JEE MAIN + ADVANCED MATHEMATICS

TOPIC NAME

AREA UNDERTHE CURVE
(PRACTICE SHEET)

LEVEL- 1

Question based on

Area bounded by a curve

Q. 1 The area between the curves $y=6-x-x^{2}$ and x -axis is -
(A) $125 / 6$
(B) $125 / 2$
(C) $25 / 6$
(D) $25 / 2$
Q. 2 The area between the curve $y=e^{x}$ and x-axis which lies between $x=-1$ and $x=1$ is-
(A) $\mathrm{e}^{2}-1$
(B) $\left(\mathrm{e}^{2}-1\right) / \mathrm{e}$
(C) $(1-e) / e$
(D) $(\mathrm{e}-1) / \mathrm{e}^{2}$
Q. 3 The area bounded by the curve $\mathrm{y}=\sin 2 \mathrm{x}$, x - axis and the ordinate $x=\pi / 4$ is-
(A) $\pi / 4$
(B) $\pi / 2$
(C) 1
(D) $1 / 2$
Q. 4 The area between the curve $x y=a^{2}$, x-axis, $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=2 \mathrm{a}$ is-
(A) a $\log 2$
(B) $\mathrm{a}^{2} \log 2$
(C) $2 \mathrm{a} \log 2$
(D) none of these
Q. 5 Area under the curve $\mathrm{y}=\sin 2 \mathrm{x}+\cos 2 \mathrm{x}$ between $x=0$ and $x=\frac{\pi}{4}$, is-
(A) 2 sq. units
(B) 1 sq. units
(C) 3 sq. units
(D) 4 sq. units
Q. 6 The area bounded by the curve $y=4 x^{2} ; x=0$, $y=1$ and $y=4$ in the first quadrant is-
(A) $2 \frac{2}{3}$
(B) $3 \frac{1}{3}$
(C) $2 \frac{1}{3}$
(D) $3 \frac{1}{2}$
Q. 7 The area between the curve $y=\sec x$ and y -axis when $1 \leq \mathrm{y} \leq 2$ is-
(A) $\frac{2 \pi}{3}-\log (2+\sqrt{3})$
(B) $\frac{2 \pi}{3}+\log (2+\sqrt{3})$
(C) $\frac{\pi}{3}-\frac{1}{2} \log (2+\sqrt{3})$
(D) None of these
Q. 8 The area bounded by the lines $y=x, y=0$ and $\mathrm{x}=2$ is-
(A) 1
(B) 2
(C) 4
(D) None of these
Q. 9 The area bounded by the curve $y=1+8 / x^{2}$, x -axis, $\mathrm{x}=2$ and $\mathrm{x}=4$ is-
(A) 2
(B) 3
(C) 4
(D) 5
Q. 10 The area between the curve $\mathrm{y}=\log \mathrm{x}$ and x -axis which lies between $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$ ($\mathrm{a}>1, \mathrm{~b}>1$) is-
(A) $b \log (b / e)-a \log (a / e)$
(B) $b \log (b / e)+a \log (a / e)$
(C) $\log a b$
(D) $\log (b / a)$
Q. 11 Area bounded by the curve $y=x e^{x^{2}}, x$ - axis and the ordinates $\mathrm{x}=0, \mathrm{x}=\alpha$ is-
(A) $\frac{\mathrm{e}^{\alpha^{2}}+1}{2}$ sq. units
(B) $\frac{\mathrm{e}^{\alpha^{2}}-1}{2}$ sq.units
(C) $\mathrm{e}^{\alpha^{2}}+1$ sq. units
(D) $\mathrm{e}^{\alpha^{2}}-1$ sq.units
Q. 12 The area bounded between the curve $y=2 x^{2}+5$, x-axis and ordinates $x=-2$ and $x=1$ is-
(A) 21
(B) $29 / 5$
(C) 23
(D) 24
Q. 13 Area bounded by curve $x y=c, x$-axis between $x=1$ and $x=4$, is-
(A) c $\log 3$ sq. units
(B) $2 \log \mathrm{c}$ sq. units
(C) $2 \mathrm{c} \log 2$ sq. units
(D) $2 \mathrm{c} \log 5$ sq. units
Q. 14 The area bounded by the curve $\mathrm{y}=\mathrm{x} \sin \mathrm{x}^{2}$, x -axis and $\mathrm{x}=0$ and $\mathrm{x}=\sqrt{\frac{\pi}{2}}$ is-
(A) $1 / 2$
(B) $1 / \sqrt{2}$
(C) $1 / 4$
(D) $\pi / 2$
Q. 15 The area bounded between the curve $\frac{x}{4}-\frac{y}{2}+1=0, x=-2, x=3$ and x-axis is-
(A) $45 / 4$
(B) $45 / 2$
(C) 15
(D) $25 / 2$
Q. 16 The area bounded by curves $y=\tan x, x$-axis and $x=\frac{\pi}{3}$ is -
(A) $2 \log 2$
(B) $\log 2$
(C) $\log \left(\frac{2}{\sqrt{3}}\right)$
(D) 0
Q. 17 The area between the curve $x^{2}=4 a y, x$-axis, and ordinate $\mathrm{x}=\mathrm{d}$ is-
(A) $d^{3} / 12 a$
(B) d^{3} / a
(C) $d^{3} / 2 a$
(D) $\mathrm{d}^{3} / 6 a$
Q. 18 Area bounded by the curve $\mathrm{y}=\mathrm{x}(\mathrm{x}-1)^{2}$ $0 \leq x \leq 1$ and x-axis is-
(A) 4
(B) $1 / 3$
(C) $1 / 12$
(D) $1 / 2$
Q. 19 The area bounded by the curve $y=\log _{e} x$, x-axis and ordinate $x=e$ is-
(A) $\log _{\mathrm{e}} 2$
(B) $1 / 2$ unit
(C) 1 unit
(D) e unit
Q. 20 The area bounded by the curve $y=\frac{1}{\cos ^{2} x}$, coordinates axes and $\mathrm{x}=\pi / 4$ is-
(A) 1
(B) 2
(C) $\pi / 4$
(D) ∞
Q. 21 The area between the curve $y^{2}=4 x, y$-axis, and $y=-1$ and $y=3$ is-
(A) $7 / 3$
(B) $9 / 4$
(C) $1 / 12$
(D) $1 / 4$
Q. 22 The area bounded by the curve $y=\sin 2 x$, y-axis and the abscissa $y=1$ is-
(A) 1
(B) $1 / 4$
(C) $\pi / 4$
(D) $(\pi / 4)-(1 / 2)$
Q. 23 The area between the curve $x=2 y-y^{2}$ and y -axis is-
(A) $9 / 4$
(B) $4 / 3$
(C) 9
(D) None of these
Q. 24 The area bounded by the curve $x^{2}=8 y$, x -axis and the ordinate $\mathrm{x}=-2, \mathrm{x}=4$ is-
(A) 4
(B) 2
(C) 1
(D) 3
Q. 25 The area bounded by the curve $y^{2}=x$, straight line $y=4$, and y-axis is-
(A) $16 / 3$
(B) $64 / 3$
(C) $7 \sqrt{2}$
(D) None of these
Q. 26 The area between the curve $y=\sin ^{3} x, x$-axis, and the ordinates $x=0$ to $x=\pi / 2$ is-
(A) 1
(B) $1 / 3$
(C) $2 / 3$
(D) $3 / 2$
Q. 27 The value of a for which the area of the region bounded by the curve $y=\sin 2 x$, the straight lines $x=\pi / 6, x=a$ and x-axis is equal to $1 / 2$ is-
(A) $\pi / 2$
(B) $\pi / 3$
(C) $4 / 3$
(D) $\pi / 6$
Q. 28 The area of a loop bounded by the curve $\mathrm{y}=\mathrm{a} \sin \mathrm{x}$ and x -axis is-
(A) a
(B) $2 a^{2}$
(C) 0
(D) 2 a
Q. 29 The area between the curves $x=2-y-y^{2}$ and y-axis is-
(A) 9
(B) $9 / 2$
(C) $9 / 4$
(D) 3
Q. 30 The area bounded by $y=4 x-x^{2}$ and the x-axis is-
(A) $30 / 7$
(B) $31 / 7$
(C) $32 / 3$
(D) $34 / 3$
Q. 31 The area contained between the x -axis and one arc of the curve $y=\cos 3 x$ is-
(A) $1 / 3$
(B) $2 / 3$
(C) $2 / 7$
(D) $2 / 5$

Question
 based on

Symmetric area

Q. 32 The area bounded by the curves $y=4 x^{2}$ and $y=4$ is-
(A) $7 / 3$
(B) $14 / 3$
(C) $5 / 3$
(D) $16 / 3$
Q. 33 The area bounded between the curve $|y|=1-x^{2}$ is-
(A) $2 / 3$
(B) $4 / 3$
(C) $8 / 3$
(D) None of these
Q. 34 The area bounded by the parabola $y^{2}=4 a x$, x -axis and $\mathrm{x}=2 \mathrm{a}$ and latus rectum is-
(A) $2 \mathrm{a}^{2}(\sqrt{2}-1)$
(B) $4 \mathrm{a}^{2}(2 \sqrt{2}-1)$
(C) $\frac{4}{3} \mathrm{a}^{2}(2 \sqrt{2}-1)$
(D) $\frac{8 \mathrm{a}^{2}}{3}(2 \sqrt{2}-1)$
Q. 35 The whole area bounded by the curves $x=a \cos t$, $y=b \sin t$ is-
(A) $\pi a b$
(B) $\left(\frac{\pi}{2}\right) \mathrm{ab}$
(C) $\left(\frac{\pi}{4}\right) \mathrm{ab}$
(D) None of these
Q. 36 The whole area of the curve $9 x^{2}+16 y^{2}=144$ is-
(A) 24π
(B) 144π
(C) 6π
(D) 12π

Question based on

Positive and negative area

Q. 37 The area between the curve $y=\tan x$ and x-axis, when $-\pi / 4 \leq x \leq \pi / 4$ is-
(A) $\log 2$
(B) $\log 4$
(C) $\log \sqrt{2}$
(D) none of these
Q. 38 The area bounded by the curve $y=x^{3}$, the x-axis and the ordinates $x=-2$ and $x=1$ is-
(A) -9
(B) $17 / 4$
(C) $-15 / 4$
(D) $15 / 4$
Q. 39 The area between the curve $y=\cos x$ and x - axis when $\pi / 2 \leq \mathrm{x} \leq 2 \pi$ will be-
(A) 1
(B) 2
(C) 3
(D) 4

Question based on

Area between two curves

Q. 40 The area between the curves $y^{2}=4 x$ and $y=2 x$ is-
(A) $1 / 4$ unit
(B) $1 / 3$ unit
(C) $1 / 2$ unit
(D) $2 / 3$ unit
Q. 41 The area bounded by the curves $\mathrm{y}=\mathrm{e}^{\mathrm{x}}, \mathrm{y}=\mathrm{e}^{-\mathrm{x}}$ and the line $\mathrm{x}=1$ is-
(A) $e+e^{-1}$
(B) $\mathrm{e}+\mathrm{e}^{-1}-1$
(C) $\mathrm{e}-\mathrm{e}^{-1}+1$
(D) $e+e^{-1}-2$
Q. 42 The area bounded by the curve $\mathrm{y}=(\mathrm{x}-1)$ $(x-2)$ and coordinate axes is-
(A) $1 / 6$
(B) $5 / 6$
(C) $1 / 3$
(D) $2 / 3$
Q. 43 The area bounded by the lines $\mathrm{y}=2+\mathrm{x}$ and $y=2-x$ and x-axis is-
(A) 3
(B) 4
(C) 8
(D) 16
Q. 44 The area bounded by the curves $y=\sin x$, $\mathrm{y}=\cos \mathrm{x}$ and x -axis from $\mathrm{x}=0$ to $\mathrm{x}=\pi / 2$ is-
(A) $2+\sqrt{2}$
(B) $\sqrt{2}$
(C) 2
(D) $2-\sqrt{2}$
Q. 45 The area bounded between parabola $x^{2}=4 y$ and $y=|x|$ is-
(A) $2 / 3$
(B) $4 / 3$
(C) $8 / 3$
(D) $16 / 3$
Q. 46 The area bounded by the curves $y=x^{2}$ and $\mathrm{y}=|\mathrm{x}|$ is-
(A) $2 / 3$
(B) $1 / 6$
(C) 1
(D) $1 / 3$
Q. 47 The common area of the curves $\mathrm{y}=\sqrt{\mathrm{x}}$ and $\mathrm{x}=\sqrt{\mathrm{y}}$ is-
(A) 3
(B) $5 / 3$
(C) $1 / 3$
(D) None of these
Q. 48 Area of the region bounded by the curves $\mathrm{y}=\mathrm{e}^{\mathrm{x}}$, $y=e^{-x}$ and the straight line $y=2$ is-
(A) \log (4/e)
(B) $2 \log (4 / \mathrm{e})$
(C) $4 \log (4 / \mathrm{e})$
(D) None of these
Q. 49 The area bounded by $\mathrm{y}=\tan \mathrm{x}, \mathrm{y}=\cot \mathrm{x}, \mathrm{x}$-axis in $0 \leq x \leq \frac{\pi}{2}$ is-
(A) $\log 2$
(B) $3 \log 2$
(C) $2 \log 2$
(D) $4 \log 2$
Q. 50 The area bounded by the curve $y=2 x-x^{2}$ and straight line $\mathrm{y}=-\mathrm{x}$ is-
(A) $35 / 6$
(B) $9 / 2$
(C) $43 / 6$
(D) none of these
Q. 51 The area between the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the straight line $\frac{x}{a}+\frac{y}{b}=1$ is-
(A) $\frac{1}{4} \pi \mathrm{ab}-\frac{1}{2} \mathrm{ab}$
(B) $\frac{1}{4} \mathrm{ab}$
(C) $\frac{1}{2} \pi \mathrm{ab}$
(D) none of these
Q. 52 The area of the figure bounded by the parabola $y=x^{2}+1$ and the straight line $x+y=3$ is-
(A) $3 / 2$
(B) $5 / 2$
(C) $7 / 2$
(D) $9 / 2$
Q. 53 Common area between the parabolas $y=2 x^{2}$ and $y=x^{2}+4$ is-
(A) $16 / 3$
(B) $8 / 3$
(C) $32 / 3$
(D) None of these
Q. 54 If A is the area between the curve $\mathrm{y}=\sin \mathrm{x}$ and x axis in the interval $[0, \pi / 2]$, then the area between $y=\sin 2 x$ and x-axis in this interval will be-
(A) A
(B) 2 A
(C) A/2
(D) None of these
Q. 55 Find the area enclosed by the lines $y=x / 2$, $y=2 x$ and $x=4$ is-
(A) 1
(B) 2
(C) 12
(D) 16
Q. 56 The area of region bounded by $y=|[x-2]|$, the x-axis and the line $x=-1 \& x=2$ is -
(A) 6 sq. unit
(B) 8 sq. unit
(C) 4 sq. unit
(D) None of these
Q. 57 Area bounded by the curve $y=f(x), y=x$ and the lines $x=1, x=t$ is $\left(t+\sqrt{1+t^{2}}-\sqrt{2} \quad-1\right) s q$. units for all $t>1$. If $f(x)$ satisfying $f(x)>x$ for all $\mathrm{x}>1$, then $\mathrm{f}(\mathrm{x})$ is equal to -
(A) $x+1+\frac{x}{\sqrt{1+x^{2}}}$
(B) $x+\frac{x}{\sqrt{1+x^{2}}}$
(C) $1+\frac{x}{\sqrt{1+\mathrm{x}^{2}}}$
(D) $\frac{x}{\sqrt{1+x^{2}}}$

LEVEL- 2

Q. 1 The area bounded by the curve
$y=(x-1)(x-2)(x-3), x$-axis and ordinates $x=0, x=3$ is-
(A) $9 / 4$
(B) $11 / 4$
(C) $11 / 2$
(D) None of these
Q. 2 Area bounded by the curves $y=2^{x}, y=2 x-x^{2}$, $\mathrm{x}=0$ and $\mathrm{x}=2$ is-
(A) $\frac{3}{\log 2}-\frac{4}{3}$
(B) $\frac{3}{\log 2}+\frac{4}{3}$
(C) $3 \log 2+\frac{4}{3}$
(D) $3 \log 2-\frac{4}{3}$
Q. 3 Area bounded by the curves $y=|x-1|, y=0$ and $|x|=2$ is-
(A) 5
(B) 4
(C) $9 / 2$
(D) None of these
Q. 4 The area of the region bounded by $y^{2}=x$ and $x=36$ is divided in the ratio $1: 7$ by the line $x=a$, then a equals-
(A) 7
(B) 8
(C) 9
(D) 0
Q. 5 The area bounded by the curve $\mathrm{y}=1-|\mathrm{x}|$ and x -axis is-
(A) 1
(B) $1 / 2$
(C) 2
(D) $1 / 3$
Q. 6 The area bounded between the curve $x^{2}+y^{2}=9$ and lines $y=3 / 2, y=3$ and $x=0$ is-
(A) $\frac{3}{4}(8 \pi+3 \sqrt{3})$
(B) $\frac{3}{4}(8 \pi-3 \sqrt{3})$
(C) $\frac{3}{2}(4 \pi-3 \sqrt{3})$
(D) $\frac{3}{8}(4 \pi-3 \sqrt{3})$
Q. 7 The area bounded by the curve $y=f(x)$, x-axis and the ordinates $x=1 \& x=b$ is $(b-1) \sin (3 b+4)$, then $f(x)$ equals-
(A) $(x-1) \cos (3 x+4)$
(B) $\sin (3 x+4)$
(C) $\sin (3 x+4)+3(x-1) \cos (3 x+4)$
(D) None of these
Q. 8 The area bounded by the parabola $x^{2}=4 y$, the x-axis and the line $x=4$ is divided into two equal area by the line $x=\alpha$, then the value of α is-
(A) $2^{1 / 3}$
(B) $2^{2 / 3}$
(C) $2^{4 / 3}$
(D) $2^{5 / 3}$
Q. 9 The area of the closed figure bounded by $y=\cos x, y=1+(2 / \pi) x$ and $x=\pi / 2$ is-
(A) $3 \pi / 4$
(B) $\pi / 2$
(C) $\frac{3 \pi-4}{4}$
(D) $\frac{\pi-4}{4}$
Q. 10 The area enclosed between the curves $y=\log _{e}(x+e), x=\log _{e}\left(\frac{1}{y}\right)$ and the x-axis is
(A) 1
(B) 2
(C) 3
(D) 4
Q. 11 Area of the circle $(x-2)^{2}+(y-3)^{2}=32$ which lies below the line $y=x+1$ is-
(A) $\int_{-2}^{6}\left[(x+1)+\sqrt{32-(x-2)^{2}}+3\right] d x$
(B) $\int_{-2}^{6}\left[\left\{\sqrt{32-(x-2)^{2}}+3\right\}-(x+1)\right] d x$
(C) 16π
(D) None of these
Q. 12 Let $f(x)=\max .\{\sin x, \cos x, 1 / 2\}$. Then area of the region bounded by $y=f(x)$, x-axis and $x=0, x=2 \pi$, is:
(A) $(5 \pi+12 \sqrt{3}) / 12$
(B) $(5 \pi+12 \sqrt{2}) / 12$
(C) $(5 \pi+36) / 12$
(D) None of these
Q. 13 The area of the region $\left\{(x, y): x^{2} \leq y \leq|x|\right\}$ is-
(A) $1 / 3$
(B) $1 / 2$
(C) $1 / 4$
(D) None
Q. 14 Area bounded by the curve $y^{2}(2 a-x)=x^{3}$ and the line $x=2 a$ is :
(A) $3 \pi a^{2}$
(B) $3 \pi a^{2} / 2$
(C) $3 \pi a^{2} / 4$
(D) None of these
Q. 15 The area of region bounded by the curve $y=\left\{\begin{array}{l}2-x^{2}, x \leq 1 \\ 2 x-1, x>1\end{array}, x-\right.$ axis and the ordinates $x=-1$ and $x=2$ is
(A) $8 / 3$
(B) $32 / 3$
(C) $4 / 3$
(D) none

LEVEL- 3

Q. 1 The area bounded by the curve $y=x|x|, x$ axis and the ordinates $x=1, x=-1$ is given by-
(A) 0
(B) $\frac{1}{3}$
(C) $\frac{2}{3}$
(D) none of these.
Q. 2 Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$, the line $x=\sqrt{3} y$ and x-axis is-
(A) π
(B) $\pi / 2$
(C) $\pi / 3$
(D) none of these.
Q. 3 If area bounded by the curve $y^{2}=4 \mathrm{ax}$ and $y=m x$ is $a^{2} / 3$, then the value of m is-
(A) 2
(B) -2
(C) $1 / 2$
(D) none of these
Q. 4 Area bounded by the curve $y=x \sin x$ and x-axis between $x=0$ and $x=2 \pi$ is
(A) 2
(B) 3π
(C) 4π
(D) none of these.
Q. 5 The area of the region bounded by $y=|x-1|$ and $y=1$ is-
(A) 1
(B) 2
(C) $1 / 2$
(D) none of these.
Q. 6 The area of the figure bounded by the curves $y=|x-1|$ and $y=3-|x|$ is-
(A) 2
(B) 3
(C) 4
(D) 1

Statement type Questions

Each of the questions given below consists of Statement-I (Assertion) and Statement-II (Reason). Use the following key to choose the appropriate answer.
(A) If both Statement-I, Statement-II are true, and Statement-II is the correct explanation of Statement-I.
(B) If both Statement-I and Statement-II are true but Statement-II is not the correct explanation of Statement-I
(C) If Statement-I is true but Statement-II is false
(D) If Statement-I is false but Statement-II is true.
Q. 7 Statement-I: Area common to the curve $y=\sqrt{x}$ and $x=\sqrt{y}$ is $1 / 3$ sq. units

Statement-II: Area $=\int_{a}^{b}(g(x)-f(x)) d x$.

Q. 8 Statement-I: Let the area bounded by the curve $y=f(x), x$-axis from $x=1$ to $x=a, a>1$ be $3 a^{2}-4 a+1$ sq. units then $f(x)=6 x-4$.
Statement-II:
$F(a)=$ Area $=\int_{1}^{a} f(x) d x \Rightarrow f(a)=F^{\prime}(a)$
Q. 9 Statement-I: The area bounded by the curves $\mathrm{y}=\sin ^{-1} \mathrm{x}, \mathrm{y}=\cos ^{-1} \mathrm{x}$ and x -axis is $\sqrt{2}-1$.

Statement-II:

$$
\int_{0}^{1 / \sqrt{2}} \sin ^{-1} x d x+\int_{1 / \sqrt{2}}^{1}\left(\frac{\pi}{2}-\sin ^{-1} x\right) d x=\sqrt{2}-1
$$

\rightarrow Passage Based Questions

Consider the parabola $y=x^{2}+1$ and the line $x+y=3$

The line cuts the parabola at A and B. Let the abscissa of A and B be α and β.
Q. 10 The values of $\alpha+\beta$ and $\alpha \beta$ must be respectively
(A) 1 and 2
(B) 2 and 1
(C) -1 and -2
(D) None of these.
Q. 11 The area bounded between the parabola and the line in terms of α and β must be
(A) $|\alpha-\beta|\left|\frac{(\alpha+\beta)^{2}-\alpha \beta}{3}+\frac{\alpha+\beta}{2}-2\right|$
(B) $|\alpha-\beta|\left|\frac{\alpha^{2}+\beta^{2}}{3}+\frac{\alpha+\beta}{2}-2\right|$
(C) $|\alpha-\beta|\left|2-(\alpha+\beta)-\left(\alpha^{2}+\beta^{2}\right)\right|$
(D) None of these.
Q. 12 The area bounded between the parabola and the line must be
(A) 2 sq. units
(B) $\frac{35}{6}$ sq. units
(C) $9 / 2$ sq. units
(D) None of these
Q. 13 Area of the region bounded by the curve $y=x^{2}$, $y=\left|2-x^{2}\right|$ and $y=2$, which lies to the right of the line $x=1$, is equal to
(A) $(20+12 \sqrt{2}) / \sqrt{3}$
(B) $(20+12 \sqrt{2}) / 3$
(C) $(20-12 \sqrt{2}) / \sqrt{3}$
(D) $(20-12 \sqrt{2}) / 3$
Q. 14 Area bounded by the curves $x=-4 y^{2}$ and $\mathrm{x}=1-5 \mathrm{y}^{2}$ is :
(A) $3 / 4$
(B) $4 / 3$
(C) 4
(D) 3
Q. 15 Area bounded by the curves $\mathrm{y}=\mathrm{x}-1, \mathrm{y}$-axis, and $y=\left[\left(x^{2}+128\right) / 64\right], x \in(0,8)$ above the x -axis, [.] = G.I.F., is equal to
(A) 2
(B) 4
(C) 8
(D) None
Q. 16 Let $f(x)=\min \{x+1, \sqrt{1-x}\}$. Then area bounded by $y=f(x)$ and x - axis is
(A) $11 / 6$
(B) $5 / 6$
(C) $7 / 6$
(D) $1 / 6$
Q. 17 Area bounded by the curve $x y^{2}=a^{2}(a-x)$ and y-axis is
$(\because a>0)$
(A) $\pi a^{2} / 2$
(B) $\pi \mathrm{a}^{2}$
(C) $3 \pi a^{2}$
(D) $3 \pi a^{2} / 2$

(Question asked in previous AIEEE and IIT-JEE)

SECTION -A

Q. 1 If the area bounded by the x-axis, curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and the lines $\mathrm{x}=1, \mathrm{x}=\mathrm{b}$ is equal to $\sqrt{b^{2}+1}-\sqrt{2}$ for all $b>1$, then $f(x)$ is-
[AIEEE-2002]
(A) $\sqrt{(x-1)}$
(B) $\sqrt{(\mathrm{x}+1)}$
(C) $\sqrt{\left(x^{2}+1\right)}$
(D) $\frac{x}{\sqrt{1+x^{2}}}$
Q. 2 The area of the region bounded by the curves $y=|x-1|$ and $y=3-|x|$ is-
[AIEEE-2003]
(A) 6 sq. units
(B) 2 sq. units
(C) 3 sq. units
(D) 4 sq. units
Q. 3 The area of the region bounded by the curves $\mathrm{y}=|\mathrm{x}-2|, \mathrm{x}=1, \mathrm{x}=3$ and the x - axis is-
[AIEEE-2004]
(A) 1
(B) 2
(C) 3
(D) 4
Q. 4 Area of the greatest rectangle that can be inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is-
[AIEEE-2005]
(A) 2 ab
(B) ab
(C) $\sqrt{\mathrm{ab}}$
(D) $\frac{\mathrm{a}}{\mathrm{b}}$
Q. 5 The area enclosed between the curve $y=\log _{e}(x+e)$ and the coordinate axes is-
[AIEEE-2005]
(A) 1
(B) 2
(C) 3
(D) 4
Q. 6 The parabolas $y^{2}=4 x$ and $x^{2}=4 y$ divide the square region bounded by the lines $x=4, y=4$ and the coordinate axes. If $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$ are respectively the areas of these parts numbered from top to bottom; then $S_{1}: S_{2}: S_{3}$ is-
[AIEEE-2005]
(A) $1: 2: 1$
(B) $1: 2: 3$
(C) $2: 1: 2$
(D) $1: 1: 1$
Q. 7 Let $f(x)$ be a non-negative continuous function such that the area bounded by the curve $y=f(x)$, x-axis and the ordinates $x=\frac{\pi}{4}$ and $x=\beta>\frac{\pi}{4}$ is $\left(\beta \sin \beta+\frac{\pi}{4} \cos \beta+\sqrt{2} \beta\right)$. Then $\mathrm{f}\left(\frac{\pi}{2}\right)$ is-
[AIEEE-2005]
(A) $\left(\frac{\pi}{4}+\sqrt{2}-1\right)$
(B) $\left(\frac{\pi}{4}-\sqrt{2}+1\right)$
(C) $\left(1-\frac{\pi}{4}-\sqrt{2}\right)$
(D) $\left(1-\frac{\pi}{4}+\sqrt{2}\right)$
Q. 8 The area enclosed between the curves $y^{2}=x$ and $y=|x|$ is
[AIEEE-2007]
(A) $\frac{2}{3}$
(B) 1
(C) $\frac{1}{6}$
(D) $\frac{1}{3}$
Q. 9 The area of the plane region bounded by the curves $x+2 y^{2}=0$ and $x+3 y^{2}=1$ is equal to-
[AIEEE-2008]
(A) $\frac{1}{3}$
(B) $\frac{2}{3}$
(C) $\frac{4}{3}$
(D) $\frac{5}{3}$
Q. 10 The area of the region bounded by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the $x-a x i s$ is -
[AIEEE-2009]
(A) 3
(B) 6
(C) 9
(D) 12
Q. 11 The area bounded by the curves $\mathrm{y}=\cos \mathrm{x}$ and $\mathrm{y}=\sin \mathrm{x}$ between the ordinates $\mathrm{x}=0$ and $x=\frac{3 \pi}{2}$ is -
[AIEEE-2010]
(A) $4 \sqrt{2}-2$
(B) $4 \sqrt{2}+2$
(C) $4 \sqrt{2}-1$
(D) $4 \sqrt{2}+1$
Q. 12 The area of the region enclosed by the curves $y=x, x=e, y=1 / x$ and the positive x-axis is :
[AIEEE-2011]
[IIT Scr.2003]
(A) $1 / 2$ square units
(B) 1 square units
(C) $3 / 2$ square units
(D) $5 / 2$ square units
Q. 13 The area bounded by the curves $y^{2}=4 x$ and $x^{2}=4 y$ is -
[AIEEE-2011]
(A) $\frac{32}{3}$
(B) $\frac{16}{3}$
(C) $\frac{8}{3}$
(D) 0
Q. 14 The area bounded between the parabolas $x^{2}=\frac{y}{4}$ and $x^{2}=9 y$, and the straight line $y=2$ is :
[AIEEE-2012]
(A) $\frac{10 \sqrt{2}}{3}$
(B) $\frac{20 \sqrt{2}}{3}$
(C) $10 \sqrt{2}$
(D) $20 \sqrt{2}$
Q. 15 The area (in square units) bounded by the curves $y=\sqrt{x}, 2 y-x+3=0, x$-axis, and lying in the first quadrant is -
[JEE Main - 2013]
(A) 18
(B) $\frac{27}{4}$
(C) 9
(D) 36

SECTION-B

Q. 1 The area of the region bounded by $y=|x-1|$ and $y=1$ is
[IIT -1993]
(A) 1
(B) 2
(C) $1 / 2$
(D) None of these
Q. 2 The slope of the tangent to the curve $y=f(x)$ at a point (x, y) is $2 x+1$ and the curve passes through $(1,2)$. The area of the region bounded by the curve, the x - axis and the line $x=1$ is-
[IIT- 1995]
(A) $5 / 3$ units
(B) $5 / 6$ units
(C) $6 / 5$ units
(D) 6 units
Q. 3 The area bounded by the curves $y=|x|-1$ and $y=-|x|+1$ is-
[IIT Scr.2002]
(A) 1
(B) 2
(C) $2 \sqrt{2}$
(D) 4
Q. 4 Area of the region bounded by $y=\sqrt{x}$, $x=2 y+3 \& x$-axis lying in $1^{\text {st }}$ quadrant is-
(A) $2 \sqrt{3}$
(B) 18
(C) 9
(D) $34 / 3$
Q. 5 If area bounded by the curves $x=a y^{2}$ and $y=a x^{2}$ is 1 , then a equals-
[IIT Scr.2004]
(A) $\frac{1}{\sqrt{3}}$
(B) $\frac{1}{3}$
(C) $\frac{1}{2}$
(D) 3
Q. 6 Find the area between the curves $y=(x-1)^{2}$, $y=(x+1)^{2}$ and $y=\frac{1}{4}$
[IIT Scr.2005]
(A) $\frac{1}{3}$
(B) $\frac{2}{3}$
(C) $\frac{4}{3}$
(D) $\frac{1}{6}$
Q. 7 Area of the region bounded by the curve $y=e^{x}$ and lines $x=0$ and $y=e$ is-
[IIT- 2009]
(A) $\mathrm{e}-1$
(B) $\int_{1}^{\mathrm{e}} \ln (\mathrm{e}+1-\mathrm{y}) \mathrm{dy}$
(C) $e-\int_{0}^{1} e^{x} d x$
(D) $\int_{1}^{\mathrm{e}} \ell$ ny dy
Q. 8 Let the straight line $x=b$ divide the area enclosed by $y=(1-x)^{2}, y=0$, and $x=0$ into two parts $\mathrm{R}_{1}(0 \leq x \leq b)$ and $\mathrm{R}_{2}(b \leq x \leq 1)$ such that $\mathrm{R}_{1}-\mathrm{R}_{2}=\frac{1}{4}$. Then b equals
[IIT- 2011]
(A) $\frac{3}{4}$
(B) $\frac{1}{2}$
(C) $\frac{1}{3}$
(D) $\frac{1}{4}$
Q. 9 The area enclosed by the curves $y=\sin x+\cos x$ and $y=|\cos x-\sin x|$ over the interval $\left[0, \frac{\pi}{2}\right]$ is -
[JEE - Advance 2013]
(A) $4(\sqrt{2}-1)$
(B) $2 \sqrt{2}(\sqrt{2}-1)(\mathrm{C})$
$2(\sqrt{2}+1)$
(D) $2 \sqrt{2}(\sqrt{2}+1)$

LEVEL- 1

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
Ans.	A	B	D	B	B	C	A	B	C	A	B	A	C	A	A	B	A	C	C	A
Q.No.	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$	$\mathbf{3 6}$	$\mathbf{3 7}$	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{4 0}$
Ans.	A	D	B	D	B	C	B	D	B	C	B	D	C	C	A	D	A	B	C	B
Q.No.	$\mathbf{4 1}$	$\mathbf{4 2}$	$\mathbf{4 3}$	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{4 6}$	$\mathbf{4 7}$	$\mathbf{4 8}$	$\mathbf{4 9}$	$\mathbf{5 0}$	$\mathbf{5 1}$	$\mathbf{5 2}$	$\mathbf{5 3}$	$\mathbf{5 4}$	$\mathbf{5 5}$	$\mathbf{5 6}$	$\mathbf{5 7}$			
	Ans.	D	B	B	D	D	D	C	B	A			A	D	C	A	C	A	A	

LEVEL- 2

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
Ans.	B	A	A	C	A	D	C	D	C	B	C	D	A	A	D

LEVEL- 3

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$
Ans.	C	C	A	C	A	C	A	A	A	C	A	C	D	B	B	C	B

LEVEL- 4

SECTION-A

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
Ans.	D	D	A	A	A	D	D	C	C	C	A	C	B	B	C

SECTION-B

Area $=\frac{1}{2} \cdot 2 \cdot 1=1$
2.[B] $\frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x}+1 \Rightarrow \begin{aligned} & \mathrm{y}=\mathrm{x}^{2}+\mathrm{x}+\mathrm{c} \\ & \mathrm{c}=0\end{aligned}$

It passes through (1, 2)

So, Area $=\int_{0}^{1} x^{2}+x d x=\left(\frac{x^{3}}{3}+\frac{x^{2}}{2}\right)_{0}^{1}=\frac{5}{6}$.

Area of square $=(\sqrt{2})^{2}=2$
4.[C]

Area $=\int_{0}^{3}(2 y+3)-y^{2} d y=9$

Area $=\int_{0}^{1 / \mathrm{a}} \sqrt{\frac{\mathrm{x}}{\mathrm{a}}}-\mathrm{ax}^{2} \mathrm{dx}=1 \Rightarrow \mathrm{a}=\frac{1}{\sqrt{3}}$
6.[A]

Area $=2 \cdot \int_{1 / 4}^{1}(\sqrt{\mathrm{y}}+1) \vDash \frac{1}{3}$
7.[C]

Area $=\int_{0}^{1} 1-e^{\mathrm{x}} \mathrm{dx}=\int_{1}^{\mathrm{e}} \log \mathrm{y} d \mathrm{~d}$
$=\int_{1}^{e} \log (1+e-y) d y$

$\mathrm{R}_{1}-\mathrm{R}_{2}=\frac{1}{4}$

$$
\begin{aligned}
& \int_{0}^{\mathrm{b}}(\mathrm{x}-1)^{2} \mathrm{dx}-\int_{\mathrm{b}}^{1}(\mathrm{x}-1)^{2} \mathrm{dx}=\frac{1}{4} \\
& \Rightarrow\left(\frac{(\mathrm{x}-1)^{3}}{3}\right)_{0}^{\mathrm{b}}-\left(\frac{(\mathrm{x}-1)^{3}}{3}\right)_{\mathrm{b}}^{1}=\frac{1}{4} \\
& \Rightarrow \frac{(\mathrm{~b}-1)^{3}}{3}+\frac{1}{3}+\frac{(\mathrm{b}-1)^{3}}{3}=\frac{1}{4} \\
& \Rightarrow \frac{2}{3}(\mathrm{~b}-1)^{3}=\frac{-1}{12} \Rightarrow(\mathrm{~b}-1)^{3}=\frac{-1}{8} \\
& \Rightarrow \mathrm{~b}-1=\frac{-1}{2} \Rightarrow \mathrm{~b}=\frac{1}{2}
\end{aligned}
$$

9.[B] Area $=\int_{0}^{\pi / 2}((\sin x+\cos x)-|\cos x-\sin x|) d x$

$$
\begin{aligned}
& =\int_{0}^{\pi / 2}(\sin x+\cos x) d x-\int_{0}^{\pi / 4}(\cos x-\sin x) d x- \\
& \int_{\pi / 4}^{\pi / 2}(\sin x-\cos x) d x \\
& =[-\cos x+\sin x]_{0}^{\pi / 2}-[\sin x+\cos x]_{0}^{\pi / 4}-[- \\
& \cos x-\sin x]_{\pi / 2}^{\pi / 4} \\
& =(1+1)-(\sqrt{2}-1)-(-1+\sqrt{2}) \\
& =2-\sqrt{2}+1+1-\sqrt{2} \\
& =4-2 \sqrt{2} \\
& =2 \sqrt{2}(\sqrt{2}-1)
\end{aligned}
$$

