MATHEMATICS

Class-X

Topic-6 CIRCLES

INDEX		
S. No.	Topic	Page No.
1.	Theory	$1-9$
2.	Exercise (Board Level)	$10-12$
3.	Previous Year Problems	$12-14$
4.	Exercise-1	$15-17$
5.	Exercise-2	$17-19$
6.	Exercise-3	$19-22$
7.	Answer Key	23

CH-6

CIRCLES

A. CIRCLES

(a) Secant and Tangent

A circle is the locus of a point which moves in plane in such a way that its distance from a fixed point remains constant.
Let us consider a circle and a line $A B$. There can be three different situation as shown in figure.

In figure (i) the line $A B$ and the circle have no common point.
In figure (ii) the line $A B$ intersects the circle at point P and Q.
Therefore the line $A B$ and the circle have two common points P and Q. The line $A B$ is called secant of the circle.
In figure (iii) the line touches the circle at point P. Therefore the line $A B$ and the circle have only one common point P. The line $A B$ is called tangent of the circle.
Secant : A line which intersects a circle at two distinct points is called the secant of the circle.
Tangent : A line which meets a circle at only one point is called the tangent to the circle. The point a which the line meets the circle is called the point of contact.
There is only one tangent passing through a point lying on the circle.
Theorem 1
Statement : A tangent to a circle is perpendicular to the radius through the point of contact.

Given : A circle $C(O, r)$ and a tangent $A B$ at a point P.
To prove : $O P \perp A B$.
Construction : Take any point Q, other than P on the tangent $A B$. Join $O Q$. Suppose $O Q$ meets the circle at R.

Proof : Among all line segments joining the point O to a point on $A B$, the shortest one is perpendicular to $A B$. So, to prove that $O P \perp A B$, it is sufficient to prove that $O P$ is shorter than any other segment joining O to any point of $A B$.

Clearly, OP = OR (Radius)
Now, $\mathrm{OQ}=\mathrm{OR}+\mathrm{RQ} \quad \Rightarrow \quad \mathrm{OQ}>\mathrm{OR} \quad \Rightarrow \quad \mathrm{OQ}>\mathrm{OP} \quad(\because \mathrm{OP}=\mathrm{OR})$
Thus, $O P$ is shorter than any other segment joining O to any point of $A B$. Hence, $O P \perp A B$.

Theorem 2 (Convers of Theorem 1)

Statement : A line drawn through the end of a radius and perpendicular to it is a tangent to the circle.
Given : $O P$ is a radius of a circle with center O. $A B$ is a line through P and $O P \perp A B$.
To prove : $A B$ is tangent to the circle at point P.
Construction : Take a point R other than P on $A B$. Join $O R$ which intersect the circle at Q.
Proof: $\mathrm{OP} \perp \mathrm{AB}$ (given)
$\therefore \quad \mathrm{OP}$ is the shortest line segment drawn from point O to AB .
$\Rightarrow \quad \mathrm{OP}<\mathrm{OR}$
$\Rightarrow \quad \mathrm{OR}>\mathrm{OP}$
$\therefore \quad \mathrm{R}$ lies outside the circle.
Thus every point on $A B$, other then P, lies outside the circle.

This shows that $A B$ meets the circle only at point P.
Hence, $A B$ is the tangent to the circle at point P.
(b) Number of tangents from a point on a circle

(i)

(ii)

(iii)
(a) If a point is inside the circle then it is not possible to draw any tangent to the circel through this point as shown in figure (i).
(b) If a point is on the circle then only one tangent to the circle through this point can be drawn as shown in figure (ii).
(c) If a point is outside the circle then exactly two tangents can be drawn to the circle through this point as shown in figure (iii).
PA and PB are the lengths of tangents drawn from P to the circle.
Theorem 3
Statement : Lengths of two tangents drawn from an external point to a circle are equal.

Given: $A P$ and $A Q$ are two tangents drawn from a point A to a circle $C(O, r)$.
To prove : $A P=A Q$.
Construction : Join OP, OQ and OA.
Proof : In $\triangle A O Q$ and $\triangle A P O$
$\angle O Q A=\angle O P A$
[Tangent at any point of a circle is perp. to radius through the point of contact]
$A O=A O$
[Common]
[Radius]

So, by R.H.S. criterion of congruency $\triangle A O Q \cong \triangle A O P$
$\therefore \quad A Q=A P$
[By CPCT].
Hence Proved.

RESULTS:

(i) If two tangents are drawn to a circle from an external point, then they subtend equal angles at the centre $\angle A O Q=\angle A O P[B y C P C T]$
(ii) If two tangents are drawn to a circle from an external point, they are equally inclined to the segment, joining the centre to that point $\angle \mathrm{OAQ}=\angle \mathrm{OAP}$ [By CPCT]

(c) Common tangents to two circles

Definition : A line which touches the two given circles is called common tangent to the two circles. Let $\mathbf{C}\left(\mathbf{O}_{1}, r_{1}\right), \mathbf{C}\left(\mathbf{O}_{2}, r_{2}\right)$ be two given circles. Let the distance between centres \mathbf{O}_{1} and \mathbf{O}_{2} be \mathbf{d} i.e., $\mathrm{O}_{\mathbf{1}} \mathrm{O}_{\mathbf{2}}=\mathrm{d}$.

Case 1

Fig.(i)
In fig. (i) $\mathbf{d}>\mathbf{r}_{1}+\mathbf{r}_{\mathbf{2}}$ i.e. two circles do not intersect.
In this case, four common tangents are possible.
The tangent lines I and \mathbf{m} are called direct common tangents and the tangent lines \mathbf{p} and \mathbf{q} are called indirect (transverse) common tangents.

Case 2

Fig.(ii)
In fig. (ii), $\mathbf{d}=\mathbf{r}_{1} \mathbf{+} \mathbf{r}_{\mathbf{2}}$. In this case, two circles touch externally and there are three common tangents.

Case 3

Fig.(iii)

In fig.(iii) $\mathbf{d}<\mathbf{r}_{1}+\mathbf{r}_{\mathbf{2}}$. In this case two circles intersect in two distinct points and there are only two common tangents.

Case 4

Fig.(iv)
In fig. (iv), $d=r_{1}-r_{2}\left(r_{1}>r_{2}\right)$, in this case, two circles touch internally and there is only one common tangent.
Case 5

Fig.(v)
In fig. (v), the circle $\mathbf{C}\left(\mathbf{O}_{2}, r_{2}\right)$ lies wholly in the circle $\mathbf{C}\left(\mathbf{O}_{1}, r_{1}\right)$ and there is no common tangent.

Solved Examples

Example. 1

A point M is 26 cm away from the centre of a circle and the length of tangent drawn from M to the circle is 24 cm . Find the radius of the circle.
Sol. Given: $\mathrm{OM}=26 \mathrm{~cm}, \mathrm{MN}=24 \mathrm{~cm}$
We know that the tangent at any point to a circle is perpendicular to the radius through point of contact.

$\therefore \quad$ ONM is a right angled Δ
$\mathrm{OM}^{2}=\mathrm{ON}^{2}+\mathrm{MN}^{2} \quad$ (By Pythagoras theorem)
$\Rightarrow \quad(26)^{2}=\mathrm{ON}^{2}+(24)^{2}$
$\Rightarrow \quad \mathrm{ON}^{2}=(26)^{2}-(24)^{2}$
$\Rightarrow \quad \mathrm{ON}^{2}=676-576=100$
$\therefore \quad \mathrm{ON}=10 \mathrm{~cm}$.
Hence, radius of circle is 10 cm .

Example. 2

In figure $A M$ and $B M$ are the tangents to a circle with centre O. Show that the point O, A, M, B are concyclic.

Sol. Given : AM and BM are the tangents to a circle with centre O .

To prove : $\mathrm{O}, \mathrm{A}, \mathrm{M}$ and B are concyclic, i.e., AOBM is a cyclic quadrilateral.
Proof: $\mathrm{OA} \perp \mathrm{AM}$ and $\mathrm{OB} \perp \mathrm{BM}(\because \mathrm{A}$ tangent is perpendicular to radius at the point of contact).
i.e., $\angle \mathrm{OAM}=90^{\circ}$ and $\angle \mathrm{OBM}=90^{\circ}$

In quadrilateral AOBM
$\angle \mathrm{OAM}+\angle \mathrm{OBM}=90^{\circ}+90^{\circ}=180^{\circ}$
Thus, the sum of opposite angles of quadrilateral AOBM is 180°.
\therefore AOBM is a cyclic quadrilateral.

Example. 3

Two tangents PA and PB are drawn to a circle with centre O from an external point P . Prove that $\angle A P B=2 \angle O A B$.

Sol. Given : PA and PB are two tangents drawn from external point P to a circle with centre O .
To prove : $\angle A P B=2 \angle O A B$.
Proof : $\mathrm{OA} \perp \mathrm{PA}(\therefore$ A tangent to a circle is perpendicular to radius at the point of contact).
$\therefore \quad \angle \mathrm{OAP}=90^{\circ}$

In $\triangle \mathrm{PAB}$

$$
\begin{array}{lll}
& \mathrm{PA}=\mathrm{PB} \quad(\because \text { Tangents drawn from an external point to a circle are equal }) \\
\Rightarrow & \angle \mathrm{PAB}=\angle \mathrm{PBA}(\text { In a } \triangle, \text { angles opposite to equal sides are equal }) \\
& \angle \mathrm{PAB}+\angle \mathrm{PBA}+\angle \mathrm{APB}=180^{\circ} \quad(\text { Angle sum property }) \\
& \angle \mathrm{PAB}+\angle \mathrm{PAB}+\angle \mathrm{APB}=180^{\circ} \quad(\because \angle \mathrm{PAB}=\angle \mathrm{PBA}) \\
& 2 \angle \mathrm{PAB}=180^{\circ}-\angle \mathrm{APB} . \\
\therefore & \angle \mathrm{PAB}=90^{\circ}-\frac{1}{2} \angle \mathrm{APB} & \ldots \text { (i) } \tag{i}\\
\text { Now } & \angle \mathrm{OAP}=90^{\circ} \\
\Rightarrow & \angle \mathrm{OAB}+\angle \mathrm{PAB}=90^{\circ} \\
\Rightarrow & \angle \mathrm{OAB}+90^{\circ}-\frac{1}{2} \angle \mathrm{APB}=90^{\circ} \quad(\text { using (i) }) \\
\Rightarrow & \angle \mathrm{OAB}=\frac{1}{2} \angle \mathrm{APB} \quad \therefore \quad \angle \mathrm{APB}=2 \angle \mathrm{OAB} .
\end{array}
$$

Example. 4

If the radii of the two concentric circles are 15 cm and 17 cm , show that the length of the chord of one circle which is tangent to other circle is 16 cm .
Sol. Given : $\mathrm{OA}=17 \mathrm{~cm}, \mathrm{OC}=15 \mathrm{~cm}$ (given)
$A B$ is a chord of larger circle which is the tangent for smaller circle at point C.
$\therefore \mathrm{OC} \perp \mathrm{AB}(\because \mathrm{A}$ tangent is perpendicular to radius at the point of contact).

In $\triangle \mathrm{AOC}$

$$
\mathrm{OA}^{2}=\mathrm{OC}^{2}+\mathrm{AC}^{2}
$$

$$
\begin{array}{ll}
\Rightarrow & 17^{2}=15^{2}+\mathrm{AC}^{2} \\
\Rightarrow & \mathrm{AC}^{2}=17^{2}-15^{2} \\
\Rightarrow & \mathrm{AC}^{2}=289-225=64 \\
\therefore & \mathrm{AC}=8 \mathrm{~cm} .
\end{array}
$$

We know that perpendicular drawn from centre of a chord bisects the chord.
So, $\quad A B=2 A C=2 \times 8=16 \mathrm{~cm}$. Ans.

Example. 5

If all the sides of a parallelogram touches a circle, show that the parallelogram is a rhombus.
Sol. Given : Sides $A B, B C, C D$ and $D A$ of a $\|^{g m} A B C D$ touch a circle at P, Q, R and S respectively. To prove : $\|^{g m} A B C D$ is a rhombus.

Proof : AP = AS
$B P=B Q$
$C R=C Q$
$D R=D S$
[Tangents drawn from an external point to a circle are equal]
Adding (i), (ii), (iii) and (iv), we get

```
\(\Rightarrow \quad A P+B P+C R+D R=A S+B Q+C Q+D S\)
\(\Rightarrow \quad(A P+B P)+(C R+D R)=(A S+D S)+(B Q+C Q)\)
\(\Rightarrow \quad A B+C D=A D+B C\)
\(\Rightarrow \quad A B+A B=A D+A D\)
[In a || \({ }^{m m} A B C D\), opposite sides are equal]
\(\Rightarrow \quad 2 A B=2 A D\) or \(A B=A D\)
But \(\quad A B=C D\) and \(A D=B C\) [Opposite sides of a || gm]
\(\therefore \quad A B=B C=C D=D A\)
Hence, \(\|^{g m} A B C D\) is a rhombus.
```


Example. 6

A circle touches the side $B C$ of a $\triangle A B C$ at P and touches $A B$ and $A C$ when produced at Q and R respectively as shown in figure, Show that $A Q=\frac{1}{2}$ (Perimeter of $\triangle A B C$).
Sol. Given : A circle is touching side $B C$ of $\triangle A B C$ at P and touching $A B$ and $A C$ when produced at Q and R respectively.

To prove : $\quad A Q=\frac{1}{2}$ (perimeter of $\triangle A B C$)
Proof :

$$
\begin{align*}
& A Q=A R \tag{i}\\
& B Q=B P \tag{ii}
\end{align*}
$$

$C P=C R$
[Tangents drawn from an external point to a circle are equal]
Now, perimeter of $\triangle A B C=A B+B C+C A$

$$
\begin{array}{ll}
=A B+B P+P C+C A & \\
=(A B+B Q)+(C R+C A) & \\
=A Q+A R \text { From (ii) and (iii)] } \\
=A Q+A Q &
\end{array}
$$

$A Q=\frac{1}{2}$ (perimeter of $\left.\triangle A B C\right)$.

Example. 7

Prove that the tangents at the extremities of any chord make equal angles with the chord.
Sol. Let $A B$ be a chord of a circle with centre O, and let $A P$ and $B P$ be the tangents at A and B respectively. Suppose, the tangents meet at point P. Join OP. Suppose OP meets $A B$ at C.

We have to prove that

$$
\angle \mathrm{PAC}=\angle \mathrm{PBC}
$$

In triangles PCA and PCB

$$
\begin{array}{ll}
\mathrm{PA}=\mathrm{PB} & {[\therefore \text { Tangent from an external point are equal }]} \\
\angle \mathrm{APC}=\angle \mathrm{BPC} & {[\because \mathrm{PA} \text { and } \mathrm{PB} \text { are equally inclined to } \mathrm{OP}]}
\end{array}
$$

And $\mathrm{PC}=\mathrm{PC}$ [Common]
So, by SAS criteria of congruence

$$
\triangle \mathrm{PAC} \cong \triangle \mathrm{PBC} \quad \Rightarrow \quad \angle \mathrm{PAC}=\angle \mathrm{PBC} \quad[\mathrm{By} \mathrm{CPCT}]
$$

Example. 8

Prove that the segment joining the points of contact of two parallel tangents passes through the centre.
Sol. Let PAQ and RBS be two parallel tangents to a circle with centre O. Join OA and OB. Draw OC\|PQ

$$
\begin{aligned}
& \text { Now, } \mathrm{PA} \| \mathrm{CO} \\
& \Rightarrow \quad \angle \mathrm{PAO}+\angle \mathrm{COA}=180^{\circ} \\
& \Rightarrow \quad 90^{\circ}+\angle \mathrm{COA}=180^{\circ} \\
& \Rightarrow \quad \angle \mathrm{COM}=90^{\circ} \\
& \text { Similarly of co-interior angle is } \left.180^{\circ}\right] \\
& \therefore \quad \angle \mathrm{COB}=90^{\circ} \\
& \text { Hence, } \mathrm{AOB} \text { is a straight line passing through } \mathrm{O} .
\end{aligned}
$$

Example. 9

Two circles touch externally at P and a common tangent touches them at A and B. Prove that
(i) the common tangent at P bisects $A B$.
(ii) $\quad A B$ subtends a right angle at P.

Sol. Let PT be the common tangent at any point P. Since the tangent to a circle from an external point are equal,

$$
\therefore \quad \mathrm{TA}=\mathrm{TP}, \mathrm{~TB}=\mathrm{TP}
$$

$\therefore \quad \mathrm{TA}=\mathrm{TB}$
i.e. $\quad P T$ bisects $A B$ at T
$\mathrm{TA}=\mathrm{TP}$ gives $\angle \mathrm{TAP}=\angle \mathrm{TPA}$
(from $\triangle \mathrm{PAT}$)
$\mathrm{TB}=\mathrm{TP}$ gives $\angle \mathrm{TBP}=\angle \mathrm{TPB}$
[from $\triangle \mathrm{PBT}$]
$\therefore \quad \angle \mathrm{TAP}+\angle \mathrm{TBP}=\angle \mathrm{TPA}+\angle \mathrm{TPB}=\angle \mathrm{APB}$
$\Rightarrow \quad \angle \mathrm{TAP}+\angle \mathrm{TBP}+\angle \mathrm{APB}=2 \angle \mathrm{APB}$
$\Rightarrow \quad 2 \angle \mathrm{APB}=180^{\circ} \quad$ [sum of $\angle \mathrm{s}$ of a $\triangle=180^{\circ}$]
$\Rightarrow \quad \angle \mathrm{APB}=90^{\circ}$.

Hence proved

Example. 10
In a right triangle $A B C$, the perpendicular $B D$ on the hypotenuse $A C$ is drawn. Prove that
(i)
$A C \times A D=A B^{2}$
(ii) $\mathrm{AC} \times \mathrm{CD}=\mathrm{BC}^{2}$

Sol. We draw a circle with $B C$ as diameter. Since $\angle B D C=90^{\circ}$.

$\therefore \quad$ The circle on $B C$ as diameter will pass through D. Again
$\therefore \quad B C$ is a diameter and $A B \perp B C$.
$\therefore \quad A B$ is a tangent to the circle at B.
Since $A B$ is a tangent and $A D C$ is a secant to the circle.
$\therefore \quad A C \times A D=A B^{2}$ This proves (i)
Again $\quad A C \times C D=A C \times(A C-A D)=A C^{2}-A C \times A D$

$$
\begin{array}{ll}
=A C^{2}-A B^{2} & {[\text { Using (i)] }} \\
=B C^{2} & {[\triangle A B C \text { is a right triangle }]}
\end{array}
$$

Hence, $A C \times C D=B C^{2}$. This proves (ii).

Example. 11

Two circles of radii R and r touch each other externally and $P Q$ is the direct common tangent. Then show that $P Q^{2}=4 r R$
Sol. Draw $\mathrm{O}^{\prime} \mathrm{S} \| \mathrm{PQ}$,

$\therefore \mathrm{O}$ 'SPQ is rectangle
O'S=PQ, PS=QO'=r
OO' $=R+r$
OS=OP-PS=R-r
In Δ O'OS
$\left(O^{\prime} \mathrm{S}\right)^{2}=\left(\mathrm{OO}^{\prime}\right)^{2}-(\mathrm{OS})^{2}$
$P Q^{2}=(R+r)^{2}-(R-r)^{2}$
$P Q^{2}=R^{2}+r^{2}+2 R r-\left(R^{2}+r^{2}-2 R r\right)$
$P Q^{2}=R^{2}+r^{2}+2 R r-R^{2}-r^{2}+2 R r$
$P Q^{2}=4 r R$.

Check Your Level

1. A quadrilateral $P Q R S$ is drawn to circumscribe a circle. If $P Q=12 \mathrm{~cm}, Q R=15 \mathrm{~cm}$ and $R S=14 \mathrm{~cm}$ then find length of PS.
2. O is the centre of the circle. PA and PB are tangent. If $\angle \mathrm{PAB}=70^{\circ}$, then find $\angle \mathrm{APB}$.
3. Find the maximum number of common tangents that can be drawn to two circles that do not intersect each other.
4. A tangent is drawn to a circle from a point 17 cm away from its centre. If the length of the tangent is 15 cm then find the radius of the circle.
5. Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord to the larger circle which is a tangent to the smaller circle.

Answers

1. $\quad 11 \mathrm{~cm}$
2. 40°
3. 4
4. 8 cm
5. 8 cm

Exercise Board Level

TYPE（I）：VERY SHORT ANSWER TYPE QUESTIONS ：
1．In the figure，$A B$ is a chord of the circle and $A O C$ is its diameter such that $\angle A C B=50^{\circ}$ ．If $A T$ is the tangent to the circle at the point A ，then $\angle \mathrm{BAT}$ is equal to

2．In Figure，if $\angle A O B=125^{\circ}$ ，then $\angle C O D$ is equal to

3．If radii of two concentric circles are 4 cm and 5 cm ，then find the length of each chord of one circle which is tangent to the other circle．

4．In the figure，if O is the centre of a circle， PQ is a chord and the tangent PR at P makes an angle of 50° with PQ ，then find $\angle \mathrm{POQ}$ ．

5．If two tangents inclined at an angle 60° are drawn to a circle of radius 3 cm ，then find the length of each tangent．

6．In the figure，AT is a tangent to the circle with centre O such that $\mathrm{OT}=4 \mathrm{~cm}$ and $\angle \mathrm{OTA}=30^{\circ}$ ，then find AT．

7. In the figure, if $P Q R$ is the tangent to a circle at Q whose centre is $O, A B$ is a chord parallel to $P R$ and $\angle B Q R=70^{\circ}$, then find $\angle A Q B$.

TYPE (II) : SHORT ANSWER TYPE QUESTIONS :

8. Prove that the centre of a circle touching two intersecting lines lies on the angle bisector of the lines.
9. Two tangents PQ and PR are drawn from an external point to a circle with centre O. Prove that QORP is a cyclic quadrilateral.
10. If from an external point B of a circle with centre O, two tangents $B C$ and $B D$ are drawn such that $\angle D B C=120^{\circ}$, prove that $B C+B D=B O$, i.e., $B O=2 B C$.
11. In a right triangle $A B C$ in which $\angle B=90^{\circ}$, a circle is drawn with $A B$ as diameter intersecting the hypotenuse $A C$ and P. Prove that the tangent to the circle at P bisects $B C$.
12. In the figure, tangents $P Q$ and $P R$ are drawn to a circle such that $\angle R P Q=30^{\circ}$. A chord $R S$ is drawn parallel to the tangent $P Q$. Find the $\angle R Q S$.

13. In figure, common tangents $A B$ and $C D$ to two circles intersect at E. Prove that $A B=C D$.

14. Prove that the tangents drawn at the ends of a chord of a circle make equal angles with the chord.
15. Prove that a diameter $A B$ of a circle bisects all those chords which are parallel to the tangent at the point A.

TYPE (III) : LONG ANSWER TYPE QUESTIONS:
[03 MARK EACH]
16. Two circles with centres O and O ' of radii 3 cm and 4 cm , respectively intersect at two points P and Q such that OP and O'P are tangents to the two circles. Find the length of the common chord $P Q$.
17. If a hexagon $A B C D E F$ circumscribe a circle, prove that $A B+C D+E F=B C+D E+F A$.
18. If $A B$ is a chord of a circle with centre $O, A O C$ is a diameter and $A T$ is the tangent at A as shown in figure. Prove that $\angle B A T=\angle A C B$.

19. In the figure, the common tangent, $A B$ and $C D$ to two circles with centres O and O intersect at E. Prove that the points $\mathrm{O}, \mathrm{E}, \mathrm{O}$ ' are collinear.

TYPE (IV): VERY LONG ANSWER TYPE QUESTIONS
[04 MARK EACH]
20. A is a point at a distance 13 cm from the centre O of a circle of radius 5 cm . $A P$ and $A Q$ are the tangents to the circle at P and Q. If a tangent $B C$ is drawn at a point R lying on the minor arc $P Q$ to intersect $A P$ at B and $A Q$ at C, find the perimeter of the $\triangle A B C$
21. If an isosceles triangle $A B C$, in which $A B=A C=6 \mathrm{~cm}$, is inscribed in a circle of radius 9 cm , find the area of the triangle.
22. In the figure, from an external point P, a tangent $P T$ and a line segment $P A B$ is drawn to a circle with centre O. ON is perpendicular on the chord AB. Prove that :

(i)
PA. $\mathrm{PB}=\mathrm{PN}^{2}-\mathrm{AN}^{2}$
(ii) $\quad \mathrm{PN}^{2}-\mathrm{AN}^{2}=\mathrm{OP}^{2}-\mathrm{OT}^{2}$
(iii) $\quad \mathrm{PA} \cdot \mathrm{PB}=\mathrm{PT}^{2}$

Previous Year Problems

1. Prove that the parallelogram circumscribing a circle is a rhombus.
[2 MARKS/CBSE 10TH BOARD: 2013]
2. In Figure, a circle inscribed in triangle $A B C$ touches its sides $A B, B C$ and $A C$ at points D, E and F respectively. If $A B=12 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $A C=10 \mathrm{~cm}$, then find the lengths of $A D, B E$ and $C F$.
[2 MARKS/CBSE 10TH BOARD: 2013]

3. In Figure, PA and PB are two tangents drawn from an external point P to a circle with centre C and radius 4 cm . If $\mathrm{PA} \perp \mathrm{PB}$, then the length of each tangent is :
[1 MARK /CBSE 10TH BOARD: 2013]

(A) 3 cm
(B) 4 cm
(C) 5 cm
(D) 6 cm
4. In Figure a circle with centre O is inscribed in a quadrilateral $A B C D$ such that, it touches the sides $B C, A B, A D$ and $C D$ at points P, Q, R and S respectively, If $A B=29 \mathrm{~cm}, A D=23 \mathrm{~cm}, \angle B=90^{\circ}$ and $D S=5 \mathrm{~cm}$, then the radius of the circle (in cm .) is
[1 MARK /CBSE 10TH BOARD: 2013]

(A) 11
(B) 18
(C) 6
(D) 15
5. In Figure, I and m are two parallel tangents to a circle with centre O, touching the circle at A and B respectively. Another tangent at C intersects the line I at D and m at E. Prove that $\angle D O E=90^{\circ}$
[4 MARKS/CBSE 10TH BOARD: 2013, 2016]
6. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact
7. Two concentric circles are of radii 5 cm and 3 cm . Length of the chord of the larger circle (in cm), which touches the smaller circle is
[1 MARK /CBSE 10TH BOARD: 2013]
(A) 4
(B) 5
(C) 8
(D) 10
8. In Figure, a quadrilateral $A B C D$ is drawn to circumscribe a circle such that its sides $A B, B C, C D$ and $A D$ touch the circle at P, Q, R and S respectively. If $A B=x \mathrm{~cm}, B C=7 \mathrm{~cm}, C R=3 \mathrm{~cm}$ and $A S=5 \mathrm{~cm}$, find x.
[1 MARK /CBSE 10TH BOARD: 2013]

(A) 10
(B) 9
(C) 8
(D) 7
9. A quadrilateral is drawn to circumscribe a circle. Prove that the sums of opposite sides are equal.
[4 MARKS/CBSE 10TH BOARD: 2013, 2015, 2017]
10. In Figure, $X P$ and $X Q$ are two tangents to the circle with centre O, drawn from an external point X. $A R B$ is another tangent, touching the circle at R. Prove that $X A+A R=X B+B R$.
[2 MARKS/CBSE 10TH BOARD: 2014]

11. In Figure, PQ is a chord of a circle with centre O and PT is a tangent. If $\angle \mathrm{QPT}=60^{\circ}$, find $\angle \mathrm{PRQ}$.
[1 MARKS/CBSE 10TH BOARD: 2014]

12. In Figure, two tangents $R Q$ and $R P$ are drawn from an external point R to the circle with centre O. If $\angle P R Q=120^{\circ}$, then prove that $O R=P R+R Q$.
[2 MARKS/CBSE 10TH BOARD: 2014]

13. Prove that the tangent drawn at the mid-point of an arc of a circle is parallel to the chord joining the end points of the arc.
[2 MARKS/ CBSE 10TH BOARD: 2015]
14. In Figure, from an external point P , two tangents PT and PS are drawn to a circle with centre O and radius r. If $\mathrm{OP}=2 r$, show that $\angle \mathrm{OTS}=\angle \mathrm{OST}=30^{\circ}$.
[2 MARKS/ CBSE 10TH BOARD: 2015]

15. In the figure, two equal circles, with centres O and O^{\prime}, touch each other at $X . O O$ ' produced meets the circle with centre O^{\prime} at A. $A C$ is tangent to the circle with centre O, at the point C. $O^{\prime} D$ is perpendicular to $A C$. Find the value of $\frac{D^{\prime}}{C O}$.
[4 MARKS/ CBSE 10TH BOARD: 2015]

16. Prove that the lengths of the tangents drawn from an external point to a circle are equal.
[4 MARKS/CBSE 10TH BOARD: 2015, 2016, 2017]
17. If the angle between two tangents drawn from an external point P to a circle of radius a and centre O , is 60°, then find the length of OP .
[1 MARK/CBSE 10TH BOARD: 2017]
18. Prove that the tangents drawn at the end points of a chord of a circle make equal angles with the chord.
[2 MARKS/CBSE 10TH BOARD: 2017]

Exercise-1

SUBJECTIVE QUESTIONS

Subjective Easy, only learning value problems

Section (A) : Definition of Current, Current Densities, Drift

A-1. In figure, a circle touches all the four sides of a quadrilateral $A B C D$ with $A B=6 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $C D=4 \mathrm{~cm}$. Find $A D$.

A-2. In figure, if $\angle A T O=40^{\circ}$, find $\angle A O B$.

A-3. Find the length of tangent, drawn from a point 8 cm away from the centre of a circle of radius 6 cm .
A-4. Two circles touch each other externally, then find the number of common tangents to the circles.
A-5. $\quad A B C D$ is a quadrilateral such that $\angle D=90^{\circ}$. A circle $C(O, r)$ touches the sides $A B, B C, C D$ and $D A$ at P, Q, R and S respectively. If $B C=38 \mathrm{~cm}, C D=25 \mathrm{~cm}$ and $B P=27 \mathrm{~cm}$, find r.

A-6. $P Q R$ is a right angled triangle with $P Q=12 \mathrm{~cm}$ and $Q R=5 \mathrm{~cm}$. A circle with centre O and radius x is inscribed in PQR. Find the value of x.

A-7. From an external point P, two tangents $P A$ and $P B$ are drawn to the circle with centre O. Prove that $O P$ is the perpendicular bisector of $A B$.

A-8. Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that $\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}$.

A-9. A circle touches the sides of a quadrilateral $A B C D$ at P, Q, R, S respectively. Show that the angles subtended at the centre by a pair of opposite sides are supplementary.

A-10. In figure OP is equal to diameter of the circle. Prove that $A B P$ is an equilateral triangle.

A-11. The radius of the incircle of a triangle is 4 cm and the segments into which one side is divided by the point of contact are 6 cm and 8 cm . Determine the other two sides of the triangle.

A-12. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact. Using the above, do the following:

In figure, O is the centre of the two concentric circles. $A B$ is a chord of the larger circle touching the smaller circle at C. Prove that $A C=B C$.

A-13. In figure, $C P$ and $C Q$ are tangents from an external point C to a circle with centre O. $A B$ is another tangent which touches the circle at R. If $C P=11 \mathrm{~cm}$ and $B R=4 \mathrm{~cm}$, find the length of $B C$.

OBJECTIVE QUESTIONS

Single Choice Objective, straight concept/formula oriented

Section (A): Circles

A-1. The length of the tangent drawn from a point 8 cm away from the centre of a circle of radius 6 cm is
(A) $\sqrt{7} \mathrm{~cm}$
(B) $2 \sqrt{7} \mathrm{~cm}$
(C) 10 cm
(D) 5 cm

A-2. A tangent $P Q$ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q, so that $\mathrm{OQ}=12 \mathrm{~cm}$. Length of PQ is :
(A) 12 cm
(B) 13 cm
(C) 8.5 cm
(D) $\sqrt{119} \mathrm{~cm}$

A-3. If tangents $P A$ and $P B$ from a point P to a circle with centre O are inclined to each other at an angle of 80°, then $\angle \mathrm{POA}$ is equal to :
(A) 50°
(B) 60°
(C) 70°
(D) 80°

A-4. $\quad P Q$ is a tangent to a circle with centre O at the point P. If $\triangle O P Q$ is an isosceles triangle, then $\angle O Q P$ is equal to :
(A) 30°
(B) 45°
(C) 60°
(D) 90°

A-5. From a point P which is at a distance of 13 cm from the centre O of a circle of radius 5 cm , the pair of tangents $P Q$ and $P R$ to the circle are drawn. Then the area of the quadrilateral $P Q O R$ is :
(A) $60 \mathrm{~cm}^{2}$
(B) $65 \mathrm{~cm}^{2}$
(C) $30 \mathrm{~cm}^{2}$
(D) $32.5 \mathrm{~cm}^{2}$

A-6. In figure, PA and PB are tangents from a point P to a circle with centre O . Then the quadrilateral OAPB must be a :

(A) square
(B) rhombus
(C) cyclic quadrilateral
(D) parallelogram

A-7. In figure, $\triangle A B C$ is circumscribing a circle. Then the length of $A B$ is :

(A) 6 cm
(B) 8 cm
(C) 12 cm
(D) 14 cm

A-8. In figure, $A B$ is a chord of a circle with centre O and $A P$ is the tangent at A such that $B A P=75^{\circ}$. Then ACB is equal to :

(A) 135°
(B) 120°
(C) 105°
(D) 90°

A-9. In figure, if PA and PB are tangents to circle with centre O such that $A P B=80^{\circ}$, then $O A B$ is equal to

(A) 25°
(B) 30°
(C) 40°
(D) 50°

Exercise-2

OBJECTIVE QUESTIONS

1. The three circles in the figure centered at A, B and C are tangent to one another and have radii 7 , 21 and 6 respectively. The area of the triangle $A B C$, is

(A) 54
(B) 64
(C) 74
(D) 84
2. Triangle $P A B$ is formed by three tangents to circle with centre O and $\angle A P B=40^{\circ}$, then angle $A O B$

(A) 45°
(B) 50°
(C) 60°
(D) 70°
3. On a plane are two points A and B at a distance of 5 unit apart. The number of straight lines in this plane which are at distance of 2 units from A and 3 units from B, is:
(A) 1
(B) 2
(C) 3
(D) 4
4. Let C be a circle with centre O. Let T be a point on the circle, and P a point outside the circle such that PT is tangent to C. Assume that the segment $O P$ intersects C in a point Q. If PT $=12$ and $P Q=8$, the radius of C, is :
(A) $r=40$
(B) $r=5$
(C) $r=4 \sqrt{5}$
(D) $r=4 \sqrt{13}$
5. Three circles are mutually tangent externally. Their centres form a triangle whose sides are of lengths 3,4 and 5 . The total area of the three circles (in square units), is:
(A) 9π
(B) 16π
(C) 21π
(D) 14π
6. Two circle touch each other externally at C and $A B$ is a common tangent to the circles. Then, $\angle A C B=$
(A) 60°
(B) 45°
(C) 30°
(D) 90°
7. $A B$ and $C D$ are two common tangents to circles which touch each other at C. If D lies on $A B$ such that $C D=4 \mathrm{~cm}$, then $A B$ is equal to :
(A) 4 cm
(B) 6 cm
(C) 8 cm
(D) 12 cm
8. In figure, $\triangle \mathrm{ABC}$ is circumscribing a circle. Find the length of $B C$.

(A) 8 cm
(B) 10 cm
(C) 12 cm
(D) 14 cm
9. In figure, there are two concentric circles with centre O and of radii 5 cm and 3 cm . From an external point P, tangents $P A$ and $P B$ are drawn to these circles. If $A P=12 \mathrm{~cm}$, find the length of $B P$.

(A) $4 \sqrt{10} \mathrm{~cm}$.
(B) $2 \sqrt{10} \mathrm{~cm}$.
(C) $\sqrt{10} \mathrm{~cm}$
(D) $3 \sqrt{10} \mathrm{~cm}$
10. Which of the following shapes of equal perimeter, the one having the largest area is:
(A) circle
(B) equilateral triangle
(C) square
(D) regular pentagon
11. A triangle with side lengths in the ratio $3: 4: 5$ is inscribed in a circle of radius 3 . The area of the triangle is equal to :
(A) 8.64
(B) 12
(C) 6
(D) 10.28
12. At one end A of a diameter $A B$ of a circle of radius 5 cm , tangent $X A Y$ is drawn to the circle. The length of the chord CD parallel to $X Y$ at a distance 8 cm from A is :
(A) 4 cm
(B) 5 cm
(C) 6 cm
(D) 8 cm

Exercise-3

NTSE PROBLEMS (PREVIOUS YEARS)

1. In the following figure. O is the centre of the circle. The value of x is
[Raj. NTSE Stage-1 2007]

(A) 45°
(B) 65°
(C) 85°
(D) 95°
2. Two circles of equal radius touch each other externally at point C. $A B$ is their common tangent. Value of $\angle \mathrm{CAB}$ is :
[NTSE Stage-I/Rajasthan/2009]

(A) 30°
(B) 40°
(C) 45°
(D) 60°
3. The chord of maximum length in a circle is called:
[Raj. NTSE Stage-1 2013]
(A) Radius
(B) Arc
(C) Diameter
(D) Point
4. One of the side of a triangle is divided into line segment of lengths 6 cm and 8 cm by the point of tangency of the incircle of the triangle. If the radius of the incircle is 4 cm , then the length (in cm) of the longer of the two remaining sides of the triangle is :
[Harayana NTSE Stage-1 2013]
(A) 12
(B) 13
(C) 15
(D) 16
5. The circumference of the circumcircle of the triangle formed by x-axis, y-axis and graph of $3 x+4 y=12$ is:
[Harayana NTSE Stage-1 2013]
(A) 3π units
(B) 4π units
(C) 5π units
(D) 6.25 units
6. $\quad A B$ and $C D$ are two parallel chords of a circle such that $A B=10 \mathrm{~cm}$ and $C D=24 \mathrm{~cm}$. If the chords are on the opposite sides of the centre and the distance between them is 17 cm , the radius of the circle is :
[Delhi NTSE Stage-1 2013]
(A) 14 cm
(B) 10 cm
(C) 13 cm
(D) 15 cm
7. In the figure given below, point O is orthocentre of $\triangle A B C$ and points D, E and F are foot of the perpendiculars, then how many sets make the 4 cyclic points from the point O ?
[Maharashtra NTSE Stage-1 2013]

(A) 4
(B) 3
(C) 2
(D) 6
8. If two circles are such that one is not contained in the other and are non-intersecting, then number of common tangents are :
[UP NTSE Stage-1 2013]
(A) One
(B) Two
(C) Three
(D) Four
9. $\quad A B$ and $A C$ are equal chord of a circle with centre O. Then by which angle $O A$ bisects $B C$.
[MP NTSE Stage-1 2014]
(A) 30°
(B) 60°
(C) 90°
(D) 120°
10. In the following figure O is the centre of circle and $\angle B A C=n^{\circ}, \angle O C B=m^{\circ}$ then
[UP NTSE Stage-1 2014]

(A) $\mathrm{m}^{\circ}+\mathrm{n}^{\circ}=90^{\circ}$
(B) $m^{\circ}+n^{\circ}=180^{\circ}$
(C) $\mathrm{m}^{\circ}+\mathrm{n}^{\circ}=120^{\circ}$
(D) $m^{\circ}+n^{\circ}=150^{\circ}$
11. In the below figure $A B$ is a diameter of circle and AT is tangent line then value of x will be :
[Chattisgarh NTSE Stage-1 2014]

(A) 65°
(B) 50°
(C) 45°
(D) 90°
12. The hypotenuse of a right triangle is 10 cm and radius of the inscribed circle is 2 cm . The perimeter of the triangle is :
[Delhi NTSE Stage-1 2014]
(A) 15 cm
(B) 22 cm
(C) 24 cm
(D) 18 cm
13. In figure, for $\triangle A B C$, chord $A B=$ chord $B C, \angle A B C=72^{\circ}$ and the angle bisector of $\angle A B C$ intersects the circle in Point D, then what is the measure of angle $\angle B E A$?
[Maharashtra NTSE Stage-1 2014]

(A) 100°
(B) 36°
(C) 18°
(D) 54°
14. In figure, A, B, C and D are four point on a cirlcle. $A C$ and $B D$ intersect at a point E such that $\angle B E C=125^{\circ}$ and $\angle E C D=30^{\circ}$. Then $\angle B A C=$
[Raj. NTSE Stage-1 2014]

(A) 95°
(B) 110°
(C) 85°
(D) 105°
15. In the given figure find $\angle \mathrm{PQR}$ (where O is centre of the circle)
[UP NTSE Stage-1 2014]

(A) 60°
(B) 80°
(C) 100°
(D) 120°
16. If two equal circles of radius r passes through centre of the other then the length of their common chord is
[UP NTSE Stage-1 2014]
(A) $\frac{r}{\sqrt{3}}$
(B) $r \sqrt{3}$
(C) $\frac{\sqrt{3}}{4} r$
(D) $r \sqrt{2}$
17. In the given figure, $\angle \mathrm{DBC}=22^{\circ}$ and $\angle \mathrm{DCB}=78^{\circ}$ then $\angle \mathrm{BAC}$ is equal to [Raj. NTSE Stage-1 2015]

(A) 90°
(B) 80°
(C) 78°
(D) 22°
18. The radii of two concentric circle with centre O are 5 cm and 13 cm respectively. The line drawn from the point A of outer circle touches the inner circle at point M and line $A E$ intersects the inner circle at the points C and D. If $A E=25 \mathrm{~cm}$, then find $A D$. (A-C-D-E)
[Maharashtra NTSE Stage-1 2015]
(A) 16 cm
(B) 10 cm
(C) 12 cm
(D) 8 cm
19. If two chords of a circle are equidistance from the centre of the circle, then they are..
[MP NTSE Stage-1 2015]
(A) Equal to each other
(B) Not equal to each other.
(C) Intersect each other.
(D) None of these
20. In the given figure O is the centre of a circle, $X Y, P Q, A B$ are tangents of the circle. If $X Y \| P Q$, then the value of $\angle A O B$ is
[Raj. NTSE Stage-1 2016]
(A) 80°
(B) 90°
(C) 70°
(D) 100°
21. In $\triangle A B C, m \angle B=140^{\circ}$, ' P ' is the centre of the circumcircle of $\triangle A B C$. Find $m \angle P B C$
[Maharashtra NTSE Stage-1 2016]
(A) 40°
(B) 50°
(C) 80°
(D) 100°
22. The incircle of $\triangle A B C$ touches the sides $A B, B C$ and $A C$ in the point P, Q and R respectively. If $A P=$ $7 \mathrm{~cm}, \mathrm{BC}=13 \mathrm{~cm}$, find the perimeter of
[Maharashtra NTSE Stage-1 2016]
(A) 27 cm
(B) 30 cm
(C) 40 cm
(D) 41 cm
23. In the following figure secants $Q S$ and $T R$ intersect each other at point P, which is outside the circle. O is the point of intersection of chords $S R$ and $T Q$. If $O S=5 \mathrm{~cm}$, $O T=10 \mathrm{~cm}, T R=12 \mathrm{~cm}$, $\mathrm{PR}=8 \mathrm{~cm}$, then find $\ell(\mathrm{PQ})$.
[Maharashtra NTSE Stage-1 2017]

(A) 6 cm
(B) 10 cm
(C) 12 cm
(D) 16 cm
24. Radius of a circle with centre ' O ' is $4 \sqrt{5} \mathrm{~cm}$. $A B$ is the diameter of the circle $A E \| B C$ and $B C=8 \mathrm{~cm}$. Line $E C$ is tangent to the circle at point D. Find the length of $D E$.
[Maharashtra NTSE Stage-1 2017]

(A) $4 \sqrt{5} \mathrm{~cm}$
(B) $6 \sqrt{5} \mathrm{~cm}$
(C) 8 cm
(D) 10 cm

Answer Key

Exercise Board Level

TYPE (I)

1. 50°
2. 55°
3. 6 cm
4. 100°
5. $3 \sqrt{3} \mathrm{~cm}$
6. $2 \sqrt{3} \mathrm{~cm}$
7. 40°
TYPE (II)
8. 30°
TYPE (III)
9. $\quad 4.8 \mathrm{~cm}$

TYPE (IV)
20. 24 cm
21. $8 \sqrt{2} \mathrm{~cm}^{2}$

Previous Year Problems

2. $A D=7 \mathrm{~cm}, \mathrm{BE}=5 \mathrm{~cm}, \mathrm{CF}=3 \mathrm{~cm}$
3. (B)
4.

(A) 7.
(C)
8. (B)
11. 120°
15. $1 / 3$
17. $O P=2 a$

Exercise-1

SUBJECTIVE QUESTIONS

Section (A)

A-1. 3 cm
A-2. 100°
A-3. $\sqrt{28} \mathrm{~cm}$
A-4. 3
A-5. $\quad 14 \mathrm{~cm}$.
A-6. $x=2 \mathrm{~cm}$.
A-11. $13 \mathrm{~cm}, 15 \mathrm{~cm}$
A-13. 7 cm

OBJECTIVE QUESTIONS

Section (A)
A-1. (B)
A-2. (D)
A-3. (A)
A-4. (B) A-5. (A)
A-6. (C)
A-7. (D)
A-8. (C)
A-9. (C)

Exercise-2

OBJECTIVE QUESTIONS

Ques.	1	2	3	4	5	6	7	8	9	10	11	12
Ans.	D	D	C	B	D	D	C	B	A	A	A	D

Exercise-3

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	B ${ }^{20}$	
Ans.	C	C	C	C	C	C	B	D	C	A	A	C	C	A	B	B	B	A	A		
Ques.	21	22	23	24																	
Ans.	B	C	B	D																	

