
SOLVED EXAMPLES 
 

Ex.1 The area bounded by the curve y = 3/x2,, x-axis 

and the lines x = 1 and x = 2 is- 

 (A) 3/2  (B) 1/2  

 (C) 2  (D) 1 

Sol. Area = dx
x
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Ex.2 The area between the curve y = sin2 x, x-axis and 

the ordinates x = 0 and x =
2


 is- 

 (A)   (B) /2 

 (C) 4  (D) /8 

Sol. Required area = 
 2/

0

2 dxxsin  

 = 



2/

0

dx
2

x2cos1
 

 = 
2

1
2/

02

x2sin
x











  =

4


 Ans.[C] 

 

Ex.3 The area between the curve y = 4 + 3x – x2 and x-

axis is- 

 (A) 125/6  (B) 125/3  

 (C) 125/2  (D) None of these 

Sol. Putting y = 0, we get, 

  x2 – 3x – 4 = 0 

  (x – 4) (x + 1) = 0 

  x = – 1 or x = 4 

  required area = 




4

1

2 dx)xx34(  

 = 

4

1

32

3

x

2

x3
x4















 = 

6

125
  Ans.[A] 

 

Ex.4 The area bounded by the curve y2 = 4x,  

y-axis and y = 3 is- 

 (A) 2 units  (B) 9/4 units 

 (C) 7/3 units (D) 3 units 

Sol. Area  = 
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Ex.5 The area bounded by the curve x = a cos3 t,  

y = a sin3 t, is- 

 (A) 
8
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  (B) 

4

a 2
  

 (C) 
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Sol. Given curve 
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 Squaring and adding x2/3 + y2/3 = a2/3 

 Clearly it is symmetric with respect to both the 

axis, so whole area is   
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 Ans.[C] 

 

Ex.6 The area between the curve y = sech x and  

x-axis is- 

 (A)   (B)   

 (C) 2  (D) /2 

Sol. Given curve is symmetrical about y-axis as shown 

in the diagram. 
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Ex.7 The area bounded by the circle x2 + y2 = 1 and the 

curve |x| + |y| = 1 is- 

 (A) – 2  (B)  – 2 2  

 (C) 2( – 2 2 ) (D) None of these 

Sol. By changing x as – x and y as – y, both the given 

equation remains unchanged so required area will 

be symmetric w.r.t both the axis, which is shown 

in the fig., so required area is 
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Ex.8 The area bounded by the curve y = sin x,  

x = 0 and x = 2is- 

 (A) 4 units  (B) 0 units  

 (C) 4 units  (D) 2 units 

Sol. f(x) = y = sin x 

 when x  [0,], sin x  0 

 and when x  [,2], sin x  0 

  required area = 
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  = (1 + 1) + (1 + 1) 

  = 4 units   Ans.[A]  

 

Ex.9 The area between the curves y = x  and  

y = x is- 

 (A) 1/3  (B) 1/6  

 (C) 2/3  (D) 1 

Sol. The points of intersection of curves are  

x = 0 and x = 1. 

  required area =  
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Ex.10 The area between the parabola x2 = 4y and line  

x = 4y – 2 is- 

 (A) 9/4  (B) 9/8  

 (C) 9/2  (D) 9 

Sol. Solving the equation of the given curves for x, we 

get 

 x2 = x + 2 

  (x – 2) (x + 1) = 0 

  x = – 1, 2 

 So, reqd. area 
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    Ans.[B] 



Ex.11 The area between the curve y = cos2 x,  

x-axis and ordinates x = 0 and x =  in the 

interval (0, ) is- 

 (A)   (B) /4  

 (C) /2  (D) 2 

Sol. Required area = 
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  Ans.[C]  

 

Ex.12 The area between the curves y = tan x,  

y = cot x and x-axis in the interval [0, ] is- 

 (A) log 2  (B) log 3 

 (C) log 2   (D) None of these 

Sol. From the fig. it is clear that  
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 = log 2   Ans.[A] 

 

Ex.13 The area between the curves y = cos x and the 

line y = x + 1 in the second quadrant is- 

 (A) 1  (B) 2  

 (C) 3/2  (D) 1/2 

Sol. Let the line y = x + 1, meets x-axis at the point A 

(0, 1). Also suppose that the curve y = cos x 

meets x-axis and y-axis respectively at the points 

C and A. From the adjoint figure it is obvious that 

 Required area = area of ABC 

 = area of OAC – area of OAB 

 = 


0

2/

dxxcos – 
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 = 1 – (1/2) = (1/2).  Ans. [D] 
 

Ex.14 The area bounded by the curves y = sin x,  

y = cos x and y-axis in first quadrant is- 

 (A) 2 – 1  (B) 2   

 (C) 2 + 1  (D) None of these 

Sol. In first quadrant sin x and cos x meet at  

x = /4. The required area is as shown in the 

diagram. So 
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  = 2 – 1   Ans.[A] 

 

 



Ex.15 The area bounded by curve y = |x – 1| and  

y = 1 is- 

 (A) 1  (B) 2  

 (C) 1/2  (D) None of these 

Sol. y = |x – 1| = 
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 Point of intersection of y = x – 1, y = 1 is (2, 1) 

 Point of intersection of y = 1 – x, y = 1 is (0, 1) 

 Required area = Area of PQR 
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2

1
 (PQ) . (RT) 

  =
2

1
 . 2.1 = 1 Ans.[A] 

 

Ex.16 If area bounded by the curve y = 8x2 – x5 and  

ordinate x = 1, x = k is 
3

16
then k = 

 (A) 2  (B) [8 – 17 ]1/3 

 (C) [ 17 – 8]1/3 (D) –1 

Sol.  
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  16 k3 – k6 – 15 = 32 

  k6 – 16k3 + 47 = 0 

  k3 = 8 ± 17  

  k = (8 ± 17 )1/3  Ans.[B] 
 

Ex.17 The area bounded by curve y = ex log x and  

y =
ex

xlog
 is- 

 (A) 
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Sol. Solving the equation of curves  
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Ex.18 If 0 x  ; then the area bounded by the curve y 

= x and y = x + sin x is- 

 (A) 2  (B) 4 

 (C) 2  (D) 4 

Sol. For the points of intersection of the given curves 

 x = x + sin x 

  sin x = 0    

 x = 0,  

  required area 
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Ex.19 The area bounded by curves 3x2 + 5y = 32 and  

y = |x – 2| is- 

 (A) 25  (B) 17/2  

 (C) 33/2  (D) 33 

Sol. Here the first curve can be written in the 

following form 



 x2 = – 
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y  

 which is a parabola whose vertex lies on the  

y-axis. 

 Again second curve is given by 

  y = 








2x),2x(

2x,2x
  

 which consists of two perpendicular lines AB and 

AC as shown in the fig. 
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