MATHEMATICS

Class-VII

Topic-04

LINES \& ANGLES

INDEX		
S. No.	Topic	Page No.
1.	Theory	$1-10$
2.	Exercise-1	$11-17$
3.	Exercise-2	$17-19$
4.	Exercise-3	$20-25$
5.	Answer Key	$26-27$

LINES \& ANGLES

TERMINOLOGIES
Angles, Adjacent angles,Linear pair, Vertically opposite angles, Complementary angles, Supplementary angles, Parallel lines, Parallel segments, Parallel Rays, Transversal, Exterior Angles, Interior Angles, Corresponding Angles, Alternate Exterior Angles, Alternate Interior Angles.

INTRODUCTION

In this chapter apart from point, line, line segment, we will deal with types of angles such as complementary angles, supplementary angles, adjacent angles, linear pair angles, vertically opposite angles. Also about angles formed when transversal cut two parallel lines and their appears corresponding angles, alternate interior angles, alternate exterior angles and co-interior angles.

4.1 PAIRS OF ANGLES

There are some angles, which occur in pairs.
(a) Adjacent angles

Two angles in a plane are called adjacent angles, if
(i) They have a common vertex
(ii) They have a common arm, and
(iii) Their non-common arms lie on the opposite sides of the common arm.
$\angle A O C$ and $\angle B O C$ have the common vertex O. Also, they have a common arms OC and their other arms OA and OB lie on the opposite sides of the common arm OC. Therefore, $\angle A O C$ and $\angle B O C$ are adjacent angles.

(b) Linear pair

Two adjacent angles are said to form a linear pair of angles, if their non-common arms are two opposite rays, in fig. OA and OB are two opposite rays and $\angle \mathrm{AOC}$ and $\angle \mathrm{BOC}$ are the adjacent angles. Therefore, $\angle \mathrm{AOC}$ and $\angle \mathrm{BOC}$ form a linear pair.
$\angle A O C+\angle B O C=180^{\circ}$

(c) Vertically opposite angles

Two angles formed by two intersecting lines having no common arm are called vertically opposite angles. In given fig. two lines $A B$ and $C D$ are intersecting at a point O. We observe that with the intersection of these lines, four angles have been formed. Angles $\angle 1$ and $\angle 3$ form a pair of vertically opposite angles; while angles $\angle 2$ and $\angle 4$ form another pair of vertically opposite angles.
Clearly, Angles $\angle 1$ and $\angle 2$ form a linear pair.
$\therefore \quad \angle 1+\angle 2=180^{\circ} \quad \Rightarrow \angle 1=180^{\circ}-\angle 2$
Also $\angle 2$ and $\angle 3$ form a linear pair.
$\therefore \quad \angle 2+\angle 3=180^{\circ} \quad \Rightarrow \angle 3=180^{\circ}-\angle 2$
From (i) and (ii), we get $\angle 1=\angle 3$.
Similarly, we can prove that $\angle 2=\angle 4$

(d) Angles at a point

Angles formed by a number of rays having a common initial point are called angles at a point. In fig. rays $\mathrm{OA}, \mathrm{OB}, \mathrm{OC}, \mathrm{OD}$ having a common initial point O , form $\angle 1, \angle 2, \angle 3, \angle 4$ at the point O and $\angle 1+\angle 2+\angle 3+\angle 4=360^{\circ}$.

Thus, the sum of the measures of all the angles at a point is 4 right angles or 360°.
(e) Complementary angles

If the sum of the measures of two angles is 90°, then the angles are called complementary angles and each is called a complement of the other. Angles of measures 35° and 55° are complementary angles.

Remark

(i) If two angles are complement of each other, then each is an acute angle except the pair $\left(90^{\circ}, 0^{\circ}\right)$. But any two acute angles need not be complementary. For example, angles of measure 30° and 50° are not complement of each other.
(ii) Two obtuse angles cannot be complement of each other.
(iii) Two right angles cannot be complement of each other.

(f) Supplementary angles

Two angles are said to be supplementary angles if the sum of their measures is 180°, and each of them is called a supplement of the other. Angles of measures 55° and 125° are supplementary angles.

LINES \& ANGLES

* Remark
(i) Two acute angles cannot be supplement of each other.
(ii) Two right angles are always supplementary.
(iii) Two obtuse angles cannot be supplement of each other.

Illustration 4.1

Find the measure of an angle which is complement of itself.
Sol. Let the measure of the angle be x^{0}. Then, the measure of its complement is given to be x^{0}. Since, the sum of the measures of an angle and its complement is 90°.

$$
\therefore \quad \mathrm{x}^{\circ}+\mathrm{x}^{\circ}=90^{\circ}
$$

$\Rightarrow \quad 2 x^{\circ}=90^{\circ}$
$\Rightarrow \quad x^{0}=45$
Hence, the measure of the angle is 45°.

Illustration 4.2

Two supplementary angles differ by 34°. Find the angles.
Sol. Let one angle be x°. Then, the other angle is $(x+34)^{\circ}$.
Now, x^{0} and $(x+34)^{\circ}$ are supplementary angles.
$\begin{array}{lllll}\therefore & x^{\circ}+(x+34)^{\circ}=180^{\circ} & \Rightarrow & 2 x^{\circ}+34^{\circ}=180^{\circ} \\ \Rightarrow & 2 x^{\circ}=180^{\circ}-34^{\circ} & \Rightarrow \quad 2 x^{\circ}=146^{\circ} \quad \Rightarrow \quad x^{\circ}=73^{\circ} .\end{array}$
Hence, the measures of two angles are 73° and $73^{\circ}+34^{\circ}=107^{\circ}$.

Illustration 4.3

In fig. $\angle \mathrm{AOC}$ and $\angle \mathrm{BOC}$ form a linear pair. Determine the value of x .

Sol. Since $\angle A O C+\angle B O C$ form a linear pair

$$
\begin{array}{lll}
\therefore \quad \angle A O C+\angle B O C=180^{\circ} & \Rightarrow \quad 4 x+2 x=180^{\circ} \\
\Rightarrow \quad 6 x=180^{\circ} & \Rightarrow \quad x=\frac{180^{\circ}}{6}=30^{\circ}
\end{array}
$$

Illustration 4.4

In the given figure below, find the value of y .

Sol. Since $\angle \mathrm{COD}$ and $\angle \mathrm{EOF}$ are vertically opposite angles.

iv. a
$\therefore \quad \angle \mathrm{COD}=\angle \mathrm{EOF} \quad \Rightarrow \quad \angle \mathrm{COD}=5 \mathrm{y}^{\circ} \quad\left[\because \mathrm{EOF}=5 \mathrm{y}^{\circ}\right.$ (Given) $]$
Now, OA and OB are opposite rays.

$$
\begin{array}{lll}
\therefore \quad \angle \mathrm{AOD}+\angle \mathrm{DOC}+\angle \mathrm{COB}=180^{\circ} & \Rightarrow \quad 2 \mathrm{y}^{\circ}+5 \mathrm{y}^{\circ}+5 \mathrm{y}^{\circ}=180^{\circ} \\
\Rightarrow \quad 12 \mathrm{y}^{\circ}=180^{\circ} & \Rightarrow \quad \mathrm{y}=15^{\circ}
\end{array}
$$

Hence, $y=15^{\circ}$.

Ask yourself

\qquad

1. Find the measure of an angle, if six times its complement is 12° less than twice its supplement.
2. Among two supplementary angles, the measure of the larger angle is 36 degree more than the measure of the smaller. Find their measures.
3. In figure, find $\angle \mathrm{COD}$ when $\angle \mathrm{AOC}+\angle \mathrm{BOD}=100^{\circ}$.

4. In angles of a linear pair are equal , then find each angle,
5. In figure PQR is a straight line and $\angle \mathrm{PQS}: \angle \mathrm{SQR}=7: 5$. Find $\angle \mathrm{SQR}$

Answers

1. 48°
2. 72° and 108°
3. 80°
4. $90^{\circ}, 90^{\circ}$
5. 75°

4.2 ANGLE MADE BY TRANSVERSAL

(a) Parallel Lines

Parallel Lines: Two lines ℓ and m in the same plane are said to be parallel lines if they do not intersect when produced indefinitely in either direction and we write $\ell \| \mathrm{m}$ which is read as ℓ is parallel to m .
Clearly, when $\ell \| \mathrm{m}$, we have $\mathrm{m} \| \ell$.

(b) Parallel Rays

Two rays are parallel if the corresponding lines determined by them are parallel. In other words, two rays in the same plane are parallel. If they do not intersect each other even if extended indefinitely beyond their initial points.
In fig. ray $\mathrm{OA}|\mid$ ray PQ .

(c) Parallel segments

Two segments are parallel if the corresponding lines determined by them are parallel. In other words, two segments which are in the same plane and do not intersect each other even if extended indefinitely in both directions are said to be parallel.

(d) Angles made by a transversal with two lines

A line which intersects two or more given lines at distinct points is called a transversal to the given lines.

(i) Exterior angles : The angles whose arms do not include the line segment $P Q$ are called exterior angles. In fig. angles 1,2,7 and 8 are exterior angles.
(ii) Interior angles : The angles whose arms include line segment PQ are called interior angles. In fig. angles 3, 4, 5 and 6 are interior angles.
(iii) Corresponding angles : A pair of angles in which one arm of both the angles is on the same side of the transversal and their other arms are directed in the same sense is called a pair of corresponding angles. In fig. $\angle 1, \angle 5 ; \angle 2, \angle 6 ; \angle 3, \angle 7$ and $\angle 4, \angle 8$ are four pairs of corresponding angles.
(iv) Alternate interior angles: A pair of angles in which one arm of each of the angles is on opposite side of the transversal and whose other arm include the segment PQ is called a pair of alternate interior angles. In fig $\angle 3, \angle 5 ; \angle 4$ and $\angle 6$ are alternate interior angles.
(v) Alternate exterior angles: A pair of angles in which one arm of each of the angles is on opposite sides of the transversal and whose other arms are directed in opposite direction and do not include segment $P Q$ is called a pair of alternate exterior angles. In fig. $\angle 2, \angle 8 ; \angle 1$ and $\angle 7$ are alternate exterior angles.

NOTE:

Lines in a plane are para!lel, if they do not intersect when produced indefinitely in either direction.

The distance between two intersecting lines is zero.
The distance between two parallel lines is the same everywhere and is equal to the perpendicular distance between them.
(e) Angles made by transversal to two parallel lines

If two parallel lines are intersected by a transversal, then
(i) Pairs of alternate (interior or exterior) angles are equal.
(ii) Pairs of corresponding angles are equal.
(iii) Interior angles on the same side of the transversal are supplementary.

If two non-parallel lines are intersected by transversal then none of (i), (ii) and (iii) hold true.
If two lines are intersected by a transversal, then they are parallel if anyone of the following is true:
(i) Pair of corresponding angles are equal.
(ii) Pair of alternate interior angles are equal.
(iii) Pair of interior angles on the same side of the transversal are supplementary.

Illustration 4.5

In fig., $\mathrm{m} \| \mathrm{n}$ and $\angle 1=65^{\circ}$. Find $\angle 5$ and $\angle 8$.

Sol. We have,

	$\angle 1=\angle 3$	[Vertically opposite angles]
and,	$\angle 3=\angle 8$	[Corresponding angles]
\therefore	$\angle 1=\angle 8$	
\Rightarrow	$\angle 8=65^{\circ}$	$\left[\because \angle 1=65^{\circ}\right.$ (given)]
Now, $\angle 5+\angle 8=180^{\circ}$	[Linear pair]	
\Rightarrow	$\angle 5+65^{\circ}=180^{\circ}$	
\Rightarrow	$\angle 5=180^{\circ}-65^{\circ}=115^{\circ}$	
Thus, $\angle 5=115^{\circ}$ and $\angle 8=65^{\circ}$.		

Illustration 4.6

In fig., $A B|\mid C D$. Determine $\angle \mathrm{a}$.
Sol. Through O draw a line ℓ parallel to both AB and CD .

Clearly, $\angle \mathrm{a}=\angle 1+\angle 2$
Now, $\angle 1=55^{\circ} \quad$ [Alternate $\angle \mathrm{s}$]
and, $\angle 2=38^{\circ} \quad$ [Alternate $\angle \mathrm{s}$]
$\therefore \quad \angle \mathrm{a}=55^{\circ}+38^{\circ} \quad[$ Using (i)]
$\Rightarrow \quad \angle a=93^{\circ}$
Thus, $\angle \mathrm{a}=93^{\circ}$.

Ask yourself

\qquad

1. Given $A B$ II $C D$ find the value of x in below

2. $A B$ and $C D$ are two parallel lines. $P Q$ cuts $A B$ and $C D$ at E and F respectively. $E L$ is the bisector of $\angle \mathrm{FEB}$. If $\angle \mathrm{LEB}=35^{\circ}$, then find $\angle \mathrm{CFQ}$
3. As shown in figure, line $A B \|$ line $P Q, m \angle O N Q=110^{\circ}, m \angle M Y O=80^{\circ}$. Find $m \angle M O X$.

4. In figure $\ell \| \mathrm{m}$, find $\angle \mathrm{BAC}, \angle \mathrm{ABC}$

5. In figure $A B \| C D$ find the value of x

Answers

1. 70°
2. 110°
3. 150°
4. $50^{\circ}, 50^{\circ}$
5. 40°

Sexagesimal system : In this system a right angle is divided into 90 equal parts called degrees. Each degree is divided into $\mathbf{6 0}$ equal parts called minutes and each minute is divided into 60 equal parts called seconds.
Thus, 1 right angle = 90 degrees $\left(90^{\circ}\right)$

$$
1^{\circ}=60 \text { minutes }\left(60^{\prime}\right)
$$

$$
1^{\prime}=60 \text { seconds }(60 ")
$$

This section is useful to solve questions such as:

1. Find the complement of each of the following angles.
$36^{\circ} 40^{\prime}$
Sol.

$$
\begin{aligned}
& \left.\begin{array}{l}
90^{\circ} .00^{\prime} \\
-36^{\circ} .40^{\prime} \\
?
\end{array}\right\} \frac{89^{\circ} .60^{\prime}}{-36^{\circ} .40^{\prime}} \\
& \therefore 53^{\circ} 20^{\prime}
\end{aligned}
$$

2. Write the supplementary angles of the following angles.
$54^{\circ} 28^{\prime}$
Sol.

$$
\left.\begin{array}{r}
180^{\circ} 00^{\prime} \\
-\frac{54^{\circ} 28^{\prime}}{?}
\end{array}\right\} \rightarrow \frac{179^{\circ} 60^{\prime}}{} \begin{array}{r}
-54^{\circ} 28^{\prime} \\
\therefore \quad 125^{\circ} 32^{\prime} \\
\therefore \quad \text { Ans. }
\end{array}
$$

Concept Map

(1) $\angle 1=\angle 5, \angle 3=\angle 7, \angle 2=\angle 6, \angle 4=\angle 8$ (Corresponding angles are equal)
(i1) $\angle 3=\angle 6, \angle 4=\angle 5$ (Alternate interior angles are equal)
(iti) $\angle 3+\angle 5=180^{\circ}, \angle 4+\angle 6=180^{\circ}$ (Sum of co-interior angle is 180°)

1. An angle is formed when two lines or rays or line segments meet or intersect.
2. Two angles in a plane are called adjacent angles, if
(i) They have a common vertex
(ii) They have a common arm, and
(iii) Their non-common arms lie on the opposite sides of the common arm.
3. A linear pair is a pair of adjacent angles whose non comon sides are opposite rays.
4. Two angles formed by two intersecting lines having no common arm are called vertically opposite angles.
5. When two line intersect, the vertically opposite angles so formed are equal.
6. If the sum of the measures of two angles is 90°, then the angles are called complementary angles.
7. Two angles are said to be supplementary angles if the sum of their measures is 180°, and each of them is called a supplement of the other.
8. Two lines ℓ and m in the same plane are said to be parallel lines if they do not intersect when produced indefinitely in either direction and we write $\ell \| \mathrm{m}$ which is read as ℓ is parallel to m .
9. When two lines are intersected by a transversal, eight angles are formed. These angles can be classified as 4 interior angles, 4 exterior angles, 4 pairs of corresponding angles, 2 pairs of alternate interior angles, 2 pairs of alternate exterior angles and two pairs of interior angles on the same side of the transversal.

(i) Exterior angles (In fig. $\angle 1, \angle 2, \angle 7$ and $\angle 8$)
(ii) Interior angles (In fig. $\angle 3, \angle 4, \angle 5$ and $\angle 6$)
(iii) Corresponding angles (In fig. $\angle 1, \angle 5 ; \angle 2, \angle 6 ; \angle 3, \angle 7$ and $\angle 4, \angle 8$)
(iv) Alternate interior angles(In fig $\angle 3, \angle 5 ; \angle 4$ and $\angle 6$)
(v) Alternate exterior angles (In fig. $\angle 2, \angle 8 ; \angle 1$ and $\angle 7$)
10. If two parallel lines are intersected by a transversal, then
(i) Pairs of alternate (interior or exterior) angles are equal.
(ii) Pairs of corresponding angles are equal.
(iii) Interior angles on the same side of the transversal are supplementary.
11. If a transversal cuts two lines such that any one of the following condition is true.
(i) Pairs of alternate (interior or exterior) angles are equal.
(ii) Pairs of corresponding angles are equal.
(iii) Interior angles on the same side of the transversal are supplementary. then the lines are parallel.

EXERCISE

SECTION -A (FIXED RESPONSE TYPE)
 MULTIPLE CHOICE QUESTIONS

1. Two parallel lines have :
(A) a common point
(B) two common point
(C) no common point
(D) infinite common points
2. Which one of the following statements is not false :
(A) If two angles forming a linear pair, then each of these angles is of measure 90°
(B) Angles forming a linear pair can both be acute angles.
(C) One of the angles forming a linear pair can be obtuse angle.
(D) Bisectors of the adjacent angles form a right angle.
3. Linear pair angles are also
(A) Complementary angles
(B) Supplementary angles
(C) Equal angles
(D) None of these
4. In the given figure, the sum of $\angle 1, \angle 2$, and $\angle 3$ is :

(A) 360°
(B) 270°
(C) 120°
(D) 300°
5. An angle is 14° more than its complementary angle then angle is :
(A) 38°
(B) 52°
(C) 50°
(D) None of these
6. Two complementary angles differ by 16° find the angles.
(A) $53^{\circ}, 37^{\circ}$
(B) $56^{\circ}, 40^{\circ}$
(C) $62^{\circ}, 28^{\circ}$
(D) $59^{\circ}, 31^{\circ}$
7. If the supplement of an angle is three times its complement, then angle is :
(A) 40°
(B) 35°
(C) 50°
(D) 45°
8. In the given figure, x is greater then one fifth of a right angle then :

(A) $\mathrm{y}>162^{\circ}$
(B) $y \geq 162^{\circ}$
(C) $\mathrm{y} \leq 162^{\circ}$
(D) $\mathrm{y}<162^{\circ}$
9. Which one of the following is not correct:
(A) If two lines are intersected by a transversal, then alternate angles are equal.
(B) If two lines are intersected by a transversal then sum of the interior angles on the same side of transversal is 180°.
(C) If two lines intersected by a transversal then corresponding angles are equal.
(D) All of these.
10. The co-interior angles are supplementary than lines are
(A) Parallel
(B) Intersecting
(C) Perpendicular
(D) None of these
11. In the given figure, if $E C \| A B \angle E C D=70^{\circ}$ and $\angle B D O=20^{\circ}$, then $\angle O B D$ is :

(A) 20°
(B) 50°
(C) 60°
(D) 70°
12. In the given figure, $A B \| C D, \angle A B O=40^{\circ}$ and $\angle C D O=30^{\circ}$. If $\angle D O B=x^{\circ}$, then the value of x is

(A) 35°
(B) 110°
(C) 70°
(D) 140°
13. In the given Figure, $\mathrm{IB} \| \mathrm{CD}$ and $\mathrm{AC} \| \mathrm{BD}$. If $\angle \mathrm{EIC}=40^{\circ}, \angle \mathrm{FDG}=55^{\circ}, \angle \mathrm{HIB}=\mathrm{x}^{\circ}$, then the value of x is:

(A) 95°
(B) 85°
(C) 165°
(D) 50°
14. In the given Figure, $A B \| C D$ and $P Q \| S R$. Then, $\angle S P R$ is :

(A) 55°
(B) 60°
(C) 70°
(D) 40°
15. In the given figure, $A B \| C D$. The value of x is :

(A) 20°
(B) 30°
(C) 45°
(D) 60°
16. $A B\|C D\| P Q$ and O is a point between $A B$ and $C D$ such that $\angle B A O=105^{\circ}$ and $\angle O C D=125^{\circ}$, find the measure of $\angle A O C$.

(A) 50°
(B) 105°
(C) 125°
(D) 130°
17. $E F$ is parallel to $G H$, then find the value of ' x '.

(A) 57°
(B) 123°
(C) 246°
(D) 61.5°
18. Observe the diagram carefully and decide in which option, the pair of dotted lines is parallel.
(A)

(B)

(C)

(D)

19. In the figure, ℓ parallel to m and AX and AY are transversals. Then the value of the angle $(x+y-z)$ is :

(A) 110°
(B) 80°
(C) 40°
(D) 30°
20. In the below figure $\mathrm{L}\|\mathrm{M}, \mathrm{M}\| \mathrm{N}$ and $\angle \mathrm{p}=65^{\circ}$, the value of $\angle \mathrm{x}$ is =

(A) 65°
(B) 115°
(C) 25°
(D) 45°

Iv
CLASSR 3 M
LINES \& ANGLES
21. Diagonal DB of a rhombus ABCD is equal to one of its sides. The values of $\angle \mathrm{A}$ is :

(A) 30°
(B) 60°
(C) 120°
(D) 90°

FILL IN THE BLANKS

1. A Line segment has \qquad end points.
2. A ray has \qquad end point.
3. A figure formed by two rays having the same initial point is called an \qquad
4. If the sum of the measures of two angles is 90°, then the angles are called \qquad
5. Three or more points which lie on the same line are called \qquad
6. Three or more lines in a plane passing through the same point are called \qquad
7. The distance between two parallel lines remains \qquad everywhere.
8. A line which intersect two or more lines at distinct point is called a \qquad

TRUE / FALSE

1. The distance between two parallel lines is not always same.
2. Complementary angle of 45° is 45°.
3. Two obtuse angles cannot be complement of each other.
4. If two lines in a plane do not intersect then lines are parallel.
5. If two parallel lines are intersected by transversal then sum of cointerior angle is 180°
6. If two parallel lines are intersected by transversal then alternate interior angle are equal.

MATCH THE COLUMN

1.

Column - A

(A) Complement of 53°
(B) Supplement of 87°
(C) Two adjacent supplementry angles
(D) Sum of the measure of all angles at a point
(E) Angle which is $2 / 3$ of its supplement

Column-B

(p) Linear pair
(q) 360°
(r) 93°
(s) 72°
(t) 37°

SECTION -B (FREE RESPONSE TYPE)

VERY SHORT ANSWER TYPE

1. If $(2 x-10)$ and $(x-5)$ are complementary angles, find x.
2. If $\left(3 x+40^{\circ}\right)$ and $\left(x-20^{\circ}\right)$ are supplementary angles, find x.
3. Two supplementary angles are in ratio $3: 7$. Find the angles.
4. Two complementary angles are in ratio $2: 3$. find the angles.
5. X lies in the interior of $\angle B A C$. If $\angle B A C=70^{\circ}$ and $\angle B A X=42^{\circ}$ then $\angle X A C=$?
6. The sum of an angle and half of its complement is 75°, find the angle.
7. In the figure, $\mathrm{m} \| \mathrm{n}$ and p and q are transversal. Find the values of x and y .

8. The co- interior angles given between 2 parallel lines are $2 x-35^{\circ}$ and $x+5^{\circ}$. Find $5 x-30^{\circ}$ according to question

SHORT ANSWER TYPE

9. If $(3 x+20)^{\circ}$ and $(2 x+25)^{\circ}$ are supplementary angles then find the value of x.
10. If one angle of triangle is equal to the sum of the other two then prove that it is right triangle
11. In the given figure, $A B \| C D, \angle A=128^{\circ}, \angle E=144^{\circ}$. Then find the $\angle F C D$.

12. For what value of x will line ℓ be parallel to line m ?

13. In figure $\ell \| \mathrm{m}$ and n is the transversal cutting ℓ and m at P and Q respectively. If $\angle 1=3 \mathrm{x}$ and $\angle 2=x$, find the value of x.

14. In figure, if $\ell \| \mathrm{m}$, find x .

15. In figure, $\ell|\mid m$ find the $2 a+3 b$

16. In figure, if $A O\|C D, B O\| C E$ and $\angle A O B=50^{\circ}$. Find $\angle E C D$.

LONG ANSWER TYPE

17. The supplement of an angle is one third of itself. Determine the angle and its supplement.
18. In figure, $E F$ is a line through A and parallel to the side $B C$ of triangle $A B C$. Find the value of x and use that to find $\angle E A B$ and $\angle F A C$.

19. In the given fig. $\overline{E F} \| \overline{\mathrm{G}}$. Find the value of x .

20. In the given fig. I \| m. Find measure of x and y.

21. In the given fig. $Q P \| R A . \angle Q P R=70^{\circ}$ and $\angle A R B=60^{\circ}$, find $\angle P R Q$.

22. In the given figure $A B \| E D$; then find the value of $\angle A B C+\angle B C D+\angle C D E$

EXERCISE

SECTION -A (COMPETITIVE EXAMINATION QUESTION)
 MULTIPLE CHOICE QUESTIONS

1. Find the measure of an angle, if six times its complement is 12° less than twice its supplement.
(A) 48°
(B) 30°
(C) 87°
(D) 49°
2. The complementary and supplementary angles of an angle are in the ratio $2: 5$ respectively. Find the measure of that angle.
(A) 60°
(B) 30°
(C) 90°
(D) 45°
3. In the given figure, if AB and CD are straight lines and $\angle \mathrm{COE}=90^{\circ}$, then the value of the angles x, y and z are :

(A) $16^{\circ}, 50^{\circ}, 130^{\circ}$
(B) $18^{\circ}, 45^{\circ}, 135^{\circ}$
(C) $20^{\circ}, 40^{\circ}, 140^{\circ}$
(D) $30^{\circ}, 15^{\circ}, 165^{\circ}$
4. In the given figure $A B \| E D$; then the value of $\angle A B C+\angle B C D+\angle C D E$ is :

(A) 180°
(B) 273°
(C) 360°
(D) 110°
5. In the given figure lines p and q are parallel. Find value of x so that lines I and m be parallel.

(A) 45°
(B) 100°
(C) 135°
(D) 60°
6. In the adjoining figure, $\angle A B C=100^{\circ}, \angle E D C=120^{\circ}$ and $A B \| D E$. Then, find $\angle B C D$.

(A) 40°
(B) 100°
(C) 75°
(D) 60°
7. In given figure if $A B \| C D, E F \perp C D$ and $\angle G E D=126^{\circ}$, then $\angle A G E$ is :

(A) 126°
(B) 132°
(C) 146°
(D) None of these
8. In the given figure, $A B \| C D$. Find the value of x.

(A) 126°
(B) 132°
(C) 146°
(D) None of these
9. Given that $A B \| C D$. False statement from the following is :

(A) $\angle \mathrm{AGH}+\angle \mathrm{DHF}=\angle \mathrm{EGB}+\angle \mathrm{GHC}$
(B) $\angle \mathrm{AGE}+\angle \mathrm{GHC}=\angle \mathrm{AGH}+\angle \mathrm{GHD}$
(C) $\angle \mathrm{AGE}+\angle \mathrm{CHF}=\angle \mathrm{EGB}+\angle \mathrm{DHF}$
(D) $\angle \mathrm{AGH}+\angle \mathrm{GHC}=\angle \mathrm{EGB}+\angle \mathrm{DHF}$
10. In the figure shown $P Q \| R S$ and $S M \| T N$. Then measure of angle α is :

(A) 58°
(B) 118°
(C) 89°
(D) 91°
11. In figure, if $A B\|C D\| E F$ and $y: z=3: 7$ find x.

(A) 40°
(B) 120°
(C) 126°
(D) 150°
12. In the given figure if $A B\|D F, A D\| F G, \angle B A C=65^{\circ}, \angle A C B=55^{\circ}$. Find $\angle F G H$.

(A) 125°
(B) 100°
(C) 120°
(D) 110°

SECTION -B (TECHIE STUFF)

13. Complement of an angle $36^{\circ} 40^{\prime}$ is :
(A) 54°
(B) $54^{\circ} 20^{\prime}$
(C) $53^{\circ} 20^{\prime}$
(D) None of these
14. Write the supplement of $58^{\circ} 29^{\prime}$
(A) $31^{\circ} 31^{\prime}$
(B) $121^{\circ} 27^{\prime}$
(C) $120^{\circ} 30^{\prime}$
(D) $121^{\circ} 31^{\prime}$

EXIERCISE

(PREVIOUS YEAR EXAMINATION QUESTIONS)

1. The complementary angle of 14 is
[NSTSE 2009]
(A) 90
(B) 76
(C) 41
(D) 86
2. Assume $\mathrm{p} \| \mathrm{q}$ in the figure shown. Then x equals
[NSTSE 2009]

(A) 18°
(B) 22°
(C) 62°
(D) can not be determine
3. $\quad A B$ and $C D$ are two straight lines parallel to each other and a straight line $E F$ intersects them as shown in the given figure. If $\angle \mathrm{b}=\angle \mathrm{c}$, then
[NSTSE 2010]

(A) $\angle \mathrm{a}=\angle \mathrm{h}$
(B) $\angle \mathrm{a}=\angle \mathrm{c}$
(C) $\angle \mathrm{g}=\angle \mathrm{e}$
(D) $\angle \mathrm{g}=\angle \mathrm{f}$
4. In the figure below, ACT and BCS are straight lines. Find the value of $\angle \mathrm{w}+\angle \mathrm{x}+\angle \mathrm{y}+\angle \mathrm{z}$
[NSTSE 2010]

(A) 180°
(B) 200°
(C) 280°
(D) 360°
5. Which two angles is the given figures are NOT complementary?
[IMO-2010]

(A) $\angle \mathrm{RXS}$ and $\angle \mathrm{TXU}$
(B) $\angle \mathrm{SXT}$ and $\angle \mathrm{TXU}$
(C) $\angle \mathrm{RXS}$ and $\angle \mathrm{SXT}$
(D) $\angle \mathrm{TXV}$ and $\angle \mathrm{UXV}$
6. Mr. Raghav installed a triangular piece of stained glass above his front door. Which of the following best describes the triangle with the given measures?
[IMO-2010]

(A) Acute equilateral triangle
(B) Obtuse isosceles triangle
(C) Right scalene triangle
(D) Right isosceles triangle
7. In the given figure, $\mathrm{AB}\|\mathrm{GH}\| \mathrm{DE}$ and $\mathrm{GF} \| \mathrm{BD}| | \mathrm{HI}, \angle \mathrm{FGC}=80^{\circ}$. Find the value of $\angle \mathrm{CHI}$.
[IMO-2011]

(A) 80°
(B) 120°
(C) 100°
(D) 160°
8. In the given figure, find the value of $\angle B O C$.
[IMO-2011]

(A) 101°
(B) 149°
(C) 71°
(D) 140°
9. In the adjoining figure, parallel lines are shown with similar markings. Find $\angle x$, if $\angle \mathrm{x}=5 \angle \mathrm{y}$.
[NSTSE 2012]

(A) 30°
(B) 60°
(C) 150°
(D) 170°
10. If $E F$ is parallel to $G H$, then find the value of ' x '.
[NSTSE 2012]

(A) 57°
(B) 123°
(C) 246°
(D) 61.5°
11. In the given figure, XYZ is an equilateral triangle and XZQ is an isosceles triangle. Find $\angle Q Z O$.
[IMO-2012]

(A) 30°
(B) 60°
(C) 45°
(D) 50°
12. In the given figure, AB and CD are straight lines. Find $\angle \mathrm{y}$.
[IMO-2012]

(A) 97°
(B) 27°
(C) 77°
(D) 55°
13. In the given figure, find $\angle x$.
[IMO-2012]

(A) 120°
(B) 110°
(C) 115°
(D) 125°
14. In the given figure $A B \| D E$. Find a.
[IMO-2012]

(A) 67°
(B) 113°
(C) 40°
(D) 140°
15. In the figure (not drawn to scale), $A C D$ is a right-angled triangle, $A B C$ is an isosceles triangle with $A B=A C, A C G, E A B$ and $F A D$ are straight lines. Find the value of x and y respectively.
[IMO-2012]

(A) $70^{\circ}, 85^{\circ}$
(B) $80^{\circ}, 75^{\circ}$
(C) $70^{\circ}, 80^{\circ}$
(D) $75^{\circ}, 85^{\circ}$
16. In the given figure I II m and $A B=B C$, find the value of y.

(A) 45°
(B) 48°
(C) 20°
(D) 30°
17. In the given figure, $P Q$ and $T S$ are parallel. Identify the value of $a^{\circ}+b^{\circ}+c^{\circ}$.
[NSTSE 2013]

(A) 360°
(B) 123°
(C) 246°
(D) 61.5°
18. In the given figure. $P Q\|R S, P S\| Q R$ and $R P T$ is $\frac{1}{4}$ as much as $P T S$. What is the value of RPQ ?
[IMO-2013]

(A) 84°
(B) 63°
(C) 42°
(D) 52°
19. In the figure $A B C D$ is a rectangle $\triangle C E F$ is an equilateral triangle. Find x.
[IMO-2013]

(A) 25°
(B) 30°
(C) 20°
(D) 50°
20. Find the angles x and y respectively in the given figure.
[IMO 2014]

(A) 66° and 84°
(B) 60° and 40°
(C) 66° and 48°
(D) 60° and 48°
21. Which of the following options is INCORRECT?

(A) $\angle 1=\angle 3$
(B) $\angle 1+\angle 4+\angle 5=180^{\circ}$
(C) $\angle 8=\angle 6$
(D) $\angle 1+\angle 3=180^{\circ}$
22. Find the value of $\angle 1+\angle 2$
[IMO-2014]

(A) 150°
(B) 60°
(C) 130°
(D) 110°
23. Fill in the blanks.
[IMO-2014]
P is perfectly straight and extends forever in both directions. Q is a perfectly flat surface that extends forever in all directions. R is the part of a line between two points.

	\mathbf{P}	\mathbf{Q}	\mathbf{R}
(A)	Line	Plane	Ray
(B)	Line	Plane	Segment
(C)	Line	Ray	Plane
(D)	Ray	Segment	Plane

24. The given figure shows three identical squares. Find x.
[IMO-2014]

(A) 30°
(B) 27°
(C) 36°
(D) 16°
25. In the given figure, $P Q, R S$ and $U T$ are parallel lines. If $c=75^{\circ}$ and $a=(2 / 5) c$, find $b+d / 2$.
[IMO-2014]

(A) 92°
(B) 115°
(C) 112.5°
(D) 135.5
26. Study the given statements.

Statement-I: e and h are supplementary angles.
Statement-II : c and g are equal angles.

(A) Both statement-I and statement-II are true.
(B) Statement-I is true and statement-II is false.
(C) Statement-I is false and statement-II is true.
(D) Both statement-I and statement-II are false.

ANSWER KEY

EXERCISE (1)
 SECTION -A (FIXED RESPONSE TYPE)
 MULTIPLE CHOICE QUESTIONS

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	C	C	B	D	B	A	D	D	D	A	B	C	B	C	B
Ques.	16	17	18	19	20	21									
Ans.	D	C	C	C	A	B									

FILL IN THE BLANKS

1. 2
2. One
3. Angle
4. Complementary
5. Collinear
6. Concurrent
7. Same
8. Transversal

TRUE / FALSE

1. False
2. True
3. True
4. True
5. True
6. True

MATCH THE COLUMN

1. $(A) \rightarrow(t),(B) \rightarrow(r),(C) \rightarrow(p),(D) \rightarrow(q),(E) \rightarrow(s)$

SECTION -B (FREE RESPONSE TYPE)

VERY SHORT ANSWER TYPE

1. 35°
2. 40°
3. $\quad 54^{\circ}$ and 126°
4. 36° and 54°
5. 45°
6. 60°
7. $64^{\circ}, 93^{\circ}$
8. 130°

SHORT ANSWER TYPE

9. 27°
10. Right triangle.
11. 92°
12. 50°
13. 45°
14. 135°
15. 460°
16. 130°

LONG ANSWER TYPE

17. $135^{\circ}, 45^{\circ}$
18. 40°
19. 95°
20. 30°
21. 50°
22. 360°

EXERCSE
 102

SECTION -A (COMPETITIVE EXAMINATION QUESTION)
MULTIPLE CHOICE QUESTIONS

Ques.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
Ans.	A	B	D	C	C	A	A	D	B	C	C	A

SECTION -B (TECHIE STUFF)

Ques.	13	14
Ans.	C	D

EXERCISE
 18

(PREVIOUS YEAR EXAMINATION QUESTIONS)

Ques.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
Ans.	B	C	B	B	A	B	A	B	C	C	B	B	C	C	B
Ques.	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$				
Ans.	D	A	B	A	C	D	C	B	B	C	C				

