JEE MAIN + ADVANCED MATHEMATICS

TOPIC NAME AREA UNDER THE CURVE

(PRACTICE SHEET)

LEVEL- 1

Question based on

Area bounded by a curve

- **Q.1** The area between the curves $y = 6 - x - x^2$ and x-axis is -
 - (A) 125/6
- (B) 125/2
- (C) 25/6
- (D) 25/2
- **Q.2** The area between the curve $y = e^x$ and x-axis which lies between x = -1 and x = 1 is-
 - (A) $e^2 1$
- (B) $(e^2-1)/e$
- (C) (1-e)/e
- (D) $(e-1)/e^2$
- Q.3 The area bounded by the curve $y = \sin 2x$, x- axis and the ordinate $x = \pi/4$ is-
 - (A) $\pi/4$
- (B) $\pi/2$ (C) 1
- (D) 1/2
- **Q.4** The area between the curve $xy = a^2$, x-axis, x = a and x = 2a is-
 - (A) a log 2
- (B) $a^2 \log 2$
- (C) 2a log 2
- (D) none of these
- Q.5 Area under the curve $y = \sin 2x + \cos 2x$ between x = 0 and $x = \frac{\pi}{4}$, is-
 - (A) 2 sq. units
- (B) 1 sq. units
- (C) 3 sq. units
- (D) 4 sq. units
- 0.6 The area bounded by the curve $y = 4x^2$; x = 0, y = 1 and y = 4 in the first quadrant is-

- (A) $2\frac{2}{3}$ (B) $3\frac{1}{3}$ (C) $2\frac{1}{3}$ (D) $3\frac{1}{2}$
- The area between the curve $y = \sec x$ and **Q.7** y-axis when $1 \le y \le 2$ is-
 - (A) $\frac{2\pi}{3} \log(2 + \sqrt{3})$
 - (B) $\frac{2\pi}{3} + \log(2 + \sqrt{3})$
 - (C) $\frac{\pi}{3} \frac{1}{2} \log (2 + \sqrt{3})$
 - (D) None of these
- The area bounded by the lines y = x, y = 0 and **Q.8**
 - (A) 1
- (B) 2
- (C) 4
- (D) None of these
- **Q.9** The area bounded by the curve $y = 1 + 8/x^2$, x-axis, x = 2 and x = 4 is-
 - (A) 2
- (B) 3
- (C) 4
- (D) 5

- Q.10 The area between the curve y = log x and x-axis which lies between x = a and x = b(a > 1, b > 1) is-
 - (A) $b \log (b/e) a \log (a/e)$
 - (B) $b \log (b/e) + a \log (a/e)$
 - (C) log ab
 - (D) log (b/a)
- Area bounded by the curve $y = xe^{x^2}$, x-axis and Q.11 the ordinates x = 0, $x = \alpha$ is-
 - (A) $\frac{e^{\alpha^2} + 1}{2}$ sq. units (B) $\frac{e^{\alpha^2} 1}{2}$ sq. units
- - (C) $e^{\alpha^2} + 1$ sq. units (D) $e^{\alpha^2} 1$ sq. units
- The area bounded between the curve $y = 2x^2 + 5$, Q.12 x-axis and ordinates x = -2 and x = 1 is-
- - (B) 29/5 (C) 23
- Q.13 Area bounded by curve xy = c, x-axis between x = 1 and x = 4, is-
 - (A) c log 3 sq. units
 - (B) 2 log c sq. units
 - (C) 2c log 2 sq. units
 - (D) 2c log 5 sq. units
- **Q.14** The area bounded by the curve $y = x \sin x^2$, x-axis and x = 0 and $x = \sqrt{\frac{\pi}{2}}$ is-
 - (A) 1/2
- (B) $1/\sqrt{2}$ (C) 1/4
- (D) $\pi/2$
- The area bounded between the Q.15 $\frac{x}{4} - \frac{y}{2} + 1 = 0$, x = -2, x = 3 and x-axis is-
 - (A) 45/4

 - (B) 45/2 (C) 15
- (D) 25/2
- Q.16 The area bounded by curves $y = \tan x$, x-axis and $x = \frac{\pi}{3}$ is-
 - (A) 2 log 2
- (B) log 2
- (C) $\log \left(\frac{2}{\sqrt{3}}\right)$
- Q.17 The area between the curve $x^2 = 4ay$, x-axis, and ordinate x = d is-
 - (A) $d^3/12a$
- (B) d^{3}/a
- (C) $d^{3}/2a$
- (D) $d^{3}/6a$

- Q.18 Area bounded by the curve $y = x (x - 1)^2$ $0 \le x \le 1$ and x-axis is-
 - (A) 4
- (B) 1/3
- (C) 1/12
- (D) 1/2
- Q.19 The area bounded by the curve $y = log_e x$, x-axis and ordinate x = e is-
 - $(A) \log_e 2$
- (B) 1/2 unit
- (C) 1 unit
- (D) e unit
- The area bounded by the curve $y = \frac{1}{\cos^2 x}$, Q.20 coordinates axes and $x = \pi/4$ is-
 - (A) 1
- (B) 2
- (C) $\pi/4$
- (D) ∞
- The area between the curve $y^2 = 4x$, y-axis, and Q.21 y = -1 and y = 3 is-
 - (A) 7/3
- (B) 9/4
- (C) 1/12
- (D) 1/4
- Q.22 The area bounded by the curve $y = \sin 2x$, y-axis and the abscissa y = 1 is-
 - (A) 1
- (C) $\pi/4$
- (D) $(\pi/4) (1/2)$
- The area between the curve $x = 2y y^2$ and Q.23 y-axis is-
 - (A) 9/4
- (B) 4/3
- (C)9
- (D) None of these
- Q.24 The area bounded by the curve $x^2 = 8y$, x-axis and the ordinate x = -2, x = 4 is-
 - (A) 4
- (B) 2
- (C) 1
- (D) 3
- The area bounded by the curve $y^2 = x$, straight Q.25 line y = 4, and y-axis is-
 - (A) 16/3
- (B) 64/3
- (C) $7\sqrt{2}$
- (D) None of these
- **O.26** The area between the curve $y = \sin^3 x$, x-axis, and the ordinates x = 0 to $x = \pi/2$ is-
 - (A) 1
- (B) 1/3
- (C) 2/3
- (D) 3/2
- The value of a for which the area of the Q.27 region bounded by the curve $y = \sin 2x$, the straight lines $x = \pi/6$, x = a and x-axis is equal to 1/2 is-
 - (A) $\pi/2$
- (B) $\pi/3$ (C) 4/3
- (D) $\pi / 6$
- The area of a loop bounded by the curve **O.28** $y = a \sin x$ and x-axis is-
 - (A) a
- (B) $2a^2$
- (C) 0
- (D) 2a

- Q.29 The area between the curves $x = 2 - y - y^2$ and v-axis is-
 - (A)9
- (B) 9/2 (C) 9/4
- (D) 3
- Q.30 The area bounded by $y = 4x - x^2$ and the x-axis is-
 - (A) 30/7
- (B) 31/7 (C) 32/3
- (D) 34/3
- Q.31 The area contained between the x-axis and one arc of the curve $y = \cos 3x$ is-
 - (A) 1/3
- (B) 2/3
- (C) 2/7
- (D) 2/5

Question based on Symmetric area

- **O.32** The area bounded by the curves $y = 4x^2$ and y = 4 is
 - (A) 7/3
- (B) 14/3 (C) 5/3
- (D) 16/3
- The area bounded between the curve $|y| = 1 x^2$ Q.33 is-
 - (A) 2/3
- (B) 4/3
- (C) 8/3
- (D) None of these
- The area bounded by the parabola $y^2 = 4ax$, Q.34 x-axis and x = 2a and latus rectum is-
 - (A) $2a^2 (\sqrt{2} 1)$
- (B) $4a^2 (2\sqrt{2}-1)$
- (C) $\frac{4}{3}$ a² (2 $\sqrt{2}$ -1) (D) $\frac{8a^2}{3}$ (2 $\sqrt{2}$ -1)
- 0.35 The whole area bounded by the curves $x = a \cos t$, $y = b \sin t is$
 - (A) π ab
- (B) $\left(\frac{\pi}{2}\right)$ ab
- (C) $\left(\frac{\pi}{4}\right)$ ab
- (D) None of these
- The whole area of the curve $9x^2+16y^2=144$ is-Q.36
 - (A) 24π
- (B) 144π
- $(C) 6\pi$
- (D) 12π

Question based on Positive and negative area

- The area between the curve $y = \tan x$ and 0.37 x-axis, when $-\pi/4 \le x \le \pi/4$ is-
 - (A) log 2
- (B) log 4
- (C) $\log \sqrt{2}$
- (D) none of these
- Q.38 The area bounded by the curve $y = x^3$, the x-axis and the ordinates x = -2 and x = 1 is-
 - (A) 9
- (B) 17/4
- (C) 15/4
- (D) 15/4

- Q.39 The area between the curve $y = \cos x$ and x- axis when $\pi/2 \le x \le 2\pi$ will be-
 - (A) 1
- (B) 2
- (C)3
- (D) 4

Question based on

Area between two curves

- The area between the curves $y^2 = 4x$ and y = 2xQ.40
 - (A) 1/4 unit
- (B) 1/3 unit
- (C) 1/2 unit
- (D) 2/3 unit
- The area bounded by the curves $y = e^x$, $y = e^{-x}$ and Q.41 the line x = 1 is-
 - (A) $e + e^{-1}$
- (B) $e + e^{-1} 1$
- (C) $e e^{-1} + 1$
- (D) $e + e^{-1} 2$
- The area bounded by the curve y = (x 1)Q.42 (x-2) and coordinate axes is-
 - (A) 1/6
- (B) 5/6
- (C) 1/3
- (D) 2/3
- Q.43 The area bounded by the lines y = 2 + x and y = 2 - x and x-axis is-
 - (A) 3
- (B) 4
- (C) 8
- (D) 16
- Q.44 The area bounded by the curves $y = \sin x$, $y = \cos x$ and x-axis from x = 0 to $x = \pi/2$ is-
 - (A) $2 + \sqrt{2}$
- (B) $\sqrt{2}$
- (C) 2
- (D) $2-\sqrt{2}$
- Q.45 The area bounded between parabola $x^2 = 4y$ and y = |x| is
 - (A) 2/3
- (B) 4/3
- (C) 8/3
- (D) 16/3
- Q.46 The area bounded by the curves $y = x^2$ and y = |x| is
 - (A) 2/3
- (B) 1/6
- (C) 1
- (D) 1/3
- The common area of the curves $y = \sqrt{x}$ and Q.47 $x = \sqrt{y}$ is-
 - (A) 3
- (B) 5/3
- (C) 1/3
- (D) None of these
- Q.48 Area of the region bounded by the curves $y = e^x$, $y = e^{-x}$ and the straight line y = 2 is-
 - (A) $\log (4/e)$
- (B) $2 \log (4/e)$
- (C) 4 log (4/e)
- (D) None of these

- Q.49 The area bounded by $y = \tan x$, $y = \cot x$, x-axis in $0 \le x \le \frac{\pi}{2}$ is-
 - (A) log 2
- (B) 3 log 2
- (C) 2 log 2
- (D) 4 log 2
- The area bounded by the curve $y = 2x x^2$ and **O.50** straight line y = -x is-
 - (A) 35/6
- (B) 9/2
- (C) 43/6
- (D) none of these
- The area between the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the Q.51

straight line
$$\frac{x}{a} + \frac{y}{b} = 1$$
 is-

- (A) $\frac{1}{4} \pi ab \frac{1}{2} ab$ (B) $\frac{1}{4} ab$
- (C) $\frac{1}{2}$ π ab
- (D) none of these
- Q.52 The area of the figure bounded by the parabola $y = x^2 + 1$ and the straight line x + y = 3 is-
 - (A) 3/2
- (B) 5/2
- (C) 7/2
- (D) 9/2
- 0.53 Common area between the parabolas $y = 2x^2$ and $y = x^2 + 4 is$
 - (A) 16/3
- (B) 8/3
- (C) 32/3
- (D) None of these
- Q.54 If A is the area between the curve $y = \sin x$ and xaxis in the interval $[0, \pi/2]$, then the area between $y = \sin 2x$ and x-axis in this interval will be-
 - (A) A
- (B) 2A
- (C) A/2
- (D) None of these
- Find the area enclosed by the lines y = x/2, Q.55 y = 2x and x = 4 is-
 - (A) 1
- (B) 2
- (C) 12 (D) 16
- Q.56 The area of region bounded by y = |[x - 2]|, the x-axis and the line x = -1 & x = 2 is
 - (A) 6 sq. unit
- (B) 8 sq. unit
- (C) 4 sq. unit
- (D) None of these
- Q.57 Area bounded by the curve y = f(x), y = x and the lines x = 1, x = t is $(t + \sqrt{1+t^2} - \sqrt{2})$ -1) sq. units for all t > 1. If f(x) satisfying f(x) > x for all

(A)
$$x + 1 + \frac{x}{\sqrt{1+x^2}}$$
 (B) $x + \frac{x}{\sqrt{1+x^2}}$

x > 1, then f (x) is equal to -

(C)
$$1 + \frac{x}{\sqrt{1+x^2}}$$
 (D) $\frac{x}{\sqrt{1+x^2}}$

$$(D) \frac{x}{\sqrt{1+x^2}}$$

LEVEL-2

Q.1 The area bounded by the curve

> y = (x - 1) (x - 2) (x - 3), x-axis and ordinates x = 0, x = 3 is

- (A) 9/4
- (B) 11/4
- (C) 11/2
- (D) None of these
- Area bounded by the curves $y = 2^x$, $y = 2x x^2$, **Q.2** x = 0 and x = 2 is-
 - (A) $\frac{3}{\log 2} \frac{4}{3}$ (B) $\frac{3}{\log 2} + \frac{4}{3}$
 - (C) $3 \log 2 + \frac{4}{3}$ (D) $3 \log 2 \frac{4}{3}$
- Q.3 Area bounded by the curves y = |x - 1|, y = 0 and |x| = 2 is-
 - (A) 5
- (B) 4
- (C) 9/2
- (D) None of these
- **Q.4** The area of the region bounded by $y^2 = x$ and x = 36 is divided in the ratio 1: 7 by the line x = a, then a equals-
 - (A) 7
- (B) 8
 - (C)9
 - (D) 0
- Q.5 The area bounded by the curve y = 1 - |x| and x-axis is-
 - (A) 1
- (B) 1/2
- (C) 2
- (D) 1/3
- The area bounded between the curve $x^2 + y^2 = 9$ **Q.6** and lines y = 3/2, y = 3 and x = 0 is-
 - (A) $\frac{3}{4} (8\pi + 3\sqrt{3})$ (B) $\frac{3}{4} (8\pi 3\sqrt{3})$
 - (C) $\frac{3}{2}(4\pi 3\sqrt{3})$ (D) $\frac{3}{8}(4\pi 3\sqrt{3})$
- **Q.7** The area bounded by the curve y = f(x), x-axis and the ordinates x = 1 & x = b is $(b-1) \sin(3b+4)$, then f(x) equals-
 - (A) $(x-1) \cos (3x+4)$
 - (B) $\sin (3x + 4)$
 - (C) $\sin (3x + 4) + 3(x 1) \cos (3x + 4)$
 - (D) None of these
- The area bounded by the parabola $x^2 = 4y$, the **Q.8** x-axis and the line x = 4 is divided into two equal area by the line $x = \alpha$, then the value of α is-
 - (A) $2^{1/3}$
- (B) $2^{2/3}$
- (C) $2^{4/3}$
- (D) $2^{5/3}$

- Q.9 The area of the closed figure bounded by $y = \cos x$, $y = 1 + (2/\pi) x$ and $x = \pi/2$ is-
 - (A) $3\pi/4$
- (C) $\frac{3\pi 4}{4}$
- (D) $\frac{\pi-4}{4}$
- Q.10 The area enclosed between $y = \log_e (x + e)$, $x = \log_e \left(\frac{1}{y}\right)$ and the x-axis is
 - (A) 1
- (B) 2
- (C) 3
- (D) 4
- Area of the circle $(x-2)^2 + (y-3)^2 = 32$ which Q.11 lies below the line y = x + 1 is-
 - (A) $\int_{0}^{6} \left[(x+1) + \sqrt{32 (x-2)^{2}} + 3 \right] dx$
 - (B) $\int_{0}^{6} \left[\left\{ \sqrt{32 (x 2)^2} + 3 \right\} (x + 1) \right] dx$
 - (C) 16π
 - (D) None of these
- Q.12 Let $f(x) = \max \{ \sin x, \cos x, 1/2 \}$. Then area of the region bounded by y = f(x), x-axis and $x = 0, x = 2\pi, is$:

 - (A) $(5\pi + 12\sqrt{3})/12$ (B) $(5\pi + 12\sqrt{2})/12$
 - (C) $(5\pi + 36)/12$
- (D) None of these
- Q.13 The area of the region $\{(x, y) : x^2 \le y \le |x|\}$ is-
 - (A) 1/3
- (B) 1/2
- (C) 1/4
- (D) None
- Area bounded by the curve $y^2 (2a x) = x^3$ and the Q.14 line x = 2a is:
 - (A) $3\pi a^2$
- (B) $3\pi a^2/2$
- (C) $3\pi a^2/4$
- (D) None of these
- Q.15 The area of region bounded by the curve
 - $y = \begin{cases} 2-x^2, x \le 1 \\ 2x-1, x > 1 \end{cases}$, x- axis and the ordinates
 - x = -1 and x = 2 is
 - (A) 8/3
- (B) 32/3 (C) 4/3
- (D) none

LEVEL-3

- **Q.1** The area bounded by the curve y = x |x|, x axis and the ordinates x = 1, x = -1 is given by-
 - (A) 0
- (B) $\frac{1}{3}$
- (C) $\frac{2}{3}$
- (D) none of these.
- Q.2 Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$, the line $x = \sqrt{3} y$ and x-axis is-
 - (A) π
- (B) $\pi/2$
- (C) $\pi/3$
- (D) none of these.
- Q.3 If area bounded by the curve $y^2 = 4$ ax and y = mx is $a^2/3$, then the value of m is-
 - (A) 2
- (B) -2
- (C) 1/2
- (D) none of these
- Q.4 Area bounded by the curve $y = x \sin x$ and x-axis between x = 0 and $x = 2\pi$ is
 - (A) 2
- (B) 3π
- (C) 4π
- (D) none of these.
- Q.5 The area of the region bounded by y = |x 1| and y = 1 is-
 - (A) 1
- (B) 2
- (C) 1/2
- (D) none of these.
- **Q.6** The area of the figure bounded by the curves y = |x 1| and y = 3 |x| is-
 - (A) 2
- (B) 3
- (C) 4
- (D) 1

> Statement type Questions

Each of the questions given below consists of Statement-I (Assertion) and Statement-II (Reason). Use the following key to choose the appropriate answer.

- (A) If both Statement-I, Statement-II are true, and Statement-II is the correct explanation of Statement-I.
- (B) If both Statement-I and Statement-II are true but Statement-II is not the correct explanation of Statement-I
- (C) If Statement-I is true but Statement-II is false
- (D) If Statement-I is false but Statement-II is true.

Q.7 Statement-I: Area common to the curve $y = \sqrt{x}$ and $x = \sqrt{y}$ is 1/3 sq. units

Statement-II: Area = $\int_{a}^{b} (g(x) - f(x)) dx.$

Q.8 Statement-I: Let the area bounded by the curve y = f(x), x-axis from x = 1 to x = a, a > 1 be $3a^2 - 4a + 1$ sq. units then f(x) = 6x - 4.

Statement-II:

$$F(a) = Area = \int_{1}^{a} f(x) dx \Rightarrow f(a) = F'(a)$$

Q.9 Statement-I: The area bounded by the curves $y = \sin^{-1} x$, $y = \cos^{-1} x$ and x-axis is $\sqrt{2} - 1$.

Statement-II:

$$\int_{0}^{1/\sqrt{2}} \sin^{-1} x \, dx + \int_{1/\sqrt{2}}^{1} \left(\frac{\pi}{2} - \sin^{-1} x \right) dx = \sqrt{2} - 1$$

Passage Based Questions

Consider the parabola $y = x^2 + 1$ and the line x + y = 3

The line cuts the parabola at A and B. Let the abscissa of A and B be α and β .

- Q.10 The values of $\alpha + \beta$ and $\alpha\beta$ must be respectively
 - (A) 1 and 2
- (B) 2 and 1
- (C) -1 and -2
- (D) None of these.
- Q.11 The area bounded between the parabola and the line in terms of α and β must be

(A)
$$|\alpha - \beta| \left| \frac{(\alpha + \beta)^2 - \alpha\beta}{3} + \frac{\alpha + \beta}{2} - 2 \right|$$

(B)
$$|\alpha - \beta| \left| \frac{\alpha^2 + \beta^2}{3} + \frac{\alpha + \beta}{2} - 2 \right|$$

- (C) $|\alpha \beta| |2 (\alpha + \beta) (\alpha^2 + \beta^2)|$
- (D) None of these.
- Q.12 The area bounded between the parabola and the line must be
 - (A) 2 sq. units
 - (B) $\frac{35}{6}$ sq. units
 - (C) 9/2 sq. units
 - (D) None of these
- Area of the region bounded by the curve $y = x^2$, Q.13 $y = |2 - x^2|$ and y = 2, which lies to the right of the line x = 1, is equal to

(A)
$$(20 + 12\sqrt{2})/\sqrt{3}$$

(B)
$$(20 + 12\sqrt{2})/3$$

(C)
$$(20-12\sqrt{2})/\sqrt{3}$$

(D)
$$(20-12\sqrt{2})/3$$

- Area bounded by the curves $x = -4 y^2$ and Q.14 $x = 1 - 5y^2$ is:
 - (A) 3/4
- (B) 4/3
- (C) 4
- Q.15 Area bounded by the curves y = x - 1, y-axis, and $y = [(x^2 + 128)/64], x \in (0, 8)$ above the x-axis, [.] = G.I.F., is equal to
 - (A) 2
- (B) 4
- (C) 8
- (D) None

(D) 3

- Q.16 Let $f(x) = \min \{x + 1, \sqrt{1-x} \}$. Then area bounded by y = f(x) and x-axis is
 - (A) 11/6
- (B) 5/6 (C) 7/6
- (D) 1/6
- Area bounded by the curve $xy^2 = a^2 (a x)$ and Q.17 y-axis is (:: a > 0)
 - (A) $\pi a^2/2$
- (B) πa^2
- (C) $3\pi a^2$
- (D) $3\pi a^2/2$

(Question asked in previous AIEEE and IIT-JEE)

SECTION -A

Q.1 If the area bounded by the x-axis, curve y = f(x) and the lines x = 1, x = b is equal to $\sqrt{b^2+1} - \sqrt{2}$ for all b > 1, then f(x) is-

[AIEEE-2002]

- (A) $\sqrt{(x-1)}$
- (B) $\sqrt{(x+1)}$
- (C) $\sqrt{(x^2+1)}$ (D) $\frac{x}{\sqrt{1+x^2}}$
- **Q.2** The area of the region bounded by the curves y = |x - 1| and y = 3 - |x| is-[AIEEE-2003]
 - (A) 6 sq. units
- (B) 2 sq. units
- (C) 3 sq. units
- (D) 4 sq. units
- Q.3 The area of the region bounded by the curves y = |x - 2|, x = 1, x = 3 and the x- axis is-

[AIEEE-2004]

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- **Q.4** Area of the greatest rectangle that can be inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is-

[AIEEE-2005]

- (A) 2ab
- (B) ab
- (C) \sqrt{ab}
- (D) $\frac{a}{L}$
- **Q.5** The area enclosed between the curve $y = log_e (x + e)$ and the coordinate axes is-

[AIEEE-2005]

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- The parabolas $y^2 = 4x$ and $x^2 = 4y$ divide the **Q.6** square region bounded by the lines x = 4, y = 4and the coordinate axes. If S₁, S₂, S₃ are respectively the areas of these parts numbered from top to bottom; then $S_1 : S_2 : S_3$ is-

[AIEEE-2005]

- (A) 1:2:1
- (B) 1:2:3
- (C) 2:1:2
- (D) 1:1:1

Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates $x = \frac{\pi}{4}$ and $x = \beta > \frac{\pi}{4}$ is

 $\left(\beta \sin \beta + \frac{\pi}{4} \cos \beta + \sqrt{2}\beta\right)$. Then $f\left(\frac{\pi}{2}\right)$ is-

[AIEEE-2005]

- (A) $\left(\frac{\pi}{4} + \sqrt{2} 1\right)$ (B) $\left(\frac{\pi}{4} \sqrt{2} + 1\right)$
- (C) $\left(1 \frac{\pi}{4} \sqrt{2}\right)$ (D) $\left(1 \frac{\pi}{4} + \sqrt{2}\right)$
- The area enclosed between the curves $y^2 = x$ and **Q.8** [AIEEE-2007] y = |x| is
 - (A) $\frac{2}{2}$
- (B) 1
- $(C) \frac{1}{\epsilon}$
- (D) $\frac{1}{2}$
- 0.9 The area of the plane region bounded by the curves $x + 2y^2 = 0$ and $x + 3y^2 = 1$ is equal to-

[AIEEE-2008]

[AIEEE-2010]

- (A) $\frac{1}{3}$
- (B) $\frac{2}{3}$
- (C) $\frac{4}{3}$
- (D) $\frac{5}{3}$
- **Q.10** The area of the region bounded by the parabola $(y-2)^2 = x-1$, the tangent to the parabola at the point (2, 3) and the x - axis is -[AIEEE-2009]
 - (A) 3
- (B) 6
- (C) 9
- (D) 12
- Q.11 The area bounded by the curves $y = \cos x$ and y = sin x between the ordinates x = 0 and $x = \frac{3\pi}{2}$
 - is -(A) $4\sqrt{2} - 2$
- (B) $4\sqrt{2} + 2$
- (C) $4\sqrt{2}-1$
- (D) $4\sqrt{2} + 1$
- Q.12 The area of the region enclosed by the curves y = x, x = e, y = 1/x and the positive x-axis is :

[AIEEE-201	11
AICCC-ZUI	ΙI

[IIT Scr.2003]

- (A) 1/2 square units
- (B) 1 square units
- (C) 3/2 square units
- (D) 5/2 square units

- (A) $2\sqrt{3}$
- (B) 18
- (C) 9
- (D) 34/3

- The area bounded by the curves $y^2 = 4x$ and Q.13 $x^2 = 4y \text{ is } -$ [AIEEE-2011]
 - (A) $\frac{32}{3}$
- (B) $\frac{16}{2}$
- (C) $\frac{8}{3}$
- (D) 0
- The area bounded between the parabolas $x^2 = \frac{y}{4}$ Q.14 and $x^2 = 9y$, and the straight line y = 2 is:

[AIEEE-2012]

- (A) $\frac{10\sqrt{2}}{3}$
- (B) $\frac{20\sqrt{2}}{3}$
- (C) $10\sqrt{2}$
- (D) $20\sqrt{2}$
- The area (in square units) bounded by the curves Q.15 $y = \sqrt{x}$, 2y - x + 3 = 0, x-axis, and lying in the [JEE Main - 2013]

 - (A) 18 (B) $\frac{27}{4}$ (C) 9 (D) 36

SECTION-B

- Q.1 The area of the region bounded by y = |x - 1| and y = 1 is [IIT -1993]
 - (A) 1
- (B) 2
- (C) 1/2
- (D) None of these
- **Q.2** The slope of the tangent to the curve y = f(x) at a point (x, y) is 2x + 1 and the curve passes through (1, 2). The area of the region bounded by the curve, the x- axis and the line x = 1 is-

[IIT- 1995]

- (A) 5/3 units
- (B) 5/6 units
- (C) 6/5 units
- (D) 6 units
- Q.3 The area bounded by the curves y = |x| - 1 and y = -|x| + 1 is-[IIT Scr.2002]
 - (A) 1
- (B) 2
- (C) $2\sqrt{2}$
- (D) 4
- Area of the region bounded by $y = \sqrt{x}$, **Q.4** x = 2y + 3 & x-axis lying in 1st quadrant is-

- If area bounded by the curves $x = ay^2$ and **Q.5** $y = ax^2$ is 1, then a equals-[IIT Scr.2004]
 - (A) $\frac{1}{\sqrt{2}}$
- (B) $\frac{1}{2}$
- (C) $\frac{1}{2}$
- (D)3
- Find the area between the curves $y = (x 1)^2$, **Q.6**

$$y = (x + 1)^2$$
 and $y = \frac{1}{4}$

[HT Scr.2005]

- (C) $\frac{4}{2}$
- Area of the region bounded by the curve $y = e^x$ **Q.7** and lines x = 0 and y = e is-[IIT- 2009]
 - (A) e 1
- (B) $\int_{1}^{\infty} \ell n(e+1-y) dy$
- (C) $e \int_{0}^{1} e^{x} dx$ (D) $\int_{0}^{1} \ell ny dy$
- **Q.8** Let the straight line x = b divide the area enclosed by $y = (1 - x)^2$, y = 0, and x = 0 into two parts $R_1(0 \le x \le b)$ and $R_2(b \le x \le 1)$ such that

$$R_1 - R_2 = \frac{1}{4}$$
. Then *b* equals

- (A) $\frac{3}{4}$ (B) $\frac{1}{2}$ (C) $\frac{1}{3}$ (D) $\frac{1}{4}$
- The area enclosed by the curves $y = \sin x + \cos x$ **Q.9** and $y = |\cos x - \sin x|$ over the interval $\left|0, \frac{\pi}{2}\right|$

is -

[JEE - Advance 2013]

- (A) $4(\sqrt{2}-1)$
- (B) $2\sqrt{2}(\sqrt{2}-1)$ (C)
- $2(\sqrt{2}+1)$
- (D) $2\sqrt{2}(\sqrt{2}+1)$

ANSWER KEY

LEVEL-1

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	A	В	D	В	В	С	A	В	С	A	В	A	С	A	A	В	A	С	С	A
Q.No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	A	D	В	D	В	С	В	D	В	С	В	D	С	С	A	D	A	В	С	В
Q.No.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57			
Ans.	D	В	В	D	D	D	С	В	A	В	A	D	С	A	С	A	A			

LEVEL-2

	Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Г	Ans.	В	A	A	С	A	D	С	D	С	В	C	D	A	A	D

LEVEL-3

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Ans.	С	С	A	С	A	С	A	A	A	С	A	С	D	В	В	С	В

LEVEL-4

SECTION-A

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	D	D	A	A	Α	D	D	С	C	C	A	С	В	В	C

SECTION-B

Area =
$$\frac{1}{2}$$
 . 2. 1 = 1

2.[B]
$$\frac{dy}{dx} = 2x + 1 \Rightarrow \begin{cases} y = x^2 + x + c \\ c = 0 \end{cases}$$
It passes through (1, 2)

Area of square =
$$\left(\sqrt{2}\right)^2 = 2$$

4.[C]

Area =
$$\int_0^3 (2y+3) - y^2 dy = 9$$

5.[A]

Area =
$$\int_0^{1/a} \sqrt{\frac{x}{a}} - ax^2 dx = 1 \implies a = \frac{1}{\sqrt{3}}$$

6.[A]

Area = 2.
$$\int_{1/4}^{1} (\sqrt{y} + 1) = \frac{1}{3}$$

7.[C]

Area =
$$\int_{0}^{1} 1 - e^{x} dx = \int_{1}^{e} \log y \, dy$$

= $\int_{1}^{e} \log (1 + e - y) \, dy$

8.[B]

$$R_1 - R_2 = \frac{1}{4}$$

$$\int_0^b (x-1)^2 dx - \int_b^1 (x-1)^2 dx = \frac{1}{4}$$

$$\Rightarrow \left(\frac{(x-1)^3}{3}\right)_0^b - \left(\frac{(x-1)^3}{3}\right)_b^1 = \frac{1}{4}$$

$$\Rightarrow \frac{(b-1)^3}{3} + \frac{1}{3} + \frac{(b-1)^3}{3} = \frac{1}{4}$$

$$\Rightarrow \frac{2}{3}(b-1)^3 = \frac{-1}{12} \Rightarrow (b-1)^3 = \frac{-1}{8}$$

$$\Rightarrow b - 1 = \frac{-1}{2} \Rightarrow b = \frac{1}{2}$$

9.[B] Area =
$$\int_{0}^{\pi/2} ((\sin x + \cos x) - |\cos x - \sin x|) dx$$

$$= \int_{0}^{\pi/2} (\sin x + \cos x) \, dx - \int_{0}^{\pi/4} (\cos x - \sin x) \, dx -$$

$$\int_{\pi/4}^{\pi/2} (\sin x - \cos x) \, \mathrm{d}x$$

$$= [-\cos x + \sin x]_0^{\pi/2} - [\sin x + \cos x]_0^{\pi/4} - [-$$

$$\cos x - \sin x \,]_{\pi/2}^{\pi/4}$$

$$=(1+1)-(\sqrt{2}-1)-(-1+\sqrt{2})$$

$$=2-\sqrt{2}+1+1-\sqrt{2}$$

$$=4-2\sqrt{2}$$

$$=2\sqrt{2}(\sqrt{2}-1)$$