MATHEMATICS

Class-VIII

Topic-5 QUADRILATERALS

INDEX

S. No.	Topic	Page No.
1.	Theory	$1-17$
2.	Exercise-1	$18-21$
3.	Exercise-2	$21-23$
4.	Exercise-3	$23-25$
5.	Answer Key	$26-27$

CH-05 QUADRILATERALS

TERMINOLOGIES

Polygon, Parallel Lines, Transversal, Collinear, Vertices, Line Segments, Sides, Angles, Convex and concave quadrilateral, diagonals, parallelogram, Rhombus, Rectangle, Square, Trapezium, Kite, Isosceles trapezium, congruent.

INTRODUCTION

'Poly' means many and 'gon' means sides. So a polygon is a closed figure of many sides. A polygon of ' n ' sides is also called n-gon. Polygon can be classified according to the number of sides like triangle (3 sides), Quadrilateral (4 sides). Pentagon (5 sides).

5.1 QUADRILATERAL

A quadrilateral is four sided closed figure.

Let A, B, C and D be four points in a plane such that:
(i) No three of them are collinear.
(ii) The line segments $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA do not intersect except at their end points, then figure obtained by joining $A, B, C \& D$ is called a quadrilateral.
(a) Definitions
(i) Vertices : The point A, B, C and D are called vertices.
(ii) Opposite vertices : The vertices A and $C ; B$ and D are called the opposite vertices.
(iii) Sides : The line segment $A B, B C, C D$ and $A D$ are called sides.
(iv) Opposite sides : AB and DC ; AD and BC are called opposite sides.
(v) Adjacent sides : $A D$ and $A B ; A B$ and $B C, B C$ and $C D, C D$ and $A D$ are called the adjacent sides.
(vi) Angles : $\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}$ and $\angle \mathrm{D}$ are the angles of the quadrilateral ABCD .
(vii) Opposite angles : $\angle \mathrm{A}$ and $\angle \mathrm{C} ; \angle \mathrm{B}$ and $\angle \mathrm{D}$ are opposite angles.
(viii) Adjacent angles : $\angle \mathrm{A}$ and $\angle \mathrm{B} ; \angle \mathrm{B}$ and $\angle \mathrm{C} ; \angle \mathrm{C}$ and $\angle \mathrm{D} ; \angle \mathrm{D}$ and $\angle \mathrm{A}$ are the adjacent angles.
(ix) Diagonals : Line segment joining the opposite vertices of a quadrilateral $A B C D$ are called its diagonal. In the above figure $A C$ and $B D$ are two diagonals of the quadrilateral ABCD.

(b) Convex and Concave Quadrilaterals

(i) A quadrilateral in which the measure of each interior angle is less than 180° is called a convex quadrilateral. In figure, PQRS is convex quadrilateral.

(ii) A quadrilateral in which the measure of one of the interior angle is more than 180° is called a concave quadrilateral. In figure, $A B C D$ is concave quadrilateral.

(c) Special Quadrilaterals
(i) Parallelogram : A parallelogram is a quadrilateral in which both pairs of opposite sides are parallel. In figure, $A B\|D C, A D\| B C$ therefore, $A B C D$ is a parallelogram.

(ii) Rectangle : A rectangle is parallelogram, but each of its angle is right angle. If $A B C D$ is a rectangle then $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=90^{\circ}$.

(iii) Rhombus : A rhombus is a parallelogram but all its sides are equal in length. If $A B C D$ is a rhombus then $A B=B C=C D=D A$.

(iv) Square : A square is a parallelogram having all sides equal and each angle equal to right angle. If $A B C D$ is a square then $A B=B C=C D=D A$ and $\angle A=\angle B=\angle C=\angle D=$ 90°.

(v) Trapezium : A trapezium is a quadrilateral with only one pair of opposite sides parallel. In figure, $A B C D$ is a trapezium with $A B \| D C$.

(vi) Kite : A kite is a quadrilateral in which two pairs of adjacent sides are equal. If ABCD is a kite then $A B=A D$ and $B C=C D$.

(vii) Isosceles trapezium : A trapezium is said to be an isosceles trapezium, if its nonparallel sides are equal. Thus a quadrilateral $A B C D$ is an isosceles trapezium, if $A B|\mid D C$ and $A D=B C$ and $\angle A=\angle B$ and $\angle D=\angle C$.

Ask yourself

1. It is possible to have a quadrilateral whose angles are of measures $105^{\circ}, 165^{\circ}, 55^{\circ}$ and 45° ? Give reason.
2. The angles of a quadrilateral are respectively $20^{\circ}, 100^{\circ}, 80^{\circ}$. Find the fourth angle.
3. What will be the sum of all angles of a convex polygon which has
(i) 6 sides
(ii) 8 sides
4. How many sides has a regular polygon, each angle of which is of measure 108° ?
5. What is the sum of all the angles of
(a) A hexagon
(b) An octagon
(c) A regular decagon
6. It is possible to have a regular polygon whose interior angle measures 124° ? Justify

Answers

1. No
2. 5
3. 160°
4. (i) 720°
5.

(i) 720°
(ii) 1080°
6. No

5.2 PROPERTIES OF VARIOUS SPECIAL TYPES OF QUADRILATERALS

(a) Parallelogram

Properties in the form of theorems have been given.
Theorem-1 : The sum of the four angles of a quadrilateral is 360°.

Given : Quadrilateral ABCD.
To Prove : $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ}$.
Construction : Join AC.
Proof: In $\triangle A B C$, we have

In $\triangle \mathrm{ACD}$, we have

$$
\begin{equation*}
\angle 2+\angle 3+\angle 5=180^{\circ} \tag{ii}
\end{equation*}
$$

Adding (i) and (ii) we get

$$
\begin{aligned}
& (\angle 1+\angle 2)+(\angle 3+\angle 4)+\angle 5+\angle 6=180^{\circ}+180^{\circ} \\
& \angle \mathrm{A}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{B}=360^{\circ} \\
& \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ}
\end{aligned}
$$

Theorem-2 : A diagonal of a parallelogram divides it into two congruent triangles.
Given: A parallelogram ABCD.
To Prove : A diagonal, say, $A C$ of parallelogram $A B C D$ divides it into congruent triangles ABC and CDA i.e. $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$.

Construction : Join AC.
Proof : Since $A B C D$ is a parallelogram. Therefore, $A B|\mid D C$ and $A D| \mid B C$
Now, $A D|\mid B C$ and transversal $A C$ intersects them at A and C respectively.

Again, $A B|\mid D C$ and transversal $A C$ intersects them at A and C respectively.
Therefore,

$$
\angle \mathrm{BAC}=\angle \mathrm{DCA} \quad \ldots \text { (ii) } \quad \text { [Alternate interior angles] }
$$

Now, in $\triangle A B C$ and $\triangle C D A$, we have

$\angle B C A=\angle D A C$	$[$ From (i)]
$A C=A C$	$[$ Common side $]$

$\angle \mathrm{BAC}=\angle \mathrm{DCA} \quad$ [From (ii)]
So, by ASA congruence criterion, we have

$$
\Delta \mathrm{ABC} \cong \triangle \mathrm{CDA}
$$

Theorem-3 : In a parallelogram, opposite sides are equal.
Given: A parallelogram ABCD.
To Prove : $A B=C D$ and $D A=B C$.
Construction : Join AC.
Proof : Since $A B C D$ is a parallelogram. Therefore
$A B|\mid D C$ and $A D| \mid B C$

Now, $A D \| B C$ and transversal $A C$ intersects them at A and C respectively.
$\angle \mathrm{DAC}=\angle \mathrm{BCA}$
...(i) [Alternate interior angles]

Again, $A B|\mid D C$ and transversal $A C$ intersects them at A and C respectively.
$\angle B A C=\angle D C A$
...(ii) [Alternate interior angles]

Now, in $\triangle A D C$ and $\triangle C B A$, we have
$\angle D C A=\angle B A C$
$A C=A C$
And $\angle \mathrm{DAC}=\angle \mathrm{BCA}$
So, by ASA criterion congruence
$\triangle A D C \cong \triangle C B A$
$A D=C B$ and $D C=B A \quad$ [Corresponding parts of congruent triangles are equal]

Theorem - 4 : The opposite angles of a parallelogram are equal.
Given : A parallelogram ABCD
To Prove: $\angle \mathrm{A}=\angle \mathrm{C}$ and $\angle \mathrm{B}=\angle \mathrm{D}$
Proof : Since $A B C D$ is a parallelogram. Therefore,
$A B|\mid D C$ and $A D| \mid B C$
Now, $A B \| D C$ and transversal $A D$ intersects them at A and D respectively.

$\angle \mathrm{A}+\angle \mathrm{D}=180^{\circ} \ldots$ (i) $\left[\begin{array}{ll}\because \text { Sum of consecutive } \\ \text { interior angles is } 180^{\circ}\end{array}\right]$
Again, $A D \| B C$ and $D C$ intersects them at D and C respectively.
$\angle D+\angle C=180^{\circ} \ldots$ (ii) $\left[\begin{array}{l}\because \text { Sum of consecutive } \\ \text { interior angles is } 180^{\circ}\end{array}\right]$
From (i) and (ii) we get
$\angle \mathrm{A}+\angle \mathrm{D}=\angle \mathrm{D}+\mathrm{C} \quad \Rightarrow \quad \angle \mathrm{A}=\angle \mathrm{C}$.
Similarly, $\angle \mathrm{B}=\angle \mathrm{D}$
Hence, $\angle \mathrm{A}=\angle \mathrm{C}$ and $\angle \mathrm{B}=\angle \mathrm{D}$.
Theorem-5 : The diagonals of a parallelogram bisect each other.
Given : A parallelogram $A B C D$ such that its diagonals $A C$ and $B D$ intersect at O.
To Prove : $O A=O C$ and $O B=O D$.
Proof : Since ABCD is a parallelogram. Therefore, $A B|\mid D C$ and $A D \| B C$
Now, $A B|\mid D C$ and transversal $A C$ intersects them at A and C respectively.
$\angle B A C=\angle D C A$
$\angle \mathrm{BAO}=\angle \mathrm{DCO}$

Again, $A B \| D C$ and $B D$ intersects them at B and D respectively.
$\angle A B D=\angle C D B$
$\angle A B O=\angle C D O$
[Alternate interior angles are equal]

Now, in $\triangle A O B$ and $\triangle C O D$, we have
$\angle \mathrm{BAO}=\angle \mathrm{DCO}$
[From (i)]
$\angle B=C D$
$\angle A B O=\angle C D O$
[Opposite sides of a paralleloogram are equal]
And, $\angle \mathrm{ABO}=\angle \mathrm{CDO}$
So, by ASA congruence criterion
$\triangle A O B \cong \triangle C O D$
$\mathrm{OA}=\mathrm{OC}$ and $\mathrm{OB}=\mathrm{OD} \quad$ [By CPCT]
Hence, $O A=O C$ and $O B=O D$

Illustration 5.1

In a quadrilateral $A B C D$, the angles A, B, C and D are in the ratio $1: 2: 3: 4$. Find the measure of each angles of the quadrilateral.
Sol. We have $\angle \mathrm{A}: \angle \mathrm{B}: \angle \mathrm{C}: \angle \mathrm{D}=1: 2: 3: 4$.
So, let $\angle \mathrm{A}=\mathrm{x}^{0}, \angle \mathrm{~B}=2 \mathrm{x}^{0}, \angle \mathrm{C}=3 \mathrm{x}^{0}, \angle \mathrm{D}=4 \mathrm{x}^{0}$

$$
\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ}
$$

$$
x+2 x+3 x+4 x=360
$$

$$
10 x=360
$$

$$
x=36
$$

Thus, the angles are :
$\angle \mathrm{A}=36^{\circ}, \angle \mathrm{B}=(2 \times 36)^{\circ}=72^{\circ}, \angle \mathrm{C}=(3 \times 36)^{\circ}=108^{\circ}$
And, $\angle \mathrm{D}=(4 \mathrm{x})^{\circ}=(4 \times 36)^{\circ}=144$.

Illustration 5.2

The sides $B A$ and $D C$ of a quadrilateral $A B C D$ are produced as shown in figure, prove that $a+b=x+y$.

Sol. Join $B D$. In $\triangle A B D$, we have
$\angle A B D+\angle A D B=b^{\circ}$
[Exterior angle theorem]
In $\triangle C B D$, we have
$\angle \mathrm{CBD}+\angle \mathrm{CDB}=\mathrm{a}^{\circ}$
[Exterior angle theorem]
Adding (i) and (ii) we, get
$(\angle A B D+\angle C B D)+(\angle A D B+\angle C D B)=a^{\circ}+b^{\circ}$
$\Rightarrow \quad x^{\circ}+y^{\circ}=a^{\circ}+b^{\circ}$
Hence, $x+y=a+b$.

Illustration 5.3

In a parallelogram $A B C D$ diagonals $A C$ and $B D$ intersect at O and $A C=6.8 \mathrm{~cm}$ and $B D=5.6 \mathrm{~cm}$. Find the measures of $O C$ and $O D$.
Sol. Since, the diagonals of a parallelogram bisect each other. Therefore, O is the mid-point of $A C$ and BD.
$\therefore \mathrm{OC}=\frac{1}{2} \mathrm{AC}=\frac{1}{2} \times 6.8 \mathrm{~cm}=3.4 \mathrm{~cm}$
And, $O D=\frac{1}{2} B D=\frac{1}{2} \times 5.6 \mathrm{~cm}=2.8 \mathrm{~cm}$

Illustration 5.4

Given $\triangle A B C$, lines are drawn through A, B and C parallel respectively to the sides $B C, C A$ and $A B$, forming $\triangle P Q R$ show that $B C=\frac{1}{2} Q R$.

Sol. We have, $A Q|\mid C B$ and $A C| \mid ~ Q B$
$\Rightarrow \quad A Q B C$ is parallelogram
$B C=A Q$
[\because Opposite sides of a $\|^{g m}$ are equal]

Again $A R|\mid B C$ and $A B| \mid R C$
$\Rightarrow \quad A R C B$ is a parallelogram.
$\begin{aligned} \Rightarrow \quad & B C=A R \\ & A Q=A R\end{aligned}$
$\Rightarrow \quad A Q=A R=\frac{1}{2} Q R$
$\Rightarrow \quad B C=\frac{1}{2} Q R$.
....(ii) [Opposite sides of $\|$ gm are equal] From (i) and (ii), we get

Illustration 5.5

If $A B C D$ is a quadrilateral in which $A B \| C D$ and $A D=B C$, prove that $\angle A=\angle B$.
Sol. Extend $A B$ and draw a line $C E$ parallel to $A D$ as shown in figure, since $A D \| C E$ and transversal $A E$ cuts them at A and E respectively.
$\therefore \quad \angle A+\angle E=180^{\circ}$
Since AE || CD and AD || CE. Therefore,
$A E C D$ is parallelogram.
$\Rightarrow \quad \mathrm{AD}=\mathrm{CE}$
$\Rightarrow \quad B C=C E$
$[\because A D=B C$ (given) $]$
Thus, in $\triangle \mathrm{BCE}$, we have

$B C=C E$
$\Rightarrow \quad \angle \mathrm{CBE}=\angle \mathrm{CEB}(\triangle \mathrm{BCE}$ is isosceles triangle)
$\Rightarrow \quad 180-\angle \mathrm{B}=\angle \mathrm{E}$
$\Rightarrow \quad 180-\angle \mathrm{E}=\angle \mathrm{B}$
From (i) and (ii), we get
$\angle A=\angle B$

Illustration 5.6

In a parallelogram $\mathrm{ABCD}, \angle \mathrm{D}=115^{\circ}$, determine the measure of $\angle \mathrm{A}$ and $\angle \mathrm{B}$.
Sol. Since the sum of any two consecutive angles of a parallelogram is 180°.
Therefore,

$$
\angle \mathrm{A}+\angle \mathrm{D}=180^{\circ} \text { and } \angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}
$$

Now, $\angle \mathrm{A}+\angle \mathrm{D}=180^{\circ}$
$\angle A+115^{\circ}=180^{\circ} \quad\left[\angle D=115^{\circ}\right.$ (Given) $]$
$\angle A=65^{\circ}$
And, $\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$
$65^{\circ}+\angle B=180^{\circ} \angle B .=115^{\circ}$
Thus, $\angle \mathrm{A}=65^{\circ}$ and $\angle \mathrm{B}=115^{\circ}$

Illustration 5.7

In fig., ABCD is a parallelogram in which $\angle \mathrm{DAO}=40^{\circ}, \angle \mathrm{BAO}=35^{\circ}$ and $\angle C O D=65^{\circ}$. Find:
(i) $\angle \mathrm{ABO}$
(ii) $\angle O D C$
(iii) $\angle A C B$
(iv) $\angle C B D$

Sol. Since $\angle A O B$ and $\angle C O D$ are vertically opposite angles.

$\therefore \angle \mathrm{AOB}=\angle \mathrm{COD}$

$$
\angle \mathrm{AOB}=65^{\circ}
$$

(i) In $\triangle A O B$, we have

$$
\begin{gathered}
\angle \mathrm{OAB}+\angle \mathrm{AOB}+\angle \mathrm{ABO}=180^{\circ} \\
35^{\circ}+65^{\circ}+\angle \mathrm{ABO}=180^{\circ} \\
100^{\circ}+\angle \mathrm{ABO}=180^{\circ} \\
\angle \mathrm{ABO}=180^{\circ}-100^{\circ}=80^{\circ}
\end{gathered}
$$

(ii) Since $\angle \mathrm{ABO}$ and $\angle \mathrm{ODC}$ are alternate interior angles and alternate interior angles are always equal.

$$
\begin{aligned}
\therefore \quad \angle \mathrm{ODC} & =\angle \mathrm{ABO} \\
\angle \mathrm{ODC} & =80^{\circ}
\end{aligned}
$$

(iii) Since $\angle \mathrm{ACB}$ and $\angle \mathrm{DAC}$ are alternate interior angles.

$$
\begin{array}{ll}
\therefore \quad \angle \mathrm{ACB} & =\angle \mathrm{DAC} \\
& \angle \mathrm{ACB}
\end{array}=40^{\circ}
$$

(iv) Since $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are adjacent interior angles of parallelogram ABCD and adjacent interior angles are supplementary.

$$
\begin{array}{ll}
\therefore & \angle A+\angle B=180^{\circ} \\
& \angle B=180^{\circ}-\angle A \\
\Rightarrow & \angle B=180^{\circ}-\left(40^{\circ}+35^{\circ}\right)=105^{\circ} \\
\Rightarrow & \angle A B D+\angle C B D=105^{\circ} \\
\Rightarrow & \angle A B O+\angle C B D=105^{\circ} \\
\Rightarrow & 80^{\circ}+\angle C B D=105^{\circ} \\
\Rightarrow & \angle C B D=105^{\circ}-80^{\circ}=25^{\circ}
\end{array}
$$

Illustration 5.8

The ratio of two sides of a parallelogram is as $3: 5$, and its perimeter is 48 m . Find sides of a parallelogram.
Sol. Let the two sides of the parallelogram be $3 x$ metres and $5 x$ metres in length.
Then,
Perimeter $=2$ (length + breadth $)$
Perimeter $=2(3 x+5 x)$ metres

$$
\begin{aligned}
& =2 \times 8 \times \text { metres } \\
& =16 \times \text { metres } .
\end{aligned}
$$

But, the perimeter is given as 48 metres.

$$
\therefore \quad 16 x=48 \quad \Rightarrow \quad \frac{16 x}{16}=\frac{48}{16} \quad \Rightarrow \quad x=3
$$

Hence, the sides of the parallelogram are $3 \times 3 \mathrm{~m}=9 \mathrm{~m}$ and $5 \times 3 \mathrm{~m}=15 \mathrm{~m}$.

Illustration 5.9

In a parallelogram ABCD , the bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{B}$ meet at O . Find $\angle \mathrm{AOB}$.
Sol. Since OA and OB are the bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{B}$ respectively.

$$
\begin{aligned}
& \therefore \angle \mathrm{OAB}+\angle \mathrm{AOB}+\angle \mathrm{OBA}=180^{\circ} \\
& \Rightarrow \quad \frac{1}{2} \angle \mathrm{~A}+\angle \mathrm{AOB}+\frac{1}{2} \angle \mathrm{~B}=180^{\circ} \\
& \Rightarrow \quad \angle \mathrm{AOB}=180^{\circ}-\frac{1}{2}(\angle \mathrm{~A}+\angle \mathrm{B}) \\
& \Rightarrow \quad \angle \mathrm{AOB}=180^{\circ}-\frac{1}{2}\left(180^{\circ}\right) \quad[\because \angle \mathrm{A} \text { and } \angle \mathrm{B} \text { are adjacent angles of } \\
& \Rightarrow \quad \angle \mathrm{AOB}=180^{\circ}-90^{\circ}=90^{\circ} . \\
& \Rightarrow \quad \angle \mathrm{ABO}+\angle \mathrm{CBD}=105^{\circ} \\
& \Rightarrow \quad 80^{\circ}+\angle \mathrm{CBD}=105^{\circ} \\
& \Rightarrow \quad \angle \mathrm{CBD}=105^{\circ}-80^{\circ}=25^{\circ} \\
& \Rightarrow \quad \angle \mathrm{AOB}=180^{\circ}-\frac{1}{2}\left(180^{\circ}\right) \quad[\because \angle \mathrm{A} \text { and } \angle \mathrm{B} \text { are adjacent angles of }] \\
& \Rightarrow \quad \angle \mathrm{AOB}=180^{\circ}-90^{\circ}=90^{\circ} .
\end{aligned}
$$

(b) Rectangle

Some properties of rectangles, rhombus and squares have been given in the form of theorems:
Theorem - 6 : Each of the four angles of a rectangle is a right angle.

Given : A rectangle $A B C D$ such that $\angle A=90^{\circ}$.
To Prove: $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=90^{\circ}$.
Proof : ABCD is a rectangle
$A B C D$ is a parallelogram
$A D|\mid B C$
Now, $A D|\mid B C$ and line $A B$ intersects them at A and B.

$$
\left.\begin{array}{ll}
\therefore \angle \mathrm{A}+\angle \mathrm{B}=180^{\circ} & {[\because \text { Sum of the interior angles on the }} \\
\text { same side of a transversal is } 180^{\circ}
\end{array}\right]
$$

Similarly, we can show that $\angle \mathrm{C}=90^{\circ}$ and $\angle \mathrm{D}=90^{\circ}$
Hence, $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=90^{\circ}$
Theorem - 7 : The diagonals of a rectangle are of equal length.
Given : A rectangle ABCD with $A C$ and $B D$ as its diagonals.
To Prove : AC = BD.
Proof : ABCD is a rectangle.
$\Rightarrow \quad A B C D$ is a parallelogram such that one of its angles, say, $\angle A$ is a right angle.
$\Rightarrow \quad A D=B C$ and $\angle A=90^{\circ}$

Now, $A D \| B C$ and $A B$ intersects them at A and B respectively.
$\therefore \quad \angle A+\angle B=180^{\circ}$
$\Rightarrow \quad 90^{\circ}+\angle B=180^{\circ}$
$\Rightarrow \quad \angle B=90^{\circ} \quad\left[\because \angle A=90^{\circ}\right]$
Now, in $\triangle s$ ABD and BAC, we have

$$
\begin{array}{ll}
A B=B A & {[\text { Common side }]} \\
\angle A=\angle B & {\left[\text { Each equal to } 90^{\circ}\right]} \\
A D=B C & {[\text { From (i)] }}
\end{array}
$$

So, by SAS criterion of congruence
$\Delta A B D \cong \triangle B A C$
$B D=A C$
$\left[\begin{array}{ccc}\because \text { Corresponding } & \text { parts } & \text { of } \\ \text { congruent } & \text { triangles } & \text { are }\end{array}\right.$ equal $]$

Hence, $A C=B D$.

(c) Rhombus

Theorem - 8 : Each of the four sides of a rhombus is of the same length.

Given : A rhombus $A B C D$ such that $A B=B C$
To Prove : $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$

Proof : $A B C D$ is a rhombus
$\Rightarrow \quad A B C D$ is a parallelogram
$\Rightarrow \quad A B=C D$ and $B C=A D$
But $\quad A B=B C \quad$ (Given)
$\therefore \quad A B=B C=C D=A D$
Hence, all the four sides of a rhombus are equal.
Theorem -9: The diagonals of a rhombus are perpendicular to each other.

Given: A rhombus $A B C D$ whose diagonals $A C$ and $B D$ intersect at O.
To Prove : $\angle B O C=\angle D O C=\angle A O D=\angle A O B=90^{\circ}$
Proof : We know that a parallelogram is rhombus, if all of its sides are equal. So, $A B C D$ is a rhombus
$\Rightarrow \quad A B C D$ is a $\|^{g m}$ such that $A B=B C=C D=D A$
Since the diagonals of a parallelogram bisect each other.
$\therefore \quad O B=O D$ and $O A=O C$
Now, in $\triangle s$ BOC and DOC, we have
BO = OD $\quad[$ From (ii)]
$B C=D C \quad[$ From (i) $]$
OC = OC [Common]
So, by SSS criterion of congruence

```
    \Delta\textrm{BOC}\cong\DeltaDOC}[[\begin{array}{c}{\because\mathrm{ Corresponding parts of}}\\{\mathrm{ congruent triangles are equal }}\end{array}
=> }\angle\textrm{BOC}=\angle\textrm{DOC
But, }\angle\textrm{BOC}+\angle\textrm{DOC}=18\mp@subsup{0}{}{\circ}\quad[\mathrm{ [inear pair axiom ]
\therefore }\angle\textrm{BOC}=\angle\textrm{DOC}=9\mp@subsup{0}{}{\circ}\quad[\therefore\angle\textrm{BOC}=\angle\textrm{DOC}
Similarly, \(\angle \mathrm{AOB}=\angle \mathrm{AOD}=90^{\circ}\)
Hence, \(\angle \mathrm{AOB}=\angle \mathrm{BOC}=\angle \mathrm{COD}=\angle \mathrm{DOA}=90^{\circ}\).
```


(d) Square

Theorem - 10 : Each of the angles of a square is a right angle and each of the four sides is of the same length.
Given : A square $A B C D$ such that $A B=B C$
To Prove : $A B=B C=C D=D A$ and $\angle A=\angle B=\angle C=\angle D=90^{\circ}$
Proof : $A B C D$ is a square
$\Rightarrow \quad A B C D$ is a rectangle
$\Rightarrow \quad \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=90^{\circ}$
Again, $A B C D$ is a square
$\Rightarrow \quad A B C D$ is a parallelogram such that $A B=B C$
$\Rightarrow \quad A B=B C=C D=A D$.

Theorem - 11: The diagonals of a square are equal and perpendicular to each other.

Given: A square $A B C D$
To Prove : $A C=B D$ and $A C \perp B D$.
Proof: In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{BCA}$, we have
$A D=B C$
[\because Sides of a square are equal]
$\angle B A D=\angle A B C$
[Each equal to 90°]
[Common]
So, by SAS criterion of congruence

And, $A B=B A$

$$
\begin{aligned}
& \Delta \mathrm{ADB} \cong \triangle \mathrm{BCA} \quad\left[\begin{array}{ccc}
\because \text { Corresponding parts of } \\
\text { congruent triangles are equal }
\end{array}\right] \\
\Rightarrow \quad & \mathrm{AC}=\mathrm{BD}
\end{aligned}
$$

Now, in $\triangle A O B$ and $\triangle A O D$, we have

$$
\begin{aligned}
\quad \mathrm{OB}=\mathrm{OD} & {\left[\because \text { Diagonals of } \|^{\mathrm{gm}} \text { bisect each other }\right] } \\
\mathrm{AB}=\mathrm{AD} & {[\because \text { Sides of a square are equal }] } \\
\text { And }, \mathrm{AO}=\mathrm{AO} & {[\text { Common }] }
\end{aligned}
$$

So, by SSS criterion of congruence

$$
\left.\begin{array}{ll}
& \Delta A O B \cong \triangle A O D \\
\Rightarrow & \angle A O B=\angle A O D \\
\text { But, } & \angle A O B+\angle A O D=180^{\circ} \\
\therefore & \angle A O B=\angle A O D=90^{\circ} \\
& A O \perp B D \Rightarrow A C \perp B D \\
\text { congruent triangles are equal }
\end{array}\right]
$$

Illustration 5.10

$A B, C D$ are two parallel lines and a transversal ℓ intersects $A B$ at X and $C D$ at Y. Prove that the bisectors of the interior angles form a parallelogram, with all its angles right angles.
Sol. Given : $A B, C D$ are two parallel lines which are cut by a transversal $/$ in points X and Y respectively. The bisectors of interior angles intersect in P and Q.
To Prove: $X P Y Q$ is a rectangle.
Proof : Since $A B|\mid C D$ and transversal / intersects them.
$\therefore \angle A X Y=\angle D Y X \quad$ [Alternate angles are equal]
$\frac{1}{2} \angle \mathrm{AXY}=\frac{1}{2} \angle \mathrm{DYX} \quad \Rightarrow \angle 1=\angle 2 \quad\left[\begin{array}{c}X P \text { and } \mathrm{YQ} \text { are the bisectors of } \\ \angle \mathrm{AXY} \text { and } \angle \mathrm{DYX} \text { respectively }\end{array}\right]$
Thus, $X Y$ intersects $P X$ and $Q Y$ at X and Y respectively such that $\angle 1=\angle 2$ i.e. alternate interior angles are equal.

> PX \| QY

Similarly, \quad YP || QX

Hence, PYQX is a parallelogram.
Now, we shall show that each angle of the \|gm PYQX is right angle.
Since, the sum of the interior angle on the same side of a transversal is 180°.
Therefore,
$\therefore \quad \angle B X Y+\angle D Y X=180^{\circ}$
$\Rightarrow \quad 2 \angle 3+2 \angle 2=180^{\circ}$
$\Rightarrow \quad \angle 3+\angle 2=90^{\circ}$.

Now, in $\triangle X Q Y$, we have

$$
\begin{aligned}
& \angle 2+\angle 3+\angle X Q Y=180^{\circ} \\
\Rightarrow \quad & 90^{\circ}+\angle X Q Y=180^{\circ} \\
\Rightarrow \quad & \angle X Q Y=90^{\circ}
\end{aligned}
$$

Since $X P Y Q$ is a parallelogram.

$$
\therefore \quad \angle X Q Y=\angle X P Y
$$

$$
\Rightarrow \quad \angle X P Y=90^{\circ} \quad\left[\because \angle X Q Y=90^{\circ}\right]
$$

Now, $\angle \mathrm{PXQ}+\angle \mathrm{XQY}=180^{\circ} \quad\left[\begin{array}{c}\because \text { Adjacent angles in a } \\ \|^{g m} \text { are supplementary }\end{array}\right]$
$\Rightarrow \quad \angle P X Q+90^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{PXQ}=90^{\circ}$
$\Rightarrow \quad \angle \mathrm{PYQ}=90^{\circ} \quad[\because \angle \mathrm{PXQ}=\angle \mathrm{PYQ}]$
Hence, all the interior angles are right angles.

Illustration 5.11

The diagonals of a rectangle ABCD meet at O . If $\angle \mathrm{BOC}=44^{\circ}$, find $\angle \mathrm{OAD}$.
Sol. We have,

$$
\angle \mathrm{BOC}+\angle \mathrm{BOA}=180^{\circ} \quad[\text { Linear pairs }
$$

$$
\begin{aligned}
& \Rightarrow \quad 44^{\circ}+\angle \mathrm{BOA}=180^{\circ} \\
& \Rightarrow \quad \angle \mathrm{BOA}=136^{\circ}
\end{aligned}
$$

Since diagonals of a rectangles are equal and they bisect each other. Therefore, in , we have
$\mathrm{OA}=\mathrm{OB} \quad[\because$ Angles opp. to equal sides are equal $]$

Now, in $\triangle \mathrm{OAB}$, we have
$\angle 1+\angle 2+\angle B O A=180^{\circ}$
$\Rightarrow \quad 2 \angle 1+136=180^{\circ}$
$\Rightarrow \quad 2 \angle 1=44^{\circ}$
$\Rightarrow \quad \angle 1=22^{\circ}$
Since each angle of a rectangle is a right angle. Therefore,
$\angle B A D=90^{\circ}$
$\Rightarrow \quad \angle 1+\angle 3=90^{\circ}$
$\Rightarrow \quad 22^{\circ}+\angle 3=90^{\circ}$
$\Rightarrow \quad \angle 3=68^{\circ}$
$\Rightarrow \quad \angle O A D=68^{\circ}$

Illustration 5.12

The diagonals of a rhombus are 6 cm and 8 cm . Find the length of a side of the rhombus.
Sol. Let $A B C D$ be the rhombus whose diagonals $A C$ and $B D$ are of lengths 8 cm and 6 cm respectively. Let AC and BD intersect at O . Since the diagonals of a rhombus bisect each other at right angles.

$$
\therefore \quad A O=\frac{1}{2} A C=\frac{1}{2} \times 8 \mathrm{~cm}=4 \mathrm{~cm} \quad \text { and } \quad B O=\frac{1}{2} B D=\frac{1}{2} \times 6 \mathrm{~cm}=3 \mathrm{~cm} .
$$

Since $\triangle A O B$ is a right triangle, right angled at O . Therefore, by pythagoras theorem

$$
A B^{2}=O A^{2}+O B^{2}
$$

$\Rightarrow \quad A B^{2}=4^{2}+3^{2}$
$\Rightarrow \quad \mathrm{AB}^{2}=16+9$
$\Rightarrow \quad A B=5$
Hence, the length of each side of the rhombus is 5 cm .

Illustration 5.13

In figure $A B C D$ is a rectangle. $B M$ and $D N$ are perpendiculars from B and D respectively on $A C$. Prove that
(i) $\quad \triangle \mathrm{BMC} \cong \triangle \mathrm{DNA}$
(ii) $\mathrm{BM}=\mathrm{DN}$

Sol. (i) Since $B M$ and $D N$ are perpendiculars from B and D respectively on $A C$.
$\therefore \quad \mathrm{BM}|\mid \mathrm{DN}$
Also, $A D \| B C$.

$$
\angle \mathrm{ADN}=\angle \mathrm{CBM} .
$$

Now in $\triangle s$ ADN and BCM, we have
$\angle A D N=\angle C B M$
$\mathrm{AD}=\mathrm{BC}$
$\angle \mathrm{DAN}=\angle \mathrm{BCM}$ [Alternate angles as $\mathrm{AD}|\mid \mathrm{BC}$]
So, by ASA congruence condition, we have

$\therefore \quad \triangle \mathrm{BMC} \cong \triangle \mathrm{DNA}$
$\Rightarrow \quad \mathrm{BM}=\mathrm{DN}$

A sk yourself

1. Adjacent angles of a parallelogram are in $7: 2$. Find all the angles.
2. Can the following figures be parallelogram? Justify your answer.

(ii)

(iii)
3. The following figures HOPE and TOPE are parallelogram. Find 'a' and 'b'.

4. In the figure below, HOPE is a parallelogram. Find the measures of angles a, b and c.

5. In the given parallelogram, find missing values?

6. The permeter of a square is 40 cm . Find the length of its diagonal?
7. $A B C D$ is a rectangle with diagonals $A C$ and $B D$ meeting at point O. Find x if $O A=5 x-7$ and $O D=4 x-5$.

Answers

1. $140^{\circ}, 40^{\circ}, 140^{\circ}, 40^{\circ}$
2.

(i) No
(ii) Yes
(iii) No
3. (i) $a=4, b=6$
(ii) $\mathrm{a}=6, \mathrm{~b}=4$
4. $a=110^{\circ}, b=40^{\circ}, c=30^{\circ}$
5. $x=45^{\circ}, y=45^{\circ}, z=90^{\circ}$
6. $10 \sqrt{2} \mathrm{~cm}$
7. 2

A dd to Your Knowledge

1. In the given figure, E and F are respectively, the mid-points of non-parallel sides of a trapezium ABCD.

Then :
(i) $E F \| A B$
(ii) $E F=\frac{1}{2}(A B+D C)$.
2. The figure formed by joining the midpoints of the pairs of consecutive sides of a quadrilateral is a parallelogram.
3. $A B C D$ is a rhombus and P, Q, R and S are the mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Then the quadrilateral $P Q R S$ is a rectangle.

Concept Map

Summary

1. A quadrilateral two of whose opposite sides are parallel is called a trapezium.
2. A quadrilateral in which opposite sides are parallel is called a parallelogram.
3. A parallelogram with a pair of adjacent sides equal is called a rhombus. In fact, all the sides of a rhombus are equal.
4. A parallelogram with one angle a right angle is called a rectangle. In fact, all the angles of a rectangle are right angles.
5. A parallelogram with a pair of adjacent sides equal and one angle a right angle is called a square. In fact, all the sides of a square are equal and all its angles are right angles.
6. In a parallelogram,
(i) opposite sides are equal,
(ii) opposite angles are equal, and
(iii) diagonals bisect each other.
7. Diagonals of a rhombus bisect each other at right angles.
8. Diagonals of a rectangle are equal and bisect each other.
9. Diagonals of a square are equal and bisect each other at right angles

Exercise-1

SECTION -A (FIXED RESPONSE TYPE)

OBJECTIVE QUESTIONS

1. If all the angles of a quadrilateral are less than 180°, then the quadrilateral is a :
(A) Convex quadrilateral
(B) Parallelogram
(C) Concave quadrilateral
(D) Trapezium
2. If one angle of a quadrilateral is greater than 180°, then the quadrilateral is a :
(A) Concave quadrilateral
(B) Trapezium
(C) Rectangle
(D) Convex quadrilateral
3. If the opposite sides and the opposite angles of a quadrilateral are equal, then the quadrilateral is a :
(A) Trapezium
(B) Concave quadriateral
(C) Convex quadrilateral
(D) parallelogram
4. A quadrilateral whose opposite sides and all the angles are equal is a :
(A) Square
(B) Rectangle
(C) Rhombus
(D) Parallelogram
5. A quadrilateral whose all the sides, diagonals and angles are equal is a :
(A) Square
(B) Rhombus
(C) Trapezium
(D) Rectangle
6. If the adjacent angles of a parallelogram are equal, then the parallelogram is a :
(A) Trapezium
(B) Rectangle
(C) Rhombus
(D) All of these
7. If the diagonals of a quadrilateral are equal and bisect each other (not at right angles), then the quadrilateral is a :
(A) Square
(B) Rhombus
(C) Parallelogram
(D) Rectangle
8. If the diagonals of a quadrilateral bisect each other at right angles, then it is a :
(A) Trapezium
(B) Parallelogram
(C) Rectangle
(D) Rhombus
9. A quadrilateral whose all the sides and opposite angles are equal and the diagonals bisect each other at right angles is a :
(A) Square
(B) Rhombus
(C) Rectangle
(D) Parallelogram
10. The quadrilateral having only one pair of opposite sides parallel is called a :
(A) Kite
(B) Rhombus
(C) Trapezium
(D) Parallelogram
11. The measure of $\angle \mathrm{BCA}$ (in figure) :

(A) 180°
(B) 130°
(C) 110°
(D) 108°
12. The sum of adjacent angles of a parallelogram is :
(A) 180°
(B) 120°
(C) 360°
(D) 90°
13. In a quadrilateral $\mathrm{ABCD}, \angle \mathrm{A}=35^{\circ}, \angle \mathrm{B}=65^{\circ}, \angle \mathrm{C}=65^{\circ}$ the $\angle \mathrm{D}$ is :
(A) 100°
(B) 120°
(C) 195°
(D) 180°
14. Adjacent angles of a parallelogram are in the ratio of $2: 7$, their values will be :
(A) $20,160^{\circ}$
(B) $30,150^{\circ}$
(C) $40,140^{\circ}$
(D) $60,120^{\circ}$
15. The angles of a quadrilateral are in the ratio $1: 2: 3: 4$, the angles are :
(A) $36^{\circ}, 72^{\circ}, 108^{\circ}, 144^{\circ}$
(B) $15^{\circ}, 130^{\circ}, 45^{\circ}, 150^{\circ}$
(C) $45^{\circ}, 110^{\circ}, 55^{\circ}, 150^{\circ}$
(D) None of these
16. $A B C D$ is a parallelogram and E is the mid point of $B C$. $D E$ and $A B$ when produced meet at F. Then,
(A) $A F=\frac{3}{2} A B$
(B) $A F=2 A B$
(C) $A F=3 A B$
(D) $\mathrm{AF}^{2}=2 \mathrm{AB}^{2}$

FILL IN THE BLANKS

1. A quadrilateral in which the measure of each interior angles is less than 180° is called a
\qquad quadrilateral.
2. A \qquad is a quadrilateral with only one pair of opposite sides parallel.
3. A \qquad is a quadrilateral in which two pairs of adjacent sides are equal and pairs of adjacent unequal sides.
4. A diagonal of a parallelogram divides it two \qquad triangles.
5. The diagonal of a rhombus are \qquad to each other.
6. A \qquad is a parallelogram having all sides equal and each angle equal to right angle.
7. A quadrilateral in which the measure at one of integerior angle is greater than 180° is called a \qquad quadrilateral.
8. A line segment joining the opposite verties of a quadrilateral are called its \qquad .
9. A trapezium is said to be an \qquad trapezium, if its non-parallel sides are equal.
10. A \qquad is a parallelogram but all its sides are equal in length.

TRUE / FALSE

1. If all the angles of a quadrilateral are equal, it is a rectangle.
2. The adjacent angles of a parallelogram are equal.
3. The diagonals of a parallelogram bisect each other.
4. In a parallelogram, the diagonals are equal.
5. The diagonals of a rectangle are of equal length.
6. The diagonals of a square are equal and perpendicular to each other.
7. The diagonals of a rhombus are perpendicular bisectors.
8. In a convex quadrilateral all the angle is greater than 180°.
9. A kite is a quadrilateral in which two pair of adjacent sides are equal.
10. In a quadrilateral sum of all interior angle is 360 .
11. In a concave quadrilateral all the angle is greater than 180°.
12. In any quadrilateral, if a pair of opposite sides is equal, it is a parallelogram.
13. If three sides of a quadrilateral are equal, it is a parallelogram.

MATCH THE COLUMN

1. Column - I
(A) A quadrilateral in which both pairs of opposite side are parallel
(B) A quadriateral whose all the sides are equal and each angle is 90°
(C) Sum of all angles of quadrilateral
(D) Sum of the angles on a straight line
(E) A quadrilateral in which two pairs of adjacent side are equal.

Column - II

(p) kite
(q) two right
(r) parallelogram
(s) square
(t) four right angles

SECTION -B (FREE RESPONSE TYPE)

SUBJECTIVE QUESTIONS

VERY SHORT ANSWER TYPE

1. If an angle of a parallelogram is two third of its adjacent angle, find the angles of the parallelogram.
2. Three angles of a quadrilateral are equal and the fourth angle is equal to 144°. Find each of the equal angle of the quadrilateral.
3. Two opposite angles of a parallelogram are $(3 x-2)^{\circ}$ and $(50-x)^{\circ}$. Find the measure of each angle.
4. The sides of a rectangle are in the ratio $4: 5$. Find its sides if the perimeter is 90 cm .
5. Find the length of the diagonal of a rectangle whose sides are 12 cm and 5 cm .

SHORT ANSWER TYPE

6. In quadrilateral PQRS if $\angle \mathrm{P}=60^{\circ}$ and $\angle \mathrm{Q}: \angle \mathrm{R}: \angle \mathrm{S}=2: 3: 7$, then find the measure of $\angle S$.
7. $P Q R S$ is a trapezium in which $P Q \| R S$. If $\angle P=\angle Q=50^{\circ}$, what are the measures of the other two angles?
8. The perimeter of a parallelogram is 150 cm . One of its sides is greater than the other by 25 cm . Find the length of the sides of the parallelogram.
9. In figure, $A B C D$ and $A E F G$ are each a parallelogram. If $\angle C=55^{\circ}$, what is the measure of $\angle \mathrm{F}$?

10. $E F G H$ is a square. $\angle E=x+60$ and $E F=x+1 \mathrm{~cm}$. Find the perimeter of $E F G H$.
11. Diagonal $A C$ of a rhombus $A B C D$ is equal to one of its side $B C$. Find all the angles of the rhombus.

LONG ANSWER TYPE

12. In figure, ABCD is a kite whose diagonals intersect at O . If $\angle \mathrm{DAB}=44^{\circ}$ and $\angle \mathrm{BCD}=86^{\circ}$
Find: (i) $\angle O D A$
(ii) $\angle O B C$

13. The diagonals of a quadrilateral are of lengths 6 cm and 8 cm . If the diagonals bisect each other at right angles, what is the length of each side of the quadrilateral ?
14. In figure, ABCD is a parallelogram in which $\angle \mathrm{A}=60^{\circ}$. If the bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{B}$ meet at P, prove that $A D=D P, P C=B C$ and $D C=2 A D$.

15. The diagonals of a \|gm PQRS intersect at O. A line through O intersects $P Q$ at M and $R S$ at N. Prove that $O M=O N$.

Exercise-2

SECTION -A (COMPETITIVE EXAMINATION QUESTION)

OBJECTIVE QUESTIONS

1. The ratio of two sides of a parallelogram is as $3: 5$, and its perimeter is 48 m , then the sides of the parallelogram is :
(A) $9 \mathrm{~m}, 15 \mathrm{~m}$
(B) $3 \mathrm{~m}, 5 \mathrm{~m}$
(C) $33 \mathrm{~m}, 25 \mathrm{~m}$
(D) None of these
2. In the figure, parallelogram $A B C D$ is composed of four congruent triangles. If $B E=3 \mathrm{~cm}$ and $C E=4 \mathrm{~cm}$ then the perimeter of the entire figure is :

(A) 20 cm
(B) 25 cm
(C) 22 cm
(D) None of these
3. The diagonals of a square with area $9 \mathrm{~m}^{2}$ divide the square into four non-overlapping triangles. What is the sum of the perimeter of the four triangles ?
(A) 12 m
(B) $12 \sqrt{2} \mathrm{~m}$
(C) $12+12 \sqrt{2} \mathrm{~m}$
(D) none of these
4. In given figure, area of isosceles trapezium DEFG is :

(A) $18(1+\sqrt{3})$
(B) $18 \sqrt{3}$
(C) $\sqrt{3}+1$
(D) $18(1+2 \sqrt{3})$
5. In fig. $A B C D$ is a parallelogram. P and Q are mid points of the sides $A B$ and $C D$, respectively. Then PRQS is :

(A) Parallelogram
(B) Trapezium
(C) Rectangle
(D) None of these
6. In the given figure $A B C D$ is parallelogram. Then, find the value of x if $\angle A=3 x+10$ and $\angle C=x+80^{\circ}$.

(A) 40°
(B) 35°
(C) 60°
(D) 115°
7. The diagonals of a parallelogram ABCD intersect each other at the point O . If $\angle \mathrm{DAC}=32^{\circ}$ and $\angle \mathrm{AOB}=70^{\circ}$, then $\angle \mathrm{DBC}$ is :
(A) 24°
(B) 32°
(C) 38°
(D) 86°
8. A square board side 10 centimeters, standing vertically, is tilted to the left so that the bottom-right corner is raised 6 centimeters from the ground.

By what distance is the top-left corner lowered from its original position?
(A) 1 cm
(B) 2 cm
(C) 3 cm
(D) 0.5 cm
9. A quadrilateral $A B C D$ has four angles $x^{\circ}, 2 x^{\circ}, \frac{5 x^{\circ}}{2}$ and $\frac{7 x^{\circ}}{2}$ respectively. What is the difference between the value of biggest and the smallest angles.
(A) 40°
(B) 100°
(C) 80°
(D) 20°
10. Diagonal $D B$ of a rhombus $A B C D$ is equal to one of its sides.

The values of $\angle \mathrm{A}$ is :
(A) 30°
(B) 60°
(C) 120°
(D) 90°

SECTION -B (TECHIE STUFF)

11. $L M N O$ is a trapezium with $L M \| N O$. If P and Q are the mid-points of $L O$ and $M N$ respectively and $\mathrm{LM}=5 \mathrm{~cm}$ and $\mathrm{ON}=10 \mathrm{~cm}$, then $\mathrm{PQ}=$
(A) 2.5 cm
(B) 5 cm
(C) 7.5 cm
(D) 15 cm
12. The figure formed by joining the midpoints of the pairs of consecutive sides of a rectangle is a
(A) kite
(B) rectangle
(C) rhombus
(D) trapezium

Exercise-3

(PREVIOUS YEAR EXAMINATION QUESTIONS)

1. In the figure $P Q R S$ is a square and $S R T$ is an equilateral traingle. Then find $\angle T Q R$
[Aryabhatta 2002]

(A) 60°
(B) 90°
(C) 30°
(D) 15°
2. In figure $A B\left|\mid E F, D E \| B C \& \angle A B C=60^{\circ}\right.$, find $\angle D E F$
[Aryabhatta 2002]

(A) 60°
(B) 120°
(C) 30°
(D) 80°
3. In the given figure, points P, Q, R and S are respectively the mid points of side $A B$, side $C D$, diagonal $B D$ and diagonal $A C$ of quadrilateral $A B C D$. The quadrilateral $P R Q S$ is a

[Aryabhatta-2004]
(A) rectangle
(B) rhombus
(C) square
(D) parallogram
4. In the diagram $\mathrm{DA}=\mathrm{CB}$ what is the measure of $\angle \mathrm{DAC}$?
[NSTSE - 2009]

(A) 70°
(B) 100°
(C) 95°
(D) 125°
5. Each angle of a rectangle is bisected. Let P, Q, R and S be the points of intersection of the pairs of bisectors adjacent to the same side of the rectangle. Then PQRS is a
[NSTSE - 2009]
(A) rectangle
(B) rhombus
(C) parallelogram with unequal adjacent sides
(D) quadrilateral with no special property
6. X, Y are the mid points of opposite sides $A B$ and $D C$ of a parallelogram $A B C D$. AY and DX are joined intersecting in $P, C X$ and $B Y$ are joined intersecting in Q. The PXQY is
[NSTSE - 2010]

(A) rectangle
(B) rhombus
(C) parallelogram
(D) square
7. Of all quadrilaterals of a given perimeter, which has the largest area ? [Aryabhatta 2010]
(A) square
(B) rectangle
(C) parallelogram
(D) rhombus
8. $A B C D$ is a parallelogram. The angle bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{D}$ meet at O . The measure of $\angle A O D$ is \qquad .
(IMO 2010)
(A) 45°
(B) 90°
(C) Depends on the angles A and D
(D) Not able to determine from given data
9. The diagonal of a rectangle is thrice its smaller side. The ratio of its sides is
(A) $\sqrt{2}: 1$
(B) $2 \sqrt{2}: 1$
(C) $3: 2$
(D) $\sqrt{3}: 1$
10. In a quadrilateral $A B C D, A B \| C D$ and $A D=B C=7 \mathrm{~cm}$. If $\angle A=70^{\circ}$ then the measure of $\angle \mathrm{C}$ is
[Aryabhatta-2011]
(A) 70°
(B) 100°
(C) 80°
(D) 110°
11. Smallest angle of a triangle ;s equal to two-third the smallest angle of a quadrilateral. The ratio of the angles of the quadrilateral is $3: 4: 5: 6$. Largest angle of the triangle is twice its smallest angle. What is the sum of second largest angle of the triangle and largest angle of the quadrilateral ?
(IMO 2011)
(A) 160°
(B) 180°
(C) 190°
(D) 170°
12. Which of the following statements is INCORRECT?
(IMO 2011)
(A) All rhombuses are parallelograms.
(B) All squares are parallelograms.
(C) All rectangles are not squares.
(D) All squares are trapeziums.
13. A quadrilateral that is not a parallelelogram but has exactly two equal opposite angles is
[NSTSE - 2012]
(A) a rhombus
(B) a trapezium
(C) a square
(D) a kite
14. Find the measure of largest angle of a quadrilateral if the measures of its interior angles are in the ratio of $3: 4: 5: 6$.
(IMO 2012)
(A) 60°
(B) 120°
(C) 90°
(D) Can't be determined
15. In the given diagram, equilateral triangle EDC surmounts square $A B C D$. Find $\angle B E D$ represented by x , where EBC $=\alpha^{0}$.
(IMO 2012)

(A) 45°
(B) 60°
(C) 30°
(D) None of these
16. In the kite $A B C D, A D=C D=8 \mathrm{~cm}, \angle A D C=60^{\circ}, \angle D C B=130^{\circ}$ and $A B=C B$. Find $\angle A B C$.

(IMO 2012)
(A) 50°
(B) 40°
(C) 60°
(D) 25°
17. In a parallelogram,
(IMO 2012)
Statement 1 : Diagonals bisect each other.
Statement 2 : Diagonals divide the parallelogram into two triangles.
(A) Only statement 1 ¡s true.
(B) Only statement 2 is true.
(C) Both statement 1 and 2 are true.
(D) Both statement 1 and 2 are false.

Answer Key

Exercise-1

SECTION -A (FIXED RESPONSE TYPE)

OBJECTIVE QUESTIONS

Ques.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$
Ans.	A	A	D	B	A	B	D	D	B	C	B	A	C	C	A	B

FILL IN THE BLANKS

1. convex
2. trapezium
3. kite
4. perpendicular
5. square
6. Concave
7. Congruent
8. isosceles
9. rhombus

TRUE / FALSE

1. True
2. False
3. True
4. False
5. True
6. True
7. True
8. False
9. True
10. True
11. False
12. False
13. False

MATCH THE COLUMN

1. $(A)-r,(B)-s,(C)-t,(D)-q,(E)-p$

SECTION -B (FREE RESPONSE TYPE)

SUBJECTIVE QUESTIONS

VERY SHORT ANSWER TYPE

1. $108^{\circ}, 72^{\circ}, 108^{\circ}, 72^{\circ}$
2. 72°
3. $37^{\circ}, 143^{\circ}, 37^{\circ}, 143^{\circ}$
4. $20 \mathrm{~cm}, 25 \mathrm{~cm}$
5. 13 cm

SHORT ANSWER TYPE

6. $\angle S=175^{\circ}$.
7. $130^{\circ}, 130^{\circ}$
8. $50 \mathrm{~cm}, 25 \mathrm{~cm}$
9. 55°
10. 124 cm
11. $120^{\circ}, 60^{\circ}, 120^{\circ}, 60^{\circ}$

LONG ANSWER TYPE

12.

(i) 68°
(ii) 47°
13. 5 cm .

Exercise-2

SECTION -A (COMPETITIVE EXAMINATION QUESTION) OBJECTIVE QUESTIONS

Ques.	1	2	3	4	5	6	7	8	9	10	11	12
Ans.	A	A	D	D	A	B	C	B	B	B	C	C

Exercise-3

PREVIOUS YEAR EXAMINATION QUESTIONS

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Ans.	D	A	D	A	A	C	A	B	B	D	B	D	D	B	A	B	A

