SOLVED EXAMPLES

Ex. 1 The area bounded by the curve $y=3 / x^{2}$, x-axis and the lines $x=1$ and $x=2$ is-
(A) $3 / 2$
(B) $1 / 2$
(C) 2
(D) 1

Sol. \quad Area $=\int_{1}^{2} y d x=\int_{1}^{2} \frac{3}{x^{2}} d x$
$=-\left[\frac{3}{x}\right]_{1}^{2}=-3\left(\frac{1}{2}-1\right)$
$=3 / 2$
Ans.[A]
Ex. 2 The area between the curve $y=\sin ^{2} x, x$-axis and the ordinates $x=0$ and $x=\frac{\pi}{2}$ is-
(A) π
(B) $\pi / 2$
(C) $\pi / 4$
(D) $\pi / 8$

Sol. Required area $=\int_{0}^{\pi / 2} \sin ^{2} x d x$
$=\int_{0}^{\pi / 2} \frac{1-\cos 2 x}{2} d x$
$=\frac{1}{2}\left[x-\frac{\sin 2 x}{2}\right]_{0}^{\pi / 2}=\frac{\pi}{4}$
Ans.[C]

Ex. 3 The area between the curve $y=4+3 x-x^{2}$ and $x-$ axis is-
(A) $125 / 6$
(B) $125 / 3$
(C) $125 / 2$
(D) None of these

Sol. Putting y $=0$, we get,

$$
\begin{aligned}
& \quad x^{2}-3 x-4=0 \\
& \Rightarrow(x-4)(x+1)=0 \\
& \Rightarrow x=-1 \text { or } x=4 \\
& \therefore \text { required area }=\int_{-1}^{4}\left(4+3 x-x^{2}\right) d x \\
& =\left(4 x+\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right)_{-1}^{4}=\frac{125}{6}
\end{aligned}
$$

Ex. 4 The area bounded by the curve $y^{2}=4 x$, y -axis and $\mathrm{y}=3$ is-
(A) 2 units
(B) $9 / 4$ units
(C) $7 / 3$ units
(D) 3 units

Sol. Area $=\int_{0}^{3} x d y=\int_{0}^{3} \frac{y^{2}}{4} d y$

$$
=\frac{1}{4}\left[\frac{\mathrm{y}^{3}}{3}\right]_{0}^{3}=\frac{1}{12}(27-0)
$$

$$
=9 / 4 \text { units }
$$

Ans.[B]
Ex. 5 The area bounded by the curve $x=a \cos ^{3} t$, $\mathrm{y}=\mathrm{a} \sin ^{3} \mathrm{t}$, is-
(A) $\frac{\pi \mathrm{a}^{2}}{8}$
(B) $\frac{\pi \mathrm{a}^{2}}{4}$
(C) $\frac{3 \pi a^{2}}{8}$
(D) $\frac{2 \pi \mathrm{a}^{2}}{3}$

Sol. Given curve $\left(\frac{x}{a}\right)^{1 / 3}=\cos t,\left(\frac{y}{a}\right)^{1 / 3}=\sin t$
Squaring and adding $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$
Clearly it is symmetric with respect to both the axis, so whole area is
$=4 \int_{0}^{a} y d x$
$=4 \int_{\pi / 2}^{0} a \sin ^{3} t 3 a \cos ^{2} t(-\sin t) d t$
By given equation at $\mathrm{x}=0 ; \mathrm{t}=\frac{\pi}{2}$ at $\mathrm{x}=\mathrm{a} ; \mathrm{t}=0$
$=12 \mathrm{a}^{2} \int_{0}^{\pi / 2} \sin ^{4} t \cos ^{2} \mathrm{tdt}$
$=12 \mathrm{a}^{2} \cdot \frac{3.1 \cdot 1}{6.4 .2} \cdot \frac{\pi}{2}=\frac{3 \pi \mathrm{a}^{2}}{8}$
Ans.[C]

Ex. 6 The area between the curve $y=\operatorname{sech} x$ and x -axis is-
(A) ∞
(B) π
(C) 2π
(D) $\pi / 2$

Sol. Given curve is symmetrical about y-axis as shown in the diagram.
Reqd. area $=2 \int_{0}^{\infty} \operatorname{sech} x d x$

$=2 \int_{0}^{\infty} \frac{2}{e^{x}+e^{-x}} d x=4 \int_{0}^{\infty} \frac{e^{x}}{e^{2 x}+1} d x$
$=4\left[\tan ^{-1}\left(\mathrm{e}^{\mathrm{x}}\right)\right]_{0}^{\infty}=4\left[\frac{\pi}{2}-\frac{\pi}{4}\right]=\pi \quad$ Ans. $[\mathbf{B}]$

Ex. 7 The area bounded by the circle $x^{2}+y^{2}=1$ and the curve $|x|+|y|=1$ is-
(A) $\pi-2$
(B) $\pi-2 \sqrt{2}$
(C) $2(\pi-2 \sqrt{2})$
(D) None of these

Sol. By changing x as $-x$ and y as $-y$, both the given equation remains unchanged so required area will be symmetric w.r.t both the axis, which is shown in the fig., so required area is

$=4 \int_{0}^{1}\left[\sqrt{1-x^{2}}-(1-x)\right] d x$
$=4\left[\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x-x+\frac{x^{2}}{2}\right]_{0}^{1}$
$=4\left[0+\frac{1}{2} \cdot \frac{\pi}{2}-1+\frac{1}{2}\right]=\pi-2$
Ans.[A]

Ex. 8 The area bounded by the curve $y=\sin x$, $\mathrm{x}=0$ and $\mathrm{x}=2 \pi$ is-
(A) 4 units
(B) 0 units
(C) 4π units
(D) 2 units

Sol. $\quad f(x)=y=\sin x$
when $x \in[0, \pi], \sin x \geq 0$
and when $\mathrm{x} \in[\pi, 2 \pi], \sin \mathrm{x} \leq 0$
\therefore required area $=\int_{0}^{\pi} y d x+\int_{\pi}^{2 \pi}(-y) d x$

$$
\begin{aligned}
& =\int_{0}^{\pi} \sin x d x+\int_{\pi}^{2 \pi}(-\sin x) d x \\
& =[-\cos x]_{0}^{\pi}+[\cos x]_{\pi}^{2 \pi} \\
& =(-\cos \pi+\cos 0)+(\cos 2 \pi-\cos \pi) \\
& =(1+1)+(1+1) \\
& =4 \text { units }
\end{aligned}
$$

Ans.[A]

Ex. 9 The area between the curves $y=\sqrt{x}$ and $y=x$ is-
(A) $1 / 3$
(B) $1 / 6$
(C) $2 / 3$
(D) 1

Sol. The points of intersection of curves are $\mathrm{x}=0$ and $\mathrm{x}=1$.

$$
\begin{aligned}
\therefore \text { required area } & =\int_{0}^{1}(\sqrt{x}-x) d x \\
= & {\left[\frac{2 x^{3 / 2}}{3}-\frac{x^{2}}{2}\right]_{0}^{1} } \\
= & \frac{2}{3}-\frac{1}{2}=\frac{1}{6}
\end{aligned}
$$

Ans.[B]

Ex. 10 The area between the parabola $x^{2}=4 y$ and line $\mathrm{x}=4 \mathrm{y}-2$ is-
(A) $9 / 4$
(B) $9 / 8$
(C) $9 / 2$
(D) 9

Sol. Solving the equation of the given curves for x , we get
$x^{2}=x+2$
$\Rightarrow(\mathrm{x}-2)(\mathrm{x}+1)=0$
$\Rightarrow \mathrm{x}=-1,2$
So, reqd. area

$=\int_{-1}^{2}\left[\frac{x+2}{4}-\frac{x^{2}}{4}\right] d x$
$=\frac{1}{4}\left[\frac{x^{2}}{2}+2 x-\frac{x^{3}}{3}\right]_{-1}^{2}$
$=\frac{1}{4}[(2+4-8 / 3)-(1 / 2-2+1 / 3)]=9 / 8$
Ans.[B]

Ex. 11 The area between the curve $y=\cos ^{2} x$, x -axis and ordinates $\mathrm{x}=0$ and $\mathrm{x}=\pi$ in the interval $(0, \pi)$ is-
(A) π
(B) $\pi / 4$
(C) $\pi / 2$
(D) 2π

Sol. Required area $=\int_{0}^{\pi} \cos ^{2} x d x$

$$
=\int_{0}^{\pi / 2} \cos ^{2} x d x+\int_{\pi / 2}^{\pi} \cos ^{2} x d x
$$

$=\frac{1}{2} \times \frac{\pi}{2}+\frac{1}{2} \int_{\pi / 2}^{\pi}(1+\cos 2 x) d x$
$=\frac{\pi}{4}+\frac{1}{2}\left[\mathrm{x}+\frac{\sin 2 \mathrm{x}}{2}\right]_{\pi / 2}^{\pi}$
$=\frac{\pi}{4}+\frac{1}{2}\left[\left(\pi-\frac{\pi}{2}\right)\right]$
$=\frac{\pi}{4}+\frac{\pi}{4}=\frac{\pi}{2}$

Ans.[C]

Ex. 12 The area between the curves $y=\tan x$, $y=\cot x$ and x-axis in the interval $[0, \pi / 2]$ is-
(A) $\log 2$
(B) $\log 3$
(C) $\log \sqrt{2}$
(D) None of these

Sol. From the fig. it is clear that

$=\int_{0}^{\pi / 4} \tan x d x-\int_{\pi / 4}^{\pi / 2} \cot x d x$
$=[\log \sec x]_{0}^{\pi / 4}+[\log \sin x]_{\pi / 4}^{\pi / 2}$
$=\log \sqrt{2}-\log \frac{1}{\sqrt{2}}$
$=\log 2$
Ans.[A]

Ex. 13 The area between the curves $y=\cos x$ and the line $y=x+1$ in the second quadrant is-
(A) 1
(B) 2
(C) $3 / 2$
(D) $1 / 2$

Sol. Let the line $y=x+1$, meets x-axis at the point A $(0,1)$. Also suppose that the curve $\mathrm{y}=\cos \mathrm{x}$ meets x-axis and y-axis respectively at the points C and A . From the adjoint figure it is obvious that Required area $=$ area of ABC
$=$ area of $\mathrm{OAC}-$ area of OAB
$=\int_{-\pi / 2}^{0} \cos x d x-\frac{1}{2} \times \mathrm{OB} \times \mathrm{OA}$

$=[\sin \mathrm{x}]_{-\pi / 2}^{0}-\frac{1}{2} \times 1 \times 1$
$=1-(1 / 2)=(1 / 2)$.
Ans. [D]
Ex. 14 The area bounded by the curves $y=\sin x$, $y=\cos x$ and y-axis in first quadrant is-
(A) $\sqrt{2}-1$
(B) $\sqrt{2}$
(C) $\sqrt{2}+1$
(D) None of these

Sol. In first quadrant $\sin \mathrm{x}$ and $\cos \mathrm{x}$ meet at $x=\pi / 4$. The required area is as shown in the diagram. So

Required area $=\int_{0}^{\pi / 4}(\cos x-\sin x) d x$

$$
\begin{aligned}
& =[\sin x+\cos x]_{0}^{\pi / 4} \\
& =(1 / \sqrt{2}+1 / \sqrt{2})-(0+1) \\
& =\sqrt{2}-1
\end{aligned}
$$

Ans.[A]

Ex. 15 The area bounded by curve $y=|x-1|$ and $y=1$ is-
(A) 1
(B) 2
(C) $1 / 2$
(D) None of these

Sol. $y=|x-1|=\left\{\begin{array}{l}x-1 \text { when } x \geq 1 \\ 1-x \text { when } x<1\end{array}\right.$

Point of intersection of $y=x-1, y=1$ is $(2,1)$
Point of intersection of $y=1-x, y=1$ is $(0,1)$
Required area $=$ Area of $\triangle \mathrm{PQR}$

$$
\begin{aligned}
& =\frac{1}{2}(\mathrm{PQ}) \cdot(\mathrm{RT}) \\
& =\frac{1}{2} \cdot 2 \cdot 1=1
\end{aligned}
$$

Ans.[A]
Ex. 16 If area bounded by the curve $y=8 x^{2}-x^{5}$ and ordinate $\mathrm{x}=1, \mathrm{x}=\mathrm{k}$ is $\frac{16}{3}$ then $\mathrm{k}=$
(A) 2
(B) $[8-\sqrt{17}]^{1 / 3}$
(C) $[\sqrt{17}-8]^{1 / 3}$
(D) -1

Sol. $\quad \int_{1}^{k}\left(8 x^{2}-x^{5}\right) d x=\frac{16}{3}$
$\Rightarrow \quad\left[\frac{8 x^{3}}{3}-\frac{x^{6}}{6}\right]_{1}^{k}=\frac{16}{3}$
$\Rightarrow \quad \frac{8}{3}\left(\mathrm{k}^{3}-1\right)-\left(\frac{\mathrm{k}^{6}-1}{6}\right)=\frac{16}{3}$
$\Rightarrow \quad 16 \mathrm{k}^{3}-\mathrm{k}^{6}-15=32$
$\Rightarrow \quad \mathrm{k}^{6}-16 \mathrm{k}^{3}+47=0$
$\Rightarrow \quad \mathrm{k}^{3}=8 \pm \sqrt{17}$
$\Rightarrow \quad \mathrm{k}=(8 \pm \sqrt{17})^{1 / 3}$
Ans.[B]
Ex. 17 The area bounded by curve $y=e x \log x$ and $y=\frac{\log x}{e x}$ is-
(A) $\frac{\mathrm{e}^{2}-5}{4}$
(B) $\frac{\mathrm{e}^{2}+5}{4 \mathrm{e}}$
(C) $\frac{\mathrm{e}}{4}-\frac{5}{4 \mathrm{e}}$
(D) None of these

$$
\begin{aligned}
& \qquad \operatorname{ex} \log \mathrm{x}=\frac{\log \mathrm{x}}{\mathrm{ex}} \\
& \Rightarrow \log \mathrm{x}\left(\mathrm{ex}-\frac{1}{\mathrm{ex}}\right)=0 \\
& \Rightarrow \mathrm{x}=1,1 / \mathrm{e} \\
& \therefore \text { required area }=\int_{1 / \mathrm{e}}^{1}\left(\frac{\log \mathrm{x}}{\mathrm{ex}}-\operatorname{ex} \log \mathrm{x}\right) \mathrm{dx} \\
& =\left[\frac{1}{\mathrm{e}} \frac{(\log \mathrm{x})^{2}}{2}-\mathrm{e}\left((\log \mathrm{x}) \cdot \frac{\mathrm{x}^{2}}{2}-\frac{\mathrm{x}^{2}}{4}\right)\right]_{1 / \mathrm{e}}^{1} \\
& =\frac{1}{2 \mathrm{e}}\left[0-(-1)^{2}\right]-\mathrm{e}\left[0-\frac{1}{4}-\left(-\frac{1}{2 \mathrm{e}^{2}}-\frac{1}{4 \mathrm{e}^{2}}\right)\right] \\
& =-\frac{1}{2 \mathrm{e}}-\frac{1}{2 \mathrm{e}}+\frac{\mathrm{e}}{4}-\frac{1}{4 \mathrm{e}}=\frac{\mathrm{e}}{4}-\frac{5}{4 \mathrm{e}}
\end{aligned}
$$

Ans.[C]

Ex. 18 If $0 \leq x \leq \pi$; then the area bounded by the curve y $=\mathrm{x}$ and $\mathrm{y}=\mathrm{x}+\sin \mathrm{x}$ is-
(A) 2
(B) 4
(C) 2π
(D) 4π

Sol. For the points of intersection of the given curves
$x=x+\sin x$
$\Rightarrow \sin x=0$
$\Rightarrow \mathrm{x}=0, \pi$
\therefore required area

$=\int_{0}^{\pi}[(x+\sin x)-x] d x$
$=\int_{0}^{\pi} \sin x d x=-[\cos x]_{0}^{\pi}=2$
Ans.[A]

Ex. 19 The area bounded by curves $3 x^{2}+5 y=32$ and $y=|x-2|$ is-
(A) 25
(B) $17 / 2$
(C) $33 / 2$
(D) 33

Sol. Here the first curve can be written in the following form

Sol. Solving the equation of curves
$x^{2}=-\frac{5}{3}\left(y-\frac{32}{5}\right)$
which is a parabola whose vertex lies on the y-axis.
Again second curve is given by

$$
y=\left\{\begin{array}{c}
x-2, x \geq 2 \\
-(x-2), x<2
\end{array}\right.
$$

which consists of two perpendicular lines AB and AC as shown in the fig.

These lines meet the parabola at $B(3,1)$ and $C(-2,4)$.
Hence the reqd. area A is given by
$A=\int_{-2}^{3} y d x-\Delta A B L-\Delta A C M$
$\int_{-2}^{3} \frac{1}{5}\left(32-3 \mathrm{x}^{2}\right) \mathrm{dx}-\frac{1}{2} \cdot 1.1-\frac{1}{2}(4.4)$
$=\frac{1}{5}\left[32 x-x^{3}\right]_{-2}^{3}-\frac{17}{2}$
$=\frac{1}{5}[69+56]-\frac{17}{2}=\frac{33}{2}$
Ans.[C]

