left(\mathrm{t}-\frac{1}{2}\right)^{2}+\frac{1}{4}}$
$=\frac{\pi}{16} \cdot \frac{1}{\left(\frac{1}{2}\right)} \tan ^{-1}\left[\frac{\left(\mathrm{t}-\frac{1}{2}\right)}{\frac{1}{2}}\right]$
$=\frac{\pi}{8}\left[\tan ^{-1}\left(2 \sin ^{2} x-1\right)\right]_{0}^{\pi / 2}$
$=\frac{\pi}{8}\left[\tan ^{-1}(1)-\tan ^{-1}(-1)\right]$
$=\frac{\pi}{8}\left[\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)\right]=\frac{\pi^{2}}{16}$
Ans.[B]
Ex. $36 \int_{0}^{\pi / 2}|\sin x-\cos x| d x$ equals-
(A) $2 \sqrt{2}$
(B) $2(\sqrt{2}+1)$
(C) $2(\sqrt{2}-1)$
(D) 0

Sol. $\quad \because|\sin \mathrm{x}-\cos \mathrm{x}|$

$$
\begin{aligned}
& =\left\{\begin{array}{l}
-(\sin x-\cos x), 0<x<\pi / 4 \\
(\sin x-\cos x), \pi / 4<x<\pi / 2
\end{array}\right. \\
\therefore I & =\int_{0}^{\pi / 4}-(\sin x-\cos x) d x+\int_{\pi / 4}^{\pi / 2}(\sin x-\cos x) d x \\
& =[\cos x+\sin x]_{0}^{\pi / 4}+[-\cos x-\sin x]_{\pi / 4}^{\pi / 2} \\
& =\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-1-1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \\
& =2 \sqrt{2}-2
\end{aligned}
$$

Ans.[C]

Ex. 37 The value of $\lim _{x \rightarrow 0} \frac{\int_{0}^{x} \operatorname{cost}^{2} d t}{x}$ is-
(A) 0
(B) 1
(C) -1
(D) None of these

Sol. Let $\mathrm{f}(\mathrm{x})=\int_{0}^{\mathrm{x}} \operatorname{cost}^{2} \mathrm{dt}$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}$,
then $f(0)=g(0)=0$
$\therefore \lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
\therefore Given limit $=\lim _{x \rightarrow 0} \frac{\cos x^{2} .1-\cos 0.0}{1}$
since $\frac{d}{d x} \int_{\phi(x)}^{\psi(x)} f(t) d t=\int_{\phi(x)}^{\psi(x)} \frac{d}{d x}(f(t)) d t$

$$
=\mathrm{f}\left(\psi(\mathrm{x}) \psi^{\prime}(\mathrm{x})-\mathrm{f}\left\{\left(\phi(\mathrm{x}) \phi^{\prime}(\mathrm{x})\right\}\right]\right.
$$

\therefore Given limit
$=\cos 0=1$.
Ans.[B]

Ex. 38 If $n \in$ Z, then
$\int_{0}^{\pi} e^{\sin ^{2} x} \cos ^{3}(2 n+1) x d x-$
(A) -1
(B) 0
(C) 1
(D) π

Sol. Let $f(x)=e^{\sin ^{2} x} \cos ^{3}(2 n+1) x d x$

$$
\begin{aligned}
& \Rightarrow \mathrm{f}(\pi-\mathrm{x})=\mathrm{e}^{\sin ^{2}(\pi-\mathrm{x})} \cos ^{3}(2 \mathrm{n}+1)(\pi-\mathrm{x}) \mathrm{dx} \\
& =-e^{\sin ^{2} x} \cos ^{3}(2 n+1) x \\
& {[\because(2 \mathrm{n}+1) \text { is odd }]} \\
& =-\mathrm{f}(\mathrm{x}) \\
& \text { So by } \mathrm{P}-8, \mathrm{I}=0 \\
& \text { Ans.[B] }
\end{aligned}
$$

Ex. 39 The value of $\int_{-1 / 2}^{1 / 2}\left[\left(\frac{x+1}{x-1}\right)^{2}+\left(\frac{x-1}{x+1}\right)^{2}-2\right]^{1 / 2} d x$ equals-
(A) $\log (4 / 3)$
(B) $2 \log (4 / 3)$
(C) $4 \log (4 / 3)$
(D) $-4 \log (4 / 3)$

Sol. Here
$I=\int_{-1 / 2}^{1 / 2}\left[\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right)^{2}\right]^{1 / 2} d x$
$=\int_{-1 / 2}^{1 / 2}\left|\frac{4 x}{x^{2}-1}\right| d x=2 \int_{0}^{1 / 2}\left|\frac{4 x}{x^{2}-1}\right| d x$
$=8 \int_{0}^{1 / 2} \frac{x d x}{1-x^{2}}=-4\left[\log \left(1-x^{2}\right)\right]_{0}^{1 / 2}$
$=-4 \log \left(\frac{3}{4}\right)=4 \log \left(\frac{4}{3}\right)$ Ans.[C]

Ex. $40 \int_{0}^{1} \cot ^{-1}\left(1-x+x^{2}\right) d x$ equals-
(A) $\frac{\pi}{2}+\log 2$
(B) $\frac{\pi}{2}-\log 2$
(C) $\pi-\log 2$
(D) None of these

Sol. $\quad I=\int_{0}^{1} \tan ^{-1}\left(\frac{1}{1-x-x^{2}}\right) d x$
$=\int_{0}^{1} \tan ^{-1}\left(\frac{x+(1-x)}{1-x(1-x)}\right) d x$
$=\int_{0}^{1}\left[\tan ^{-1} x+\tan ^{-1}(1-x)\right] d x$
$=\int_{0}^{1} \tan ^{-1} x d x+\int_{0}^{1} \tan ^{-1}(1-x) d x$
$=2 \int_{0}^{1} \tan ^{-1} x d x \quad[$ By pr
$=2\left[x \tan ^{-1}-\frac{1}{2} \log \left(1+x^{2}\right)\right]_{0}^{1}$
$=2 \frac{\pi}{4}-\log 2=\frac{\pi}{2}-\log 2$

Ans.[B]

Ex. $41 \int_{0}^{\pi / 4}(\sqrt{\tan x}+\sqrt{\cot x}) d x$ is equal to-
(A) $\pi / 2$
(B) $\pi / \sqrt{2}$
(C) $-\pi / 2$
(D) $-\pi / \sqrt{2}$

Sol. Putting $\tan x=t^{2}$, then
$\sec ^{2} x d x=2 t d t \Rightarrow d x=\frac{2 t d t}{1+t^{4}}$
$\therefore \mathrm{I}=\int_{0}^{1}\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right) \frac{2 \mathrm{t} \mathrm{dt}}{1+\mathrm{t}^{4}}$
$=2 \int_{0}^{1} \frac{\mathrm{t}^{2}+1}{\mathrm{t}^{4}+1} \mathrm{dt}=2 \int_{0}^{1} \frac{1+1 / \mathrm{t}^{2}}{\mathrm{t}^{2}+1 / \mathrm{t}^{2}} \mathrm{dt}$
$=2 \int_{0}^{1} \frac{d(t-1 / t)}{(t-1 / t)^{2}+2}$
$=\sqrt{2}\left[\tan ^{-1} \frac{1}{\sqrt{2}}\left(\mathrm{t}-\frac{1}{\mathrm{t}}\right)\right]_{0}^{1}$
$=\sqrt{2}\left[\tan ^{-1} 0-\tan ^{-1}(-\infty)\right]$
$=\sqrt{2}(\pi / 2)=\pi / \sqrt{2}$

Ans.[B]

Ex. 42 If $g(x)=\int_{0}^{x} \cos ^{4} t d t$, then $g(x+\pi)$ is equal to-
(A) $g(x)+g(\pi)$
(B) $g(x)-g(\pi)$
(C) $g(x) g(\pi)$
(D) $g(x) / g(\pi)$

Sol. $g(x+\pi)=\int_{0}^{\pi+x} \cos ^{4} t d t$
$=\int_{0}^{\pi} \cos ^{4} t d t+\int_{\pi}^{\pi+x} \cos ^{4} t d t$
[by P-3]
$=\int_{0}^{\pi} \cos ^{4} t d t+I_{2}$
Now in I_{2}, put $t=\pi+\theta$, then
$I_{2}=\int_{0}^{x} \cos ^{4}(\pi+\theta) d \theta$
$=\int_{0}^{\mathrm{x}} \cos ^{4} \theta d \theta=\int_{0}^{\mathrm{x}} \cos ^{4} t \mathrm{dt}$
$\therefore \mathrm{g}(\mathrm{x}+\pi)=\int_{0}^{\pi} \cos ^{4} \mathrm{tdt}+\int_{0}^{\mathrm{x}} \cos ^{4} \mathrm{tdt}$

$$
=g(x)+g(\pi)
$$

Ans.[A]
Ex. $43 \int_{-\pi / 2}^{\pi / 2} \frac{\cos x}{1+\mathrm{e}^{\mathrm{x}}}$ is equal to-
(A) 0
(B) 2
(C) 1
(D) None of these

Sol. $\quad I=\int_{-\pi / 2}^{0} \frac{\cos x}{1+e^{x}} d x+\int_{0}^{\pi / 2} \frac{\cos x}{1+e^{x}} d x$

$$
=-\int_{\pi / 2}^{0} \frac{\cos y}{1+\mathrm{e}^{-y}} \mathrm{dy}+\int_{0}^{\pi / 2} \frac{\cos \mathrm{x}}{1+\mathrm{e}^{\mathrm{x}}}
$$

(putting $\mathrm{x}=-\mathrm{y}$ in first integral)

$$
\begin{aligned}
& =\int_{0}^{\pi / 2} \frac{\mathrm{e}^{\mathrm{y}} \cos \mathrm{y}}{1+\mathrm{e}^{\mathrm{y}}} \mathrm{dy}+\int_{0}^{\pi / 2} \frac{\cos \mathrm{x}}{1+\mathrm{e}^{\mathrm{x}}} \mathrm{dx} \\
& =\int_{0}^{\pi / 2} \frac{\mathrm{e}^{\mathrm{x}} \cos \mathrm{x}}{1+\mathrm{e}^{\mathrm{x}}} \mathrm{dx}+\int_{0}^{\pi / 2} \frac{\cos \mathrm{x}}{1+\mathrm{e}^{\mathrm{x}}} \mathrm{dx} \\
& =\int_{0}^{\pi / 2} \frac{\left(\mathrm{e}^{\mathrm{x}}+1\right) \cos \mathrm{x}}{1+\mathrm{e}^{\mathrm{x}}} \mathrm{dx} \\
& =\int_{0}^{\pi / 2} \cos \mathrm{xdx}=[\sin \mathrm{x}]_{0}^{\pi / 2}=1
\end{aligned}
$$

Ans.[C]
Ex. $44 \int_{-1}^{1} \frac{\sin x-x^{2}}{3-|x|} d x$ is equal to-
(A) 0
(B) $2 \int_{0}^{1} \frac{\sin x}{3-|x|} d x$
(C) $\int_{0}^{1} \frac{-2 x^{2}}{3-|x|} d x$
(D) $2 \int_{0}^{1} \frac{\sin x-x^{2}}{3-|x|} d x$

Sol. $\quad I=\int_{-1}^{1} \frac{\sin x-x^{2}}{3-|x|} d x$
$=\int_{-1}^{1} \frac{\sin x}{3-|x|} d x-\int_{-1}^{1} \frac{x^{2}}{3-|x|} d x$
$=0-2 \int_{0}^{1} \frac{x^{2}}{3-|x|} d x$
$\left[\because \frac{\sin x}{3-|x|}\right.$ is an odd and $\frac{x^{2}}{3-|x|}$ is an even
function]
$=-2 \int_{0}^{1} \frac{x^{2}}{3-|x|} d x$

Ans.[C]

Ex. $45 \int_{-4}^{-5} e^{(x+5)^{2}} d x+3 \int_{1 / 3}^{2 / 3} e^{9(x-2 / 3)^{2}} d x$ is equal to-
(A) e^{5}
(B) e^{4}
(C) $3 e^{2}$
(D) 0

Sol. Putting $x=-t-4$ in first integral and
$\mathrm{x}=\frac{\mathrm{t}}{3}+\frac{1}{3}$ in second integral
$I_{1}=\int_{-4}^{-5} e^{(x+5)^{2}} d x=-\int_{0}^{1} e^{(-t+1)^{2}} d t=-\int_{0}^{1} e^{(t-1)^{2}} d t$
$I_{2}=3 \int_{1 / 3}^{2 / 3} e^{9(x-2 / 3)^{2}} d x$
$=3 \int_{0}^{1} \mathrm{e}^{9(\mathrm{t} / 3-1 / 3)^{2}} \mathrm{dt}=\int_{0}^{1} \mathrm{e}^{(\mathrm{t}-1)^{2}} \mathrm{dt}$
$\therefore \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}=0$.
Ans.[D]
Ex. 46 Let f be a positive function. If
$I_{1}=\int_{1-k}^{k} x f\{x(1-x)\} d x$
$I_{2}=\int_{1-k}^{k} f[x(1-x)] d x$
where $2 \mathrm{k}-1>0$, then the value of $\mathrm{I}_{1} / \mathrm{I}_{2}$ is equal to-
(A) 2
(B) k
(C) $1 / 2$
(D) 1

Sol. Using property $\mathrm{P}-8$, we have
$I_{1}=\int_{1-k}^{k}(k+1-k-x) f[(k+1-k-x) \times$
$(1-k-1+k+x)] d x$
$=\int_{1-k}^{k}(1-x) f[(1-x)(x)] d x$
$=\int_{1-k}^{k} f[x(1-x)] d x-\int_{1-k}^{k} x f[x(1-x)] d x$
$=\mathrm{I}_{2}-\mathrm{I}_{1}$
$\Rightarrow 2 \mathrm{I}_{1}=\mathrm{I}_{2} \therefore \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{1}{2}$
Ans.[C]

