SOLVED EXAMPLES

Ex.1 The area bounded by the curve $y = 3/x^{2}$, x-axis and the lines x = 1 and x = 2 is-(A) 3/2 (B) 1/2 (C) 2 (D) 1 Area = $\int_{1}^{2} y \, dx = \int_{1}^{2} \frac{3}{x^2} \, dx$ Sol.

 $= -\left[\frac{3}{x}\right]_{1}^{2} = -3\left(\frac{1}{2}-1\right)$ Ans.[A]

The area between the curve $y = \sin^2 x$, x-axis and Ex.2

the ordinates x = 0 and $x = \frac{\pi}{2}$ is-(A) π (B) $\pi/2$ (D) π/8 (C) π /4 $\pi/2$

= 3/2

Sol.

Required area =
$$\int_{0}^{\pi/2} \sin^2 x \, dx$$
$$= \int_{0}^{\pi/2} \frac{1 - \cos 2x}{2} \, dx$$
$$= \frac{1}{2} \left[x - \frac{\sin 2x}{2} \right]_{0}^{\pi/2} = \frac{\pi}{4}$$
Ans.[C]

Ex.3The area between the curve
$$y = 4 + 3x - x^2$$
 and x-axis is-
(A) 125/6
(B) 125/3
(C) 125/2
(D) None of these

Sol. Putting y = 0, we get, $x^2 - 3x - 4 = 0$ \Rightarrow (x - 4) (x + 1) = 0 \Rightarrow x = -1 or x = 4 \therefore required area = $\int_{-1}^{4} (4+3x-x^2) dx$ $= \left(4x + \frac{3x^2}{2} - \frac{x^3}{3}\right)^4 = \frac{125}{6}$ Ans.[A]

The area bounded by the curve $y^2 = 4x$, Ex.4 y-axis and y = 3 is-(A) 2 units (B) 9/4 units (C) 7/3 units (D) 3 units Area = $\int_{0}^{3} x \, dy = \int_{0}^{3} \frac{y^2}{4} \, dy$ Sol.

$$=\frac{1}{4}\left[\frac{y^3}{3}\right]_0^3 = \frac{1}{12} (27 - 0)$$

= 9/4 units **Ans.[B]**

Ex.5 The area bounded by the curve $x = a \cos^3 t$, $y = a \sin^3 t$, is-

(A)
$$\frac{\pi a^2}{8}$$
 (B) $\frac{\pi a^2}{4}$
(C) $\frac{3\pi a^2}{8}$ (D) $\frac{2\pi a^2}{3}$

Sol. Given curve
$$\left(\frac{x}{a}\right)^{1/3} = \cos t$$
, $\left(\frac{y}{a}\right)^{1/3} = \sin t$

Squaring and adding $x^{2/3} + y^{2/3} = a^{2/3}$ Clearly it is symmetric with respect to both the axis, so whole area is

$$= 4 \int_{0}^{a} y \, dx$$

= $4 \int_{\pi/2}^{0} a \sin^{3} t \, 3a \cos^{2} t \, (-\sin t) \, dt$
By given equation at x = 0; t = $\frac{\pi}{2}$ at x=a; t = 0
= $12a^{2} \int_{0}^{\pi/2} \sin^{4} t \cos^{2} t \, dt$

=
$$12a^2$$
. $\frac{3.1.1}{6.4.2}$. $\frac{\pi}{2} = \frac{3\pi a^2}{8}$ Ans.[C]

Ex.6 The area between the curve $y = \operatorname{sech} x$ and x-axis is-(A) ∞ **(B)** π (C) 2π (D) $\pi/2$

Sol. Given curve is symmetrical about y-axis as shown in the diagram.

Reqd. area =
$$2 \int_{0}^{\infty} \operatorname{sech} x \, dx$$

- **Ex.7** The area bounded by the circle $x^2 + y^2 = 1$ and the curve |x| + |y| = 1 is-
 - (A) $\pi 2$ (B) $\pi 2\sqrt{2}$

(C)
$$2(\pi - 2\sqrt{2})$$
 (D) None of these

Sol. By changing x as - x and y as - y, both the given equation remains unchanged so required area will be symmetric w.r.t both the axis, which is shown in the fig., so required area is

Ex.8 The area bounded by the curve $y = \sin x$, x = 0 and $x = 2\pi$ is- (A) 4 units (B) 0 units (C) 4π units (D) 2 units

Sol.

f(x) = y = sin x when x ∈ [0, π], sin x ≥ 0 and when x ∈ [π,2π], sin x ≤ 0 ∴ required area = $\int_{0}^{\pi} y \, dx + \int_{\pi}^{2\pi} (-y) \, dx$

$$= \int_{0}^{\pi} \sin x \, dx + \int_{\pi}^{2\pi} (-\sin x) \, dx$$

= $[-\cos x]_{0}^{\pi} + [\cos x]_{\pi}^{2\pi}$
= $(-\cos\pi + \cos 0) + (\cos 2\pi - \cos \pi)$
= $(1 + 1) + (1 + 1)$
= 4 units Ans.[A]

Ex.9 The area between the curves $y = \sqrt{x}$ and y = x is-

Sol. The points of intersection of curves are x = 0 and x = 1.

$$\therefore \text{ required area} = \int_{0}^{1} (\sqrt{x} - x) dx$$
$$= \left[\frac{2x^{3/2}}{3} - \frac{x^2}{2} \right]_{0}^{1}$$
$$= \frac{2}{3} - \frac{1}{2} = \frac{1}{6} \qquad \text{Ans.[B]}$$

Ex.10 The area between the parabola $x^2 = 4y$ and line x = 4y - 2 is-

(A) 9/4	(B) 9/8
(C) 9/2	(D) 9

Sol. Solving the equation of the given curves for x, we get

$$x^{2} = x + 2$$

$$\Rightarrow (x - 2) (x + 1) = 0$$

$$\Rightarrow x = -1, 2$$

So, reqd. area

$$= \int_{-1}^{2} \left[\frac{x+2}{4} - \frac{x^{2}}{4} \right] dx$$
$$= \frac{1}{4} \left[\frac{x^{2}}{2} + 2x - \frac{x^{3}}{3} \right]_{-1}^{2}$$
$$= \frac{1}{4} \left[(2+4-8/3) - (1/2-2+1/3) \right] = 9/8$$

Ans.[B]

Ex.11 The area between the curve $y = \cos^2 x$, x-axis and ordinates x = 0 and $x = \pi$ in the interval $(0, \pi)$ is-

(A) π	(B) π/4
(C) π/2	(D) 2π

Sol. Required area = $\int_{0}^{\pi} \cos^2 x \, dx$

- **Ex.12** The area between the curves $y = \tan x$, $y = \cot x$ and x-axis in the interval $[0, \pi/2]$ is-(A) log 2 (B) log 3 (C) log $\sqrt{2}$ (D) None of these
- **Sol.** From the fig. it is clear that

Ex.13 The area between the curves $y = \cos x$ and the line y = x + 1 in the second quadrant is-

Sol. Let the line y = x + 1, meets x-axis at the point A (0, 1). Also suppose that the curve y = cos x meets x-axis and y-axis respectively at the points C and A. From the adjoint figure it is obvious that Required area = area of ABC

= area of OAC – area of OAB

Ex.14 The area bounded by the curves $y = \sin x$, $y = \cos x$ and y-axis in first quadrant is-

(A) $\sqrt{2} - 1$ (B) $\sqrt{2}$

(C) $\sqrt{2} + 1$ (D) None of these

Sol. In first quadrant sin x and cos x meet at $x = \pi/4$. The required area is as shown in the diagram. So

Ex.15 The area bounded by curve
$$y = |x - 1|$$
 and $y = 1$ is-
(A) 1 (B) 2

$$\begin{array}{c} (A) & 1 \\ (C) & 1/2 \\ \end{array} \qquad (D) \text{ None of these} \end{array}$$

Sol.
$$y = |x - 1| = \begin{cases} x - 1 & \text{when } x \ge 1 \\ 1 - x & \text{when } x < 1 \end{cases}$$

Point of intersection of y = x - 1, y = 1 is (2, 1) Point of intersection of y = 1 - x, y = 1 is (0, 1) Required area = Area of \triangle PQR

$$= \frac{1}{2} (PQ) . (RT)$$

= $\frac{1}{2} . 2.1 = 1$ Ans.[A]

Ex.16 If area bounded by the curve $y = 8x^2 - x^5$ and ordinate x = 1, x = k is $\frac{16}{3}$ then k =(B) $[8 - \sqrt{17}]^{1/3}$ (A) 2 (C) $[\sqrt{17} - 8]^{1/3}$ (D) -1 $\int_{-\infty}^{k} (8x^2 - x^5) dx = \frac{16}{3}$ Sol. $\Rightarrow \quad \left\lceil \frac{8x^3}{3} - \frac{x^6}{6} \right\rceil_1^k = \frac{16}{3}$ $\Rightarrow \quad \frac{8}{3}(k^3-1) - \left(\frac{k^6-1}{6}\right) = \frac{16}{3}$ \Rightarrow 16 k³ - k⁶ - 15 = 32 \Rightarrow k⁶-16k³+47=0 \Rightarrow k³ = 8 ± $\sqrt{17}$ \Rightarrow k = (8 ± $\sqrt{17}$)^{1/3} Ans.[B] **Ex.17** The area bounded by curve $y = ex \log x$ and

$$y = \frac{\log x}{ex}$$
 is-
(A) $\frac{e^2 - 5}{4}$ (B) $\frac{e^2 + 5}{4e}$
(C) $\frac{e}{4} - \frac{5}{4e}$ (D) None of these

$$\operatorname{ex} \log x = \frac{\log x}{\operatorname{ex}}$$
$$\Rightarrow \log x \left(\operatorname{ex} - \frac{1}{\operatorname{ex}} \right) = 0$$
$$\Rightarrow x = 1, 1/e$$
$$\therefore \text{ required area} = \int_{1/e}^{1} \left(\frac{\log x}{\operatorname{ex}} - \operatorname{ex} \log x \right) dx$$
$$= \left[\frac{1}{\operatorname{e}} \frac{(\log x)^2}{2} - \operatorname{e} \left((\log x) \cdot \frac{x^2}{2} - \frac{x^2}{4} \right) \right]_{1/e}^{1}$$
$$= \frac{1}{2e} \left[0 - (-1)^2 \right] - \operatorname{e} \left[0 - \frac{1}{4} - \left(-\frac{1}{2e^2} - \frac{1}{4e^2} \right) \right]$$
$$= -\frac{1}{2e} - \frac{1}{2e} + \frac{e}{4} - \frac{1}{4e} = \frac{e}{4} - \frac{5}{4e}$$
Ans.[C]

Ex.18 If $0 \le x \le \pi$; then the area bounded by the curve y = x and y = x + sin x is-

(A) 2 (B) 4
(C)
$$2\pi$$
 (D) 4π

Sol. For the points of intersection of the given curves $x = x + \sin x$ $\Rightarrow \sin x = 0$

$$\Rightarrow x = 0, \pi$$

 \therefore required area

$$y = \int_{0}^{y} [(x + \sin x) - x] dx$$
$$= \int_{0}^{\pi} [\sin x dx = -[\cos x]_{0}^{\pi} = 2$$
 Ans.[A]

Ex.19 The area bounded by curves $3x^2 + 5y = 32$ and y = |x - 2| is-(A) 25 (B) 17/2 (C) 33/2 (D) 33

Sol. Here the first curve can be written in the following form

Sol. Solving the equation of curves

$$x^2 = -\frac{5}{3}\left(y - \frac{32}{5}\right)$$

which is a parabola whose vertex lies on the y-axis.

Again second curve is given by

$$y = \begin{cases} x-2, x \ge 2\\ -(x-2), x < 2 \end{cases}$$

which consists of two perpendicular lines AB and AC as shown in the fig.

These lines meet the parabola at B(3,1) and $C(-2,4)\;. \label{eq:constraint}$

Hence the reqd. area A is given by

$$A = \int_{-2}^{3} y \, dx - \Delta ABL - \Delta ACM$$
$$\int_{-2}^{3} \frac{1}{5} (32 - 3x^2) \, dx - \frac{1}{2} \cdot 1.1 - \frac{1}{2} (4 \cdot 4)$$
$$= \frac{1}{5} \left[32x - x^3 \right]_{-2}^{3} - \frac{17}{2}$$
$$= \frac{1}{5} \left[69 + 56 \right] - \frac{17}{2} = \frac{33}{2}$$
Ans.[C]

