MATHEMATICS

Class-VI

Topic-12 PRATICAL GEOMETRY

INDEX				
S. No.	Торіс	Page No.		
1.	Theory	1 –10		
2.	Exercise-1	11-12		
3.	Exercise-2	12-12		
4.	Exercise-3	13–13		
5.	Answer Key	14 – 14		

CHAPTER

PRACTICAL GEOMETRY

TERMINOLOGIES

Construction of circle, construction of line segment, construction of perpendicular lines, perpendicular bisector of line segment, construction of equal angles.

INTRODUCTION

Geometric constructions are made with the aid of a ruler or straight edge and compasses only .Drawings are made with the aid of additional instruments, such as protractor and ruler. In this we learn the method of drawing a line segment of given length, an angle of given measurement etc with the help of the instruments in our geometry box.

12.1 CONSTRUCTION

(a) Construction of a circle when its radius is known

Suppose you are asked to draw a circle of radius 3 cm. do as follows : **STEP 1.** Mark a point C with your pencil. This point will be the centre of the circle.

STEP 2. Open the compass for the required radius, i.e., 3 cm by putting the steel point on C and opening the pencil upto 3 cm.

STEP 3. Hold the paper with one hand and swing the pencil leg of the compass around to draw a circle.

(b) Construction of line segment of a given length :

Suppose you have to draw a line segment 5.3 cm long.

(i) Method-1 : Using ruler only

1. Mark any point in your exercise book and label it as A.

2. Place the ruler in such a way that the zero mark on the ruler coincides with A.

- **3.** Now count 5 complete centimetres and 3 small divisions after the 5 cm mark and mark a point corresponding to this division on the exercise book.
- **4.** Join A to this point as shown.
- 5. Label the second point as B. Then AB is the required segment of length 5.3 cm.
- (ii) Method 2 : Using ruler and compass

STEP 1. Draw any line segment which is longer than 5.3 cm.

STEP 2. Mark a point on this line near one end as shown. Label it A.

STEP 3. Use your compass to measure 5.3 cm on your ruler.

STEP 4. Put the point of the compass on the line segment at A and draw an arc to cut the line as shown. Then AB = 5.3 cm.

(c) To Construct a Line segment Congruent to a given Line Segment AB

STEP 1. Draw a ray through any end point C. Open your compass so that the metal tip is on A and the pencil point is on B.

STEP 2. Keep the compass opening same. Put the metal tip on the end point C of the ray and mark off a line CD congruent to AB.

(d) **Perpendicular Lines**

Perpendicular lines are lines that intersect at right angles. The symbol \perp means "is perpendicular to".

(e) Drawing Perpendicular using ruler and a set-square

CASE 1: To construct a line perpendicular to a given line I at a point P lying on it.

STEP 1.

Place a ruler on the paper with one of its long edges lying along the line I.

STEP 2.

Holding the ruler fixed, place a set-square ABC with the arm AC of its right angle A in contact with the ruler.

STEP 3. Slide the set-square along the edge of the ruler until A coincides with P.

STEP 4. Holding the set-square fixed in this position, draw with a sharp pencil a line PQ along the edge AB. Then PQ is the required line perpendicular to the line I.

CASE 2: To construct a line perpendicular to a given line I and passing through a given point P lying outside the given line.

STEP 1. Place either of the set-squares so that one edge AB of the right angle A lies along I.

PRATICAL GEOMETRY

STEP 2. Now hold the set-square fixed and place a ruler along the edge opposite to the right angle of the set-square.

STEP 3. Holding the ruler firmly, slide the set-square along the ruler until the edge AC passes through the given point P.

STEP 4. Draw line PQ along the edge AC of the set-square. Then PQ is the required line perpendicular to the given line. I, through the point P not lying on it.

(ii) To Draw a perpendicular to a Given Line with a Ruler and Compass :

CASE 1. At a point on the line. Let AB be a given line and P be the point on it.

STEP 1. With P as centre and any suitable radius draw an arc to cut the line AB at points M and N.

STEP 2. With M and N as centres and radius of more than half MN, draw two arcs to cut at Q. **STEP 3.** Join PQ.

Then ray PQ is the perpendicular to the line AB at P.

CASE 2. From a point outside the line. Let I be the given line and P a point outside it.

STEP 1. With P as centre and a suitable radius, draw an arc to cut the line I at X and Y.

STEP 2. With X and Y as centres and a radius of more than half XY, draw two arcs to cut at M.

STEP 3. Join PM. Then $PM \perp I$.

(d) Perpendicular Bisector of a Line Segment

In a plane, the perpendicular bisector of a segment is the line that is perpendicular to the segment at its midpoint, Line I is the perpendicular bisector of segment AB.

(i) Construction of Perpendicular Bisector of a Segment :

Using ruler and compass, to construct the perpendicular bisector of a given line segment.

STEP 1.

Open the legs of compass to more than half the length of AB. With A as centre (i.e., place the metal-tip of compasses at A), draw arc 1.

STEP 2.

With B as centre and the same radius (i.e., the same opening of the compass), draw arc 2 to cut the first arc. Name the points of intersections as P and Q.

STEP 3.

Draw the line through P and Q by joining P, Q. This line bisects the given line segment AB and is called the bisector of AB.

Let PQ cut AB at M. Then M is called the middle point or simple midpoint of AB. The line PQ is the perpendicular bisector or the right bisector of AB.

(e) To Construct an Angle Equal to a Given Angle ABC

STEP 1. Draw any ray QR. This ray will become one side of the angle and its end point Q will become the vertex of the angle.

STEP 2. Put the metal tip of your compass on the vertex of ∠ABC. Draw an arc.

STEP 3. Without changing the opening of the compass, put the metal tip of the compass on Q. Draw an arc of sufficient length which crosses the ray as shown.

STEP 4. Open the compass so that the metal tip and pencil point are on the points where the arc cuts the arms of $\angle ABC$.

STEP 5. Without changing the opening of the compass put the metal tip on the point where the arc cuts QR. Draw another arc that crosses the previous arc at, say, P.

STEP 6. From point Q draw a ray through the intersection of two arcs, then $\angle PQR = \angle ABC$. Check your construction with your protractor.

(i) To Bisect a Given Angle ABC :

STEP 1. With B as centre and a suitable radius, draw an arc that intersects BA and BC. Name the points of intersection as P and Q.

STEP 2. With P as centre and a radius greater than half PQ draw an arc.

PRATICAL GEOMETRY

STEP 3. With Q as centre and the same radius draw another arc to cut the first arc. Name the point of intersection of the two arcs as R.

STEP 4. Join BR. Ray BR bisects \angle ABC. Ray BR is called the angle bisector. Check your result with a protractor.

(f) Angles of Special Measures

(i) Angle Of 60°:

STEP 1. Draw a ray OX.

STEP 2. With O as centre and any convenient radius draw an arc above OX, and also cutting OX at A.

STEP 3. With A as centre and the same radius, draw another arc to cut the first arc at B.

STEP 4. Join OB. Then $\angle AOB = 60^{\circ}$

(ii) Angle Of 30° :

STEP 1. Draw a ray OA.

STEP 2. With O as the vertex, construct $\angle AOB$ of 60°.

STEP 3. Bisect $\angle AOB$. OC is the bisector. Then, $\angle AOC = 30^{\circ}$, $\angle COB = 30^{\circ}$

(iii) Angle Of 120° :

STEP 1. Draw a ray OA.

STEP 2. With O as centre and any convenient radius draw an arc to cut OA at P.

STEP 3. With P as centre and the same radius draw another arc to cut the first arc at Q.

STEP 4. With Q as centre and the same radius draw another arc to cut the first arc at R.

STEP 5. Draw the ray OB through O and R. then $\angle AOB = 120^{\circ}$

(iv) Angle Of 150° :

STEP 1. Draw a line AB.

STEP 2. With any vertex O on AB, construct \angle BOC of 120°

STEP 3. Bisect ∠AOC. Ray OD is the bisector.

Then ∠BOD = 150°

(v) Angle Of 90° :

STEP 1. With A as centre and any suitable radius draw an arc cutting AB at P.

STEP 2. With P as centre and the same radius as before cut the arc of Step 1 at Q. With Q as centre and the same radius cut the arc again at R.

STEP 3. With Q and R as centres and any convenient radius (same for both) draw arcs cutting at S. Join A to S and produce A to L. Then $\angle BAL = 90^\circ$, i.e., AL is perpendicular to AB at A.

(vi) Angle Of 45°:

STEP 1. Construct an angle AOB of 90° as in the previous construction.

STEP 2. Bisect ∠AOB. Let OC be the angle bisector. Then

 $\angle \text{AOC}$ = 45° ; $\angle \text{COB}$ is also = 45°

(vii) Angle Of 135° :

STEP 1. Draw a line AB.

STEP 2. With any point O on line AB as vertex, construct $\angle AOC = 90^{\circ}$. Then $\angle BOC$ is also = 90°.

STEP 3. Bisect \angle BOC. Ray OD is the bisector. Then, \angle AOD = 90° + 45° = 135°

Ask yourself_

- 1. Draw a circle of radius 6cm
- Draw a circle of radius 5cm . Let O be the centre. Mark points A, B and C such that OA = 4cm, OB= 5cm, OC = 7cm. Now identify the point which lie
 (a) in its exterior region
 (b) in its interior region
 (c) on the circle.
- **3.** Draw a circle having diameter as 7cm, draw AB and CD as two of its diameter.
- 4. Draw a line segment AB of length 7.9cm using a ruler.
- **5.** Draw a line AB , take a point X on it. Construct a perpendicular XY on it using set square. How many such lines can be drawn ?
- 6. Draw a line segment of length 9.8cm. Construct its perpendicular bisector.
- 7. Construct the following angles with the help of ruler and protractor: (a) 43° (b) 70° (c) 110°
- 8. Construct the following angles with the help of ruler and compass: (a) 120° (b) 45° (c) 150°

Add your knowledge _____

(a) Draw a line parallel to a given line using Compass. Using Compass

To construct a line parallel to a given line.
 Let l be the given line. We have to draw a line parallel to l.

Step - 1 : Mark any two points A and B on ℓ .

Step - 2 : Draw an arc '1' having A as centre. Mark the point where this arc cuts ℓ as P.

Step - 3 : Draw an arc '2' with the same radius and having B as centre.

Mark the point where this arc cuts ℓ as Q.

Step - 4: Now, keeping the same radius, draw arc 3 with centre P and arc 4 with centre Q. **Step - 5**: Mark as L the point where arc 3 cuts arc 1 and as M the point where arc 4 cuts arc 2.

Step - 6 : Join L to M and produce LM on both sides.

Then, line LM (m) is parallel to the given line ℓ .

•

PRATICAL GEOMETRY

To construct a line parallel to a given line passing through a given point not lying on it.

Given : A line I and a point P not lying on it. **To construct** : A line parallel to ℓ through P.

Steps of Construction :

Step - 1 : Take any point Q on line ℓ and join Q to P.

Step - 2: With Q as centre and a convenient radius, draw an arc 1 cutting ℓ at A and PQ at B.

Step - 3 : Now, with P as centre and the same radius as in step 2, draw an arc 2 cutting PQ at C.

Step - 4 : Place the steel point of the compass at A and adjust the opening so that the pencil point is at B.

Step - 5: With the same opening as in Step 4 and with C as centre, draw an arc cutting the arc 2 at D.

Step - 6 : Draw a line m through P and D.

Then m is the required line parallel to ℓ and passing through the given point P.

Summary .

- **1.** Using ruler and compass , we can construct
 - (a) A circle if its radius is given.
 - (b) A line segment if its length is given.
 - (c) An angle if its measure is given.
 - (d) A line segment equal to a given line segment.
 - (e) An angle equal to a given angle.
 - (f) Perpendicular to a line from a point on the line.
 - (g) Perpendicular to a line from a point outside the line.
 - (h) The bisector of a given angle.
 - (i) Angles of measure such as 15° , 30° , 60° , 45° , 90° , 120° , 135° etc.
- 2. We can use set squares to draw perpendicular lines.
- **3.** Two lines are said to be perpendicular if one of the angles formed by them is a right angle.
- 4. Bisector of an angle is its axis of symmetry.
- **5.** Perpendicular bisector of a line segment is the axis of symmetry of the line segment.
- 6. One and only one perpendicular can be drawn to a line from a point not on the line.
- 7. One and only one perpendicular can be drawn to a line at a point on it.
- 8. An unlimited number of circles can be drawn passing through a point.

EXERCISE

SECTION -A (FIXED RESPONSE TYPE)

VERY SHORT ANSWER TYPE

- 1. Draw a circle of radius 3.5 cm.
- Draw the line segments whose measures are :
 (i) 7.3 cm
 (ii) 8.5 cm
- **3.** Construct a line segment of length 10 cm. From this cut a segment AC of length 4.6 cm. Measure the remaining segment.
- **4.** Draw a line segment AB of length 8cm. Draw its perpendicular bisector. Is it its line of symmetry.
- Use a protractor to draw angles of :
 (a) 48°
 (b) 75°
 (c) 122°
 (d) 118°
- **6.** Draw a line segment AB = 5.6cm . Draw the perpendicular bisector of AB.

SHORT ANSWER TYPE

- **7.** Draw a line segment AB of length 8.5cm . From this cut off a line segment XZ of length 4.8cm
- **8.** Draw a line LM and take a point P not lying on it. Using set squares construct a perpendicular from P to the line LM.
- **9.** Draw a line XY. Take a point A on it and construct a perpendicular AB using ruler and compass. Measure ∠XAB. Is it a right angle?
- **10.** Draw a circle of diameter 7 cm. Draw another diameter perpendicular to the first diameter. What figure is formed by joining the ends of these diameters ?
- 11. Draw a segment of the length given. Construct its perpendicular bisector.
 (a) 6 cm
 (b) 8.7 cm
 (c) 98 mm
- **12.** Draw a line segment AB= 6cm . Take a point C on AB such that AC = 2.5cm . Draw CD perpendicular to AB

LONG ANSWER TYPE

- 13.With compass and a ruler, construct each of the following angles :(a)60°(b)30°(c)90°(d)45°
- **14.** Draw a circle of radius 4.5 cm. with the same centre, draw two more circles of radii 3.8 cm and 3 cm. What special name do you give to these circles ?
- **15.** Draw a circle of any radius , say 4 cm. Draw any two of its diameters. Join the ends of these diameters. What figure do you obtain ? What figure is obtained if the diameters are perpendicular to each other.

PRATICAL GEOMETRY

- **16.** Draw a line segment AB = 8 cm. Mark a point P on AB such that AP = 4.5 cm. Draw a ray perpendicular to AB at P by
 - (i) Using set- squares (ii) using compass
- **17.** Draw a circle of radius 3.8 cm. Mark any three points P, Q, R on the circumference. Construct the perpendicular bisectors of PQ and QR. Where do the two bisectors meet ? Bisect each angle using ruler and compass only.
 - (e) $22 \frac{1^{\circ}}{2}$ (f) 75° (g) 135° (h) 150° (i) 120°

EXERCISE > (1)2

SECTION -A (COMPETITIVE EXAMINATION QUESTION) MULTIPLE CHOICE QUESTIONS

1.	The instrument in the (A) Protractor	geometry box having (B) Compasses	the shape of a triangle (C) Divider	is called a (D) Set-square	
2.	The instrument to mea (A) Ruler	asure an angle is (B) Protractor	(C) Divider	(D) Compass	
3.	The instrument to dra (A) Ruler	w a circle is (B) Protractor	(C) Divider	(D) Compass	
4.	Two lines are perpend (A) acute angle	dicular if they intersect (B) right angle	each other at (C) obtuse angle	(D) none.	
5.	Perpendicular bisector of a line segment (A) is perpendicular to it (C) both (A) and (B) true		(B) divides it into two equal parts (D) none		
6.	The angle bisector of an angle divides an an (A) two equal angles (C) infinite angles		ngle into (B) two unequal angles (D) none		
7.	In a circle, diameter (A) passes through the centre (C) is less than radius		(B) does not pass through the centre (D) none		
8.	Perpendicular bisector of a chord of a circle (A) passes through the centre (C) is not a line segment		(B) does not pass through the centre (D) none		
9.	To construct an angle (A) 15°	of 30° , we construct (B) 60°	the angle bisector of (C) 90°	(D) 180°	
10.	To construct an angle (A) 90°	of 45° , we construct (B) 60°	the angle bisector of (C) 120°	(D) 15°	

1. A parallelogram is shown below

SECTION -A (COMPETITIVE EXAMINATION QUESTION)

MULTIPLE CHOICE QUESTIONS

Ques.	1	2	3	4	5	6	7	8	9	10
Ans.	D	В	D	В	С	А	Α	А	В	А

(PREVIOUS YEAR EXAMINATION QUESTIONS)

Ques.	1
Ans.	В

