MATHEMATICS

Class-VII

Topic-07

EXPONENTS

INDEX		
S. No.	Topic	Page No.
1.	Theory	$1-06$
2.	Exercise-1	$07-10$
3.	Exercise-2	$11-12$
4.	Exercise-3	$12-13$
5.	Answer Key	$14-15$

EXPONENTS

TERMINOLOGIES
Base, Exponents, Surds, Radicand, Radical sign, Order

INTRODUCTION

Do you know what is the mass of earth ?
It is 5970000000000000000000 kg ! Distance between sun and saturn is $1433500,000,000 \mathrm{~m}$. These large numbers are difficult to read, understand, and compare, hence to make them easier we study exponents.

7.1 EXPONENTS

If a is a non-zero rational number and n is a natural number, then the product $a \times a \times a \times \ldots$ up to n times is denoted by a^{n} and is read as 'a raised to the power n '. Rational number 'a' is called the base and natural number ' n ' is known as the exponent. Also, a^{n} is known as the exponential form of
$a \times a \times a \times \ldots$ up to n times.
For any non-zero rational number, we have :

$$
\mathrm{a}^{0}=1 \text { and } \mathrm{a}^{1}=\mathrm{a} .
$$

(a) Laws of Exponents

If a and b are non-zero rational numbers and m and n are natural numbers, then following are the laws of exponents :
(i) $a^{m} x a^{n}=a^{m+n}$
(ii) $\frac{a^{m}}{a^{n}}=a^{m-n}$, where $m>n$
(iii) $\quad\left(a^{m}\right)^{n}=a^{m n}=\left(a^{n}\right)^{m}$
(iv) $\quad(a \times b)^{n}=a^{n} b^{n}$
(v) $\quad\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$
(vi) $a^{-m}=\frac{1}{a^{m}}$

Illustration 7.1

Find the value of each of the following :
(i) 9^{3}
(ii) $\quad 2^{5}$

Sol. (i) We have,

$$
\begin{aligned}
9^{3} & =9 \times 9 \times 9 \\
& =(9 \times 9) \times 9 \\
& =81 \times 9 \\
& =729
\end{aligned}
$$

(ii) $2^{5}=2 \times 2 \times 2 \times 2 \times 2$

$$
=(2 \times 2) \times 2 \times 2 \times 2
$$

$$
=(4 \times 2) \times 2 \times 2
$$

$$
=8 \times 2 \times 2
$$

$$
=(8 \times 2) \times 2
$$

$$
=16 \times 2
$$

$$
=32 .
$$

Illustration 7.2

Simplify :
(i) $7^{2} \times 2^{2}$
(ii) $\quad 2^{3} \times 5$

Sol. (i) We have, $7^{2} \times 2^{2}=49 \times 4=196$
(ii) We have, $2^{3} \times 5=8 \times 5=40$

Illustration 7.3

Which one is greater in the following questions:
(i) $\quad 4^{3}$ or 3^{4}
(ii) $\quad 5^{3}$ or 3^{5}
(iii) 2^{8} or 8^{2}
(iv) 2^{10} or 10^{2}
(v) $\quad 2^{100}$ or 100^{2}

Sol. (i) We have,

$$
\begin{aligned}
& 4^{3}=4 \times 4 \times 4=64 \text { and } 3^{4}=3 \times 3 \times 3 \times 3=81 \\
& \because \quad 81>64 \\
& \therefore \quad 3^{4}>4^{3}
\end{aligned}
$$

(ii) We have

$$
\begin{aligned}
& 5^{3}=5 \times 5 \times 5=125 \text { and } 3^{5}=3 \times 3 \times 3 \times 3 \times 3=243 \\
& \because \quad 243>125 \\
& \therefore \quad 3^{5}>5^{3}
\end{aligned}
$$

(iii) We have

$$
\begin{aligned}
2^{8} & =2 \times 2 \\
& =(2 \times 2) \times(2 \times 2) \times(2 \times 2) \times(2 \times 2) \\
& =4 \times 4 \times 4 \times 4 \\
& =16 \times 16 \\
& =256 \\
\text { and } & 8^{2}=8 \times 8=64 \\
\because & \quad 256>64 \\
\therefore \quad & 2^{8}>8^{2}
\end{aligned}
$$

(iv) We have

$$
\begin{aligned}
2^{10} & =2 \times 2 \\
& =(2 \times 2) \times(2 \times 2) \times(2 \times 2) \times(2 \times 2) \times(2 \times 2) \\
& =4 \times 4 \times 4 \times 4 \times 4 \\
& =(4 \times 4) \times(4 \times 4) \times 4 \\
& =16 \times 16 \times 4 \\
& =256 \times 4=1024
\end{aligned}
$$

and $10^{2}=10 \times 10=100$
$\because \quad 1024>100$
$\therefore \quad 2^{10}>10^{2}$.
(v) In (iii) and (iv), we have seen that
$2^{8}>8^{2}$ and $2^{10}>10^{2}$
Similarly, it can be seen that
$2^{15}>15^{2}, 2^{20}>20^{2}, 2^{50}>50^{2}$ and $2^{100}>100^{2}$.

Illustration 7.4

Simplify \& write the answer in exponential form :
(i) $5^{2} \times 5^{3}$
(ii) $3^{2} \times 3^{4} \times 3^{8}$
(iii) $7^{\times} \times 7^{2}$
(iv) $\quad\left(\frac{3}{2}\right)^{2} \times\left(\frac{3}{2}\right)^{5}$
(v) $\quad\left(\frac{-2}{3}\right)^{3} \times\left(\frac{-2}{3}\right)^{2}$
(vi) $x^{5} \times x^{7}$

Sol. We have,
(i) $5^{2} \times 5^{3}=5^{2+3}=5^{5}$
(ii) $3^{2} \times 3^{4} \times 3^{8}=3^{2+4+8}=3^{14}$
(iii) $7^{\times} \times 7^{2}=7^{x+2}$
(iv) $\left(\frac{3}{2}\right)^{2} \times\left(\frac{3}{2}\right)^{5}=\left(\frac{3}{2}\right)^{2+5}=\left(\frac{3}{2}\right)^{7}$
(v) $\left(\frac{-2}{3}\right)^{3} \times\left(\frac{-2}{3}\right)^{2}=\left(\frac{-2}{3}\right)^{3+2}=\left(\frac{-2}{3}\right)^{5}$
(vi) $\quad x^{5} \times x^{7}=x^{5+7}=x^{12}$.

Illustration 7.5

Simplify and write each of the following in exponential form :
(i) $\quad\left((-3)^{5}\right)^{3}$
(ii) $\left\{\left(\frac{2}{3}\right)^{2}\right\}^{5}$

Sol.
$\left((-3)^{5}\right)^{3}=(-3)^{5 \times 3}=(-3)^{15}$
(ii) $\left\{\left(\frac{2}{3}\right)^{2}\right\}^{5}=\left(\frac{2}{3}\right)^{2 \times 5}=\left(\frac{2}{3}\right)^{10}$

Illustration 7.6

Simplify: $\left(6^{-1}-8^{-1}\right)^{-1}+\left(2^{-1}-3^{-1}\right)^{-1}$.
Sol. We have

$$
\begin{aligned}
& \left(6^{-1}-8^{-1}\right)^{-1}+\left(2^{-1}-3^{-1}\right)^{-1}=\left(\frac{1}{6}-\frac{1}{8}\right)^{-1}+\left(\frac{1}{2}-\frac{1}{3}\right)^{-1} \\
& =\left(\frac{4-3}{24}\right)^{-1}+\left(\frac{3-2}{6}\right)^{-1}=\left(\frac{1}{24}\right)^{-1}+\left(\frac{1}{6}\right)^{-1}=24+6=30 .
\end{aligned}
$$

Illustration 7.7

By what number should we multiply $(-8)^{-1}$ to obtain a product equal to 10^{-1} ?
Sol. Let the required no. be x.Then $(-8)^{-1} \times x=(10)^{-1}$

$$
\Rightarrow \quad \frac{1}{-8} \times x=\frac{1}{10} \quad \Rightarrow \quad x=\frac{1}{10} \times(-8) \quad \Rightarrow \quad x=\frac{-4}{5}
$$

Illustration 7.8

Find the value of x if $\left(\frac{2}{3}\right)^{5} \times\left(\frac{3}{2}\right)^{7}=\left(\frac{2}{3}\right)^{4 x}$.
Sol. $\quad\left(\frac{2}{3}\right)^{5} \times\left(\frac{3}{2}\right)^{7}=\left(\frac{2}{3}\right)^{4 x} \Rightarrow\left(\frac{2}{3}\right)^{5} \times\left(\frac{2}{3}\right)^{-7}=\left(\frac{2}{3}\right)^{4 x}$

$$
\begin{array}{ll}
\Rightarrow \quad\left(\frac{2}{3}\right)^{5-7}=\left(\frac{2}{3}\right)^{4 x} & \Rightarrow \quad\left(\frac{2}{3}\right)^{-2}=\left(\frac{2}{3}\right)^{4 x} \\
\Rightarrow \quad-2=4 x & \Rightarrow \quad x=\frac{-2}{4}=\frac{-1}{2} .
\end{array}
$$

Ask yourself

\qquad

1. Simplify: $\left\{\left(\frac{-2}{3}\right)^{2}\right\}^{3}$
2. By what number should 3^{-3} be multiplied to obtain 5
3. Find the value of x for which $2^{x+4}-2^{x+2}=3$.
4. The value of $\frac{3^{(12+n)} \times 9^{(2 n-7)}}{3^{5 n}}$
5. Find the simplified value of the expression $x^{a(b-c)} \cdot X^{b(c-a)} \cdot x^{c(a-b)}$

Answers

1. $\frac{64}{729}$
2. 135
3. -2
4. $\frac{1}{9}$
5. 1
\qquad

Since now we are all aware of irrational numbers, so lets deal with surds.
An irrational number of the form $\sqrt[n]{a}$ is given a special name Surd, where ' a ' is called radicand and it should always be a rational number. Also the symbol $\sqrt[n]{ }$ is called the radical sign and the index \mathbf{n} is called order of the surd. $\sqrt[n]{a}$ is read as ' $n^{\text {th }}$ root of a' and can also be written as $a^{\frac{1}{n}}$.

Some Important results on surds and their applications

(i) $\quad(\sqrt[n]{a})^{n}=\sqrt[n]{a^{n}}=a$
(ii) $\sqrt[n]{a}=\sqrt[n \times p]{a^{p}}$ or $\sqrt[n]{a^{m}}=\sqrt[n \times p]{a^{m \times p}}$,

1. Simplify :
(a) $\sqrt[3]{27}$
(b) $\sqrt[3]{64}$

Sol.
(a) $3^{3 \times \frac{1}{3}}=3$
(b) $4^{4 \times \frac{1}{4}}=4$
2. Which is greater: $\sqrt[3]{6}$ and $\sqrt[5]{8}$

Sol. $\quad \sqrt[3]{6}$ and $\sqrt[5]{8}$
L.C.M. of 3 and 5 is 15 .
$\sqrt[3]{6}=\sqrt[3 \times 5]{6^{5}}=\sqrt[15]{7776} \quad \Rightarrow \quad \sqrt[5]{8}=\sqrt[3 \times 5]{8^{3}}=\sqrt[15]{512}$
$\therefore \quad \sqrt[15]{7776}>\sqrt[15]{512} \quad \Rightarrow \quad \sqrt[3]{6}>\sqrt[5]{8}$
3. Solve : $\sqrt[4]{81}+\sqrt[3]{125}+\sqrt{25}$

Sol. $\sqrt[4]{81}+\sqrt[3]{125}+\sqrt{25}, 3^{4 \times \frac{1}{4}}+5^{3 \times \frac{1}{3}}+5^{2 \times \frac{1}{2}}=13$
4. Solve : $\sqrt[4]{625}+\sqrt[3]{125}+\sqrt[3]{343}$

Sol. $\quad 5^{4 \times \frac{1}{4}}+5^{3 \times \frac{1}{3}}+7^{3 \times \frac{1}{3}}=17$

Concept Map

\qquad

1. Exponents are used to express large numbers in shorter form to make them easy to read, understand, compare and operate upon.
2. $a \times a \times a \times a=a^{4}$ where a is the base and 4 is the exponent and a^{4} is called the exponential form .
3. Laws of exponent :
(i) $a^{m} \times a^{n}=a^{m+n}$
(ii) $\frac{a^{m}}{a^{n}}=a^{m-n}$, where $m>n$
(iii) $\quad\left(a^{m}\right)^{n}=a^{m n}=\left(a^{n}\right)^{m}$
(iv) $(a \times b)^{n}=a^{n} b^{n}$
(v) $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$
(vi) $a^{-m}=\frac{1}{a^{m}}$
(vii) $a^{0}=1$
(viii) $a^{1}=a$

EXERCISE
 SECTION -A (FIXED RESPONSE TYPE)
 MULTIPLE CHOICE QUESTIONS

1. If $\left(\frac{5}{3}\right)^{-5} \times\left(\frac{5}{3}\right)^{-11}=\left(\frac{5}{3}\right)^{8 x}$, then $x=$?
(A) $\frac{-1}{2}$
(B) -2
(C) 2
(D) $\frac{1}{2}$
2. If $\frac{p}{q}=\left(\frac{2}{3}\right)^{2} \div\left(\frac{6}{7}\right)^{0}$. Find the value of $\left(\frac{q}{p}\right)^{2}$.
(A) $\frac{4}{9}$
(B) $\frac{16}{81}$
(C) $\frac{9}{16}$
(D) $\frac{81}{16}$
3. $\left[6^{-1}+\left(\frac{3}{2}\right)^{-1}\right]^{-1}=$?
(A) $\frac{2}{3}$
(B) $\frac{5}{6}$
(C) $\frac{6}{5}$
(D) None of these
4. The value of $\left(\frac{a^{-2} \times b^{-3}}{a^{-3} \times b^{-4}}\right)$ is \qquad .
(A) $a^{-1} \times b$
(B) $a \times b^{-1}$
(C) $(a b)^{-1}$
(D) ab
5. Find the value of x, if $2^{x}+2^{x}+2^{x}=192$.
(A) 6
(B) 5
(C) 8
(D) 3
6. Find the value of ' m ' so that $(-3)^{m+1} \times(-3)^{5}=(-3)^{7}$
(A) 0
(B) -1
(C) 1
(D) 2
7. If $3^{n}=27$, then 3^{n-2} is :
(A) $\frac{1}{9}$
(B) $\frac{1}{3}$
(C) 3
(D) 9
8. The value of $\left(\frac{32}{243}\right)^{-3 / 5}$ is \qquad
(A) $\frac{27}{8}$
(B) $\frac{8}{27}$
(C) $\frac{16}{27}$
(D) $\frac{27}{16}$
9. The value of $\left(2^{5}\right)^{10}$ is :
(A) 2^{50}
(B) 2^{15}
(C) 2^{10}
(D) None of these
10. Value of $\left(13^{2}-5^{2}\right)^{3 / 2}$ is :
(A) 1782
(B) 1728
(C) 1872
(D) 2718
11. If $8 \times 2^{n+2}=32$, find the value of ' n '.
(A) 0
(B) -1
(C) 1
(D) 2
12. $(49)^{8} \div\left(7^{2}\right)^{6}$ is equal to
(A) 7
(B) 49
(C) 6
(D) none of these
13. The mass of an oxygen atom is 2.66×10^{-23} gram. The approximate mass of one billion of such oxygen atom is :
(A) 2.66×10^{-20}
(B) 2.66×10^{-17}
(C) 2.66×10^{-14}
(D) 2.66×10^{11}
14. $\left(\frac{12}{35}\right)^{4}$ is equal to :
(A) $\frac{2^{8} \times 3^{4}}{5^{4} \times 7^{4}}$
(B) $\frac{2^{2} \times 3^{1}}{5 \times 7}$
(C) $\frac{12^{4}}{7 \times 5}$
(D) $\frac{4^{2} \times 3^{2}}{7^{2} \times 5^{2}}$
15. Evaluate : $(14)^{2} \times(21)^{3} \div 7^{5}$.
(A) 108
(B) 180
(C) 118
(D) 1.8
16. $\left[\left\{\left(\frac{3}{2}\right)^{2}\right\}^{3}\right]^{0}=$
(A) 0
(B) 1
(C) $\frac{729}{128}$
(D) $\frac{243}{64}$
17. $\frac{2^{0}+3^{0}+5^{0}}{2 \times 3 \times 5}=$
(A) 3
(B) $\frac{1}{10}$
(C) $\frac{1}{30}$
(D) $\frac{1}{3}$

FILL IN THE BLANKS

1. If $x^{k}=1,(x \neq 1)$ then $k=$ \qquad .
2. $\left(7^{\circ}+5^{\circ}\right) \times 2^{\circ}=$ \qquad .
3. If $x^{-n}=\frac{1}{p}$, then $\mathrm{p}=$ \qquad .
4. $(x y)^{n}=x^{n} \times$ \qquad -
5. $\frac{x^{m+n}}{x^{n}}=$ \qquad .

TRUE / FALSE

1. $x^{5}+x^{2}=x^{7}$
2. $\left(a^{-1}+b^{-1}\right)^{-1}=\frac{a b}{a+b}$
3. If $4^{x+2}=256$, then x is equal to 2
4. $\left(\frac{2^{5}}{2^{8}}\right)^{5} \cdot 2^{-5}=2^{-20}$
5. $\left(\frac{1}{2}\right)^{m} \times(2)^{-n}=2^{m-n}$

MATCH THE COLUMN

1. Column - I
(A) $\quad\left(\frac{\mathrm{ap}}{\mathrm{qr}}\right)^{m} \times\left(\frac{\mathrm{bq}}{\mathrm{as}}\right)^{m}$
(B) $\quad\left(\frac{b / a}{c / d}\right)^{m} \times\left(\frac{b d}{a c}\right)^{n}$
(C) $\frac{\left(\mathrm{a}^{2}\right)^{3}}{\left(\mathrm{~b}^{3}\right)^{2}}$
(D) $\left(\frac{p / q}{r / s}\right)^{-m}$
2.

Column - I

(A) 0.0000463 in standard form is
(B) 345×10^{5} in standard form is
(C) $\left(\frac{1}{2}\right)^{-2}+\left(\frac{1}{3}\right)^{-2}+\left(\frac{1}{4}\right)^{-2}$
(D) $\quad\left(4^{-1}+8^{-1}\right) \div\left(\frac{2}{3}\right)^{-1}$

Column - II

(p) $\frac{a^{6}}{b^{6}}$
(q) $\left(\frac{\mathrm{rq}}{\mathrm{ps}}\right)^{m}$
(r) $\quad\left(\frac{\mathrm{bp}}{\mathrm{rs}}\right)^{m}$
(s) $\quad\left(\frac{b d}{a c}\right)^{m+n}$

SECTION -B (FREE RESPONSE TYPE)

VERY SHORT ANSWER TYPE

1. Simplify:
(i) $\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{-2}\right]^{-1}$
(ii) $\left\{\left(\frac{-2}{3}\right)^{2}\right\}^{3}$
(iii) $\quad\left(\frac{-3}{2}\right)^{3} \div\left(\frac{-3}{2}\right)^{6}$
(iv) $\left(\frac{-2}{3}\right)^{7} \div\left(\frac{-2}{3}\right)^{4}$
2. By what number should $(-5)^{-1}$ be multiplied so that the product is $(8)^{-1}$
3. By what number should we multiply 3^{-3} so that the product is 4 ?
4. By what number should $(-30)^{-1}$ be divided so that the quotient is $(6)^{-1}$?
5. $\left(\frac{2^{5}}{2^{8}}\right)^{5} \cdot 2^{-5}=$?

SHORT ANSWER TYPE

6. Find the value of x for which $2^{x+4}-2^{x+2}=3$
7. Simplify : $\left(\frac{1}{2}\right)^{3} \times\left(\frac{2}{3}\right)^{3} \times\left(\frac{3}{4}\right)^{3} \times 2^{6}$.
8. Find value of $20+(27)^{-1 / 3}$.
9. Solve : $5^{x-1}=1$
10. If $\left(\frac{a}{b}\right)^{x-1}=\left(\frac{b}{a}\right)^{x-3}$ then find the value of x
11. $\left[\left[\frac{2}{5}\right]^{-2}+\left[\frac{7}{2}\right]^{2}\right]^{-1}$ solve it.

LONG ANSWER TYPE

12. The value of $\left(27^{-2 / 3}\right)^{1 / 2} \times\left(64^{1 / 3}\right)^{2} \times\left(81^{-3 / 2}\right)^{1 / 6}$
13. Find x so that $\left(\frac{3}{5}\right)^{3} \times\left(\frac{3}{5}\right)^{-6}=\left(\frac{3}{5}\right)^{2 x-1}$.
14. Obtain the value of $2^{3} \times\left(\frac{1}{2}\right)^{5} \times 2^{-6} \times\left(\frac{1}{2}\right)^{-3}$
15. Simplify : $\left[\left(-\frac{1}{3}\right)^{-2}\right]^{-2} \times\left[\left(\frac{2}{3}\right)^{2}\right]^{-2} \div\left[\left(\frac{3}{2}\right)^{-1}\right]^{-2}$
16. $\frac{54^{4} \times 3 p^{3}}{\left(27 t^{9}\right)^{1 / 3}\left(625 p^{4}\right)^{1 / 4}}$

EkERCIIE 102

SECTION -A (COMPETITIVE EXAMINATION QUESTION)
 MULTIPLE CHOICE QUESTIONS

1. The expression $x^{a(b-c)} \cdot x^{b(c-a)} \cdot \mathrm{x}^{c(a-b)}$ simplifies to :
(A) -1
(B) 0
(C) 1
(D) 2
2. Simplify $\left(9^{4 / 3} \div 27^{2 / 3}\right) \times 3^{3 / 2}$
(A) $3^{9 / 5}$
(B) $3^{13 / 6}$
(C) $3^{37 / 6}$
(D) None of these
3. If $2^{n}-2^{n-1}=4$, then the value of n^{n} will be -
(A) 1
(B)
(C) 2
(D) 27
4. If $\left(\frac{1}{5}\right)^{3 y}=0.008$, then $(0.25)^{y}$ will be \qquad .
(A) 1
(B) 0.25
(C) 0.0625
(D) 0.125
5. If $3^{x}=500$, then the value of 3^{x-2} is \qquad
(A) $\frac{100}{9}$
(B) $\frac{1000}{9}$
(C) $\frac{500}{9}$
(D) $\frac{500}{3}$
6. The value of x in $\left(\frac{3}{5}\right)^{3} \times\left(\frac{3}{5}\right)^{-6}=\left(\frac{5}{3}\right)^{1-2 x}$ is \qquad
(A) 0
(B) 1
(C) -1
(D) 2
7. $\left(\frac{1}{2}\right)^{3} \times\left(\frac{-3}{5}\right)^{3} \times\left(\frac{-4}{9}\right)^{2}=$
(A) $\frac{-2}{375}$
(B) $\frac{2}{375}$
(C) $\frac{-6}{375}$
(D) $\frac{6}{375}$
8. The value of $\left[\left(\frac{-1}{3}\right)^{-2}\right]^{-2} \times\left[\left(\frac{2}{3}\right)^{2}\right]^{-2} \div\left[\left(\frac{3}{2}\right)^{-1}\right]^{-2}$ is :
(A) 81
(B) 36
(C) $\frac{1}{81}$
(D) $\frac{1}{36}$
9. Solve for x : $3^{2 x} \times 3^{x+3} \times 3^{4-x}=(\sqrt{3})^{10}$
(A) -1
(B) 1
(C) 3
(D) -3
10. $5^{2 x / 3} \times 5^{x+2} \times 5^{x-5}=(\sqrt{5})^{7 / 3}$ Find the value of \sqrt{x}.
(A) $\frac{5}{4}$
(B) 1
(C) $\frac{4}{5}$
(D) -1
11. $(49)^{a}=(7)^{a+5},(64)^{b}=(2)^{4 b+2}$. Find value of $2^{a+b} \Rightarrow$?
(A) 8
(B) 16
(C) 32
(D) 64

SECTION -B (TECHIE STUFF)

12. Find the biggest among the following $2^{1 / 2}, 3^{1 / 3}, 6^{1 / 6}, 8^{1 / 8}$
(A) $2^{1 / 2}$
(B) $3^{1 / 3}$
(C) $6^{1 / 6}$
(D) $8^{1 / 8}$
13. If $2 \times(\sqrt{2})^{5} \times(\sqrt{2})^{-2 / 3}=(\sqrt{2})^{x+1}$, then the value of x is :
(A) $\frac{2}{3}$
(B) $1 \frac{1}{3}$
(C) $4 \frac{1}{3}$
(D) $5 \frac{1}{3}$
14. $\sqrt{3 \sqrt{3 \sqrt{3 \sqrt{3}}}}=$
(A) $3^{\frac{15}{8}}$
(B) $3^{\frac{15}{16}}$
(C) $3^{\frac{16}{15}}$
(D) $3^{\frac{8}{15}}$
15. $\frac{\sqrt{32}+\sqrt{48}}{\sqrt{8}+\sqrt{12}}$
(A) 2
(B) $\sqrt{2}$
(C) $\sqrt{3}$
(D) 1

EXERCISE

(PREVIOUS YEAR EXAMINATION QUESTIONS)

1. Which one of the following statements is true ?
[NSTSE 2010]
(A) $4^{3^{2}}=\left(4^{3}\right)^{2}$
(B) $4^{3^{2}}>\left(4^{3}\right)^{2}$
(C) $4^{3^{2}}<\left(4^{3}\right)^{2}$
(D) they cannot be compared
2. Which of the following statements is false ?
[NSTSE 2010]
(A) $(-1)^{n}=-1$, if n is an odd integer
(B) For any rational number $a, a^{0}=1$
(C) if $4 \times 8^{m}=2^{5}$, then $\mathrm{m}=1$
(D) None of these
3. What is the value of the expression given below?
[IMO-2010]

$$
5+5(9 \div 3)^{2}
$$

(A) 35
(B) 90
(C) 50
(D) 230
4. Ashwin used the rule listed below to rewrite the expression $10^{2} \times 10^{5}=10^{7}$.
$10^{m} \times 10^{n}=10^{m+n}$
Based on this rule, which of the following is equivalent to the expression $8^{-4} \times 8^{6}$?
[IMO-2010]
(A) 8^{-10}, because $8^{-4} \times 8^{6}=8^{-4-6}$
(B) 8^{10} because $8^{-4} \times 8^{6}=8^{4+6}$
(C) 8^{-2}, because $8^{-4} \times 8^{6}=8^{4-6}$
(D) 8^{2}, because $8^{-4} \times 8^{6}=8^{-4+6}$
5. A mistake was made in simplifying the expression given below.

Simplify : $5+2(6+4)-2^{3}$, Step $1: 5+2(10)-2^{3}$, Step $2: 7(10)-2^{3}$, Step $3: 70-2^{3}$, Step 4: $70-8$, Step 5 : 62.
In which step did the first mistake appear?
[IMO-2010]
(A) Step 1
(B) Step 2
(C) Step 3
(D) Step 4

EXPONENTS
6. For what positive integer ' n ' does $n^{2} \times 1995^{2} \times 1996^{2} \times 1997^{2}=3990^{2} \times 3992^{2} \times 3994^{2}$?
[NSTSE 2011]
(A) 2
(B) 4
(C) 5
(D) 8
7. In simplest form, the value of the quotient $\frac{19^{98}+(342)(19)^{97}}{19^{99}}$
[NSTSE 2011]
(A) 0
(B) 1
(C) 19
(D) 100
8. Simplify : $\frac{5 x^{7} y^{5} \times\left(10 a^{3} x^{2}\right)^{-3}}{\left(2 x^{5} y^{3}\right) \times\left(6 a^{2} y\right)^{-2}}$
[IMO-2013]
(A) $\frac{25}{6} x y^{4}$
(B) $\frac{25}{4} x^{2} y^{3}$
(C) $\frac{9}{100} a^{2} x y$
(D) $\frac{9}{100 a} \times\left(\frac{y}{x a}\right)^{4}$
9. The value of $\frac{\left((243)^{\frac{1}{5}}\right)^{4}}{\left((32)^{\frac{1}{5}}\right)^{4}}=$?
[IMO-2014]
(A) $\frac{3}{2}$
(B) $\left(\frac{3}{2}\right)^{-4}$
(C) $\frac{1}{2^{-4} \times 3^{-4}}$
(D) $\frac{1}{2^{4} \times 3^{-4}}$

ANSWER KEY

EXERCISE

SECTION -A (FIXED RESPONSE TYPE)

MULTIPLE CHOICE QUESTIONS

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	B	D	C	D	A	C	C	A	A	B	A	D	C	A	A
Ques.	16	17													
Ans.	B	B													

FILL IN THE BLANKS

1. 0
2. 2
3. x^{n}
4. y^{n}
5. x^{m}

TRUE / FALSE

1. False
2. True
3. True
4. True
5. False

MATCH THE COLUMN

1.

$(A)-(r),(B)-(s),(C)-(p),(D)-(q)$
2. $(A)-(q),(B)-(r),(C)-(s),(D)-(p)$

SECTION -B (FREE RESPONSE TYPE)

VERY SHORT ANSWER TYPE

1.

(i) $\frac{1}{256}$
(ii) $\frac{64}{729}$
(iii) $\frac{-8}{27}$
(iv) $\frac{-8}{27}$
2. $\frac{-5}{8}$
3. 108
4. $\frac{-1}{5}$
5. 2^{-20}

SHORT ANSWER TYPE

6. -2
7. 1
8. $20 \frac{1}{3}$
9. 1
10. 2
11. $\frac{2}{37}$

LONG ANSWER TYPE
12. $\frac{16}{9}$
13. -1
14. $\frac{1}{32}$
15. $\frac{1}{36}$
16. $\quad \mathrm{tp}^{2}$

SECTION -A (COMPETITIVE EXAMINATION QUESTION)
 MULTIPLE CHOICE QUESTIONS

Ques.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
Ans.	C	B	D	B	C	C	A	D	A	A	D

SECTION -B (TECHIE STUFF)

Ques.	12	13	14	15
Ans.	B	D	B	A

EXERCISE (1)
(PREVIOUS YEAR EXAMINATION QUESTIONS)

Ques.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
Ans.	B	B	C	D	B	D	B	D	D

