MATHEMATICS

Class-VIII

Topic-6
 CONSRUCTION OF QUADRILATERAL

INDEX

S. No.	Topic	Page No.
1.	Theory	$1-9$
2.	Exercise-1	10
3.	Exercise-2	11
4.	Exercise-3	12
5.	Answer Key	13

CH-06

CONSTRUGTION OF QUADRILATERAL

TERMINOLOGIES

Concave Quadrilateral, Convex Quadrilateral.

INTRODUCTION

In the previous chapter, we have learnt about some special types of quadrilaterals and their properties. In this chapter, we shall learn to construct some quadrilaterals with given measurements.

6.1 CONSTRUCTION OF QUADRILATERALS

We know that a quadrilateral have total ten parts i.e. four sides, four angles and two diagonals. If out of these ten parts any five independent parts are given then we can construct easily a convex quadrilateral. If we have to construct a non-convex quadrilateral then we are required six element out of these ten elements. In this section, we shall learn to construct a convex quadrilateral by using ruler and compass in the following simple cases.
(i) When the lengths of four sides and one diagonal are given.
(ii) When the lengths of three sides and two diagonal are given.
(iii) When the lengths of four sides and one angle is given.
(iv) When the lengths of three sides and two included angles are given.
(v) When three angles and two included sides are given.

Now we will illustrate one by one these cases by following examples.
(a) One Diagonal \& Four Sides are Given

In this case, since the four sides and a diagonal are given, so we consider the quadrilateral $A B C D$ as a figure made of two triangles,
(i) $\quad \triangle \mathrm{ABC}$ and $\triangle \mathrm{ADC}$ when diagonal AC as the common side is given.
(ii) $\triangle A B D$ and $\triangle B C D$ when diagonal $B D$ as the common side is given.

The following examples illustrate the process.

Illustration 6.1

Construct a quadrilateral $A B C D$ in which $A B=4.4 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, C D=6.4 \mathrm{~cm}, \mathrm{DA}=2.8$ and $B D=6.6 \mathrm{~cm}$.
Sol. First, we draw a rough sketch of the quadrilateral $A B C D$ and write down its dimensions along the sides.
We may divide the quadrilateral $A B C D$ into two constructible triangles $A B D$ and $B C D$.

Steps of Construction :

(i) Draw $\mathrm{BD}=6.6 \mathrm{~cm}$.
(ii) With B as centre and radius $\mathrm{BC}=4 \mathrm{~cm}$, draw an arc.
(iii) With D as centre and radius $\mathrm{CD}=6.4 \mathrm{~cm}$, drawn an arc, to intersect the arc drawn in step 2 at C.

(iv) With B as centre and radius $B A=4.4 \mathrm{~cm}$, draw an arc on the side of $B D$ opposite to that of C.
(v) With D as centre and radius $\mathrm{AD}=2.8 \mathrm{~cm}$, draw another arc to intersect the arc drawn in step (iv) at A.
(vi) Join $B A, D A, B C$ and $C D$.

The quadrilateral $A B C D$ so obtained is the required quadrilateral.

Illustration 6.2

Construct a parallelogram $A B C D$ where $A B=3.6 \mathrm{~cm}, B C=4.2 \mathrm{~cm}$ and $A C=6.5 \mathrm{~cm}$.
Sol. In a parallelogram opposite sides are equal. Thus, we have to construct a quadriateral $A B C D$ in which $A B=3.6 \mathrm{~cm}, B C=4.2 \mathrm{~cm}, C D=3.6 \mathrm{~cm}, A D=4.2 \mathrm{~cm}$ and $A C=6.5 \mathrm{~cm}$.

Steps of Construction :

(i) Draw $\mathrm{AC}=6.5 \mathrm{~cm}$ as shown in figure.
(ii) With A as centre and radius $\mathrm{AB}=3.6 \mathrm{~cm}$, draw an arc.
(iii) With C as centre and radius $\mathrm{BC}=4.2 \mathrm{~cm}$, draw an arc, intersecting the arc drawn in step (ii) at B.
(iv) With A as centre and radius $\mathrm{AD}=4.2 \mathrm{~cm}$, draw an arc on the side of AC opposite to that of B.
(v) With C as centre and radius $\mathrm{CD}=3.6 \mathrm{~cm}$, draw another arc to intersect the arc drawn in step (iv) at D.
(vi) Join $A B, B C, A D$ and $C D$ to obtain the required parallelogram $A B C D$.

(b) When Three Sides and Both Diagonals are given

In this case also, we divide the quadrilateral into two conveniently constructible triangles as illustrated in the following examples:

Illustration 6.3

Construct a quadrilateral ABCD in which $\mathrm{AB}=5.5 \mathrm{~cm}, \mathrm{AD}=4.4 \mathrm{~cm}, \mathrm{CD}=6.5 \mathrm{~cm}, \mathrm{AC}=6.5$ cm and $\mathrm{BD}=7.1 \mathrm{~cm}$.

Sol. First we draw a rough sketch of quadrilateral $A B C D$. It is evident from the rough sketch that we have sufficient data to draw triangles $A D C$ and $A B D$.

Now, we follow the following steps to construct the required quadriateral.

Steps of construction :

(i) Draw $\mathrm{AC}=6.5 \mathrm{~cm}$.
(ii) With A as centre and radius $\mathrm{AD}=4.4 \mathrm{~cm}$, draw an arc.
(iii) With C as centre and radius $\mathrm{CD}=6.5 \mathrm{~cm}$, draw an arc to intersect the arc drawn in step (ii) at D.
(iv) With A as centre and radius $\mathrm{AB}=5.5 \mathrm{~cm}$, draw an arc on the side of AC opposite to that of D.
(v) With D as centre and radius $\mathrm{BD}=7.1 \mathrm{~cm}$, draw an arc intersecting the arc drawn in step (iv) at B.
(vi) Join $A D, C D, A B$ and $C B$ to obtain the required quadrilateral.

(c) Four Sides and one Angle is Given

Constructing a quadrilateral when its four sides and one angle are given : The following examples illustrate the procedure.

Illustration 6.4

Construct a quadrilateral $A B C D$, where $A B=2.7 \mathrm{~cm}, B C=3.5 \mathrm{~cm}, C D=4 \mathrm{~cm}, A D=6 \mathrm{~cm}$ and $\angle B=90^{\circ}$.

Sol. Here, four sides and one angle are given. We first draw the rough sketch as shown in figure. It is evident from the rough sketch that in $\triangle A B C$, two sides and the included angle are given. So, we first construct $\triangle A B C$. Now, $A C$ is known from $\triangle A B C$ and $A D$ and $C D$ are given. So, $\triangle A C D$ can also be drawn. Thus, to draw the quadrilateral $A B C D$, we follow the following steps.

Steps of Construction :

(i) Draw $\mathrm{AB}=2.7 \mathrm{~cm}$.
(ii) Construct $\angle \mathrm{ABX}=90^{\circ}$
(iii) With B as centre and radius $B C=3.5$, cut off $B C=3.5 \mathrm{~cm}$ along $B X$.
(iv) Join AC.
(v) With A as centre and radius $A D=6 \mathrm{~cm}$ draw an arc.
(vi) With C as centre and radius $\mathrm{CD}=4 \mathrm{~cm}$ draw an arc to cut the arc drawn in step (v) at D.
(vii) Join CD and AD.

The quadrilateral $A B C D$ so obtained is the required quadrilateral.

Illustration 6.5

Construct a quadrilateral ABCD given $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{BC}=4.1 \mathrm{~cm}, \mathrm{CD}=4.4 \mathrm{~cm}, \mathrm{AD}=3.3$ cm and $\angle \mathrm{A}=75^{\circ}$.
Sol. We first draw a rough sketch of the required quadrilateral and write down its dimensions along the sides. We can divide the construction of required quadrilateral into two parts
(i) construction of $\triangle A B D$
(ii) Construction $\triangle \mathrm{BCD}$.

The following steps are used to construct the required quadrilateral.

Steps of Construction :
(i) Draw $A B=5.6 \mathrm{~cm}$.
(ii) Construct $\angle \mathrm{BAX}=75^{\circ}$
(iii) With A as centre and radius $\mathrm{AD}=3.3 \mathrm{~cm}$, cut off $\mathrm{AD}=3.3 \mathrm{~cm}$ along AX .
(iv) Join BD.
(v) With D as centre and radius $\mathrm{DC}=4.4 \mathrm{~cm}$, draw an arc.
(vi) With B as centre and radius $B C=4.1 \mathrm{~cm}$, draw an arc to cut the arc drawn in step (v) at C.
(vii) Join BC \& CD to obtain the required quadrilateral ABCD

(d) Three Sides and Two Included Angles are Given

Illustration 6.6

Construct a quadrilateral $A B C D$, where $A B=3.6 \mathrm{~cm}, B C=5.5 \mathrm{~cm}, C D=5 \mathrm{~cm}, \angle B=125^{\circ}$ and $\angle \mathrm{C}=80^{\circ}$.

Sol. We first draw the rough sketch of the quadrilateral and indicate on it the data as shown in figure.

We observe that the data is sufficient to draw triangles BCA and BCD. Because in each case two sides and the included angle are given. The side BC is common to both. This suggests us the following steps of construction.

Steps of Construction :

(i) Draw $\mathrm{BC}=5.5 \mathrm{~cm}$
(ii) At B construct $\angle \mathrm{XBC}=125^{\circ}$
(iii) At C construct $\angle \mathrm{YCB}=80^{\circ}$, such that X and Y are on the same side of $B C$
(iv) With B as centre and radius $A B=3.6 \mathrm{~cm}$, draw an arc to intersect $B X$ at A.
(v) With C as centre and radius $\mathrm{CD}=5 \mathrm{~cm}$, draw an arc to intersect CY at D .
(vi) Join AD.

The quadrilateral $A B C D$ so obtained is the required quadrilateral.
(e) Three Angles and Two Included Sides are Given

Illustration 6.7

Construct a quadrilateral $A B C D$ where $A B=3.5 \mathrm{~cm}, B C=6.5 \mathrm{~cm}, \angle A=75^{\circ}, \angle B=105^{\circ}$ and $\angle C=120^{\circ}$.
Sol. Let us draw a rough sketch of the required quadrilateral and write down the given data as shown in figure.

We now follow the following steps to construct the required quadrilateral.

Step of Construction :

(i) Draw $\mathrm{AB}=3.5 \mathrm{~cm}$
(ii) Draw $\angle \mathrm{XAB}=75^{\circ}$ at A and $\angle \mathrm{ABY}=105^{\circ}$.
(iii) With B as centre and radius $B C=6.5 \mathrm{~cm}$, draw an arc to intersect $B Y$ at C.
(iv) At C draw $\angle B C Z=120^{\circ}$ such that $C Z$ meets $A X$ at D.

The quadrilateral $A B C D$ so obtained is the required quadrilateral.

Illustration 6.8

Construct a parallelogram one of whose sides is 5.2 cm and whose diagonals are 6 cm and 6.4 cm .

Sol.

(i) Draw $\mathrm{AB}=5.2 \mathrm{~cm}$
(ii) With A as centre and radius 3.2 cm draw an arc.
(iii) With B as centre and radius 3 cm draw another arc cutting the previous arc at O .
(iv) Join $O A$ and $O B$
(v) Produce $A O$ to C such that $A O=O C$ and produce $B O$ to D such that $B O=O D$.
(vi) Join $A D, B C$ and $C D$.
$A B C D$ is the required parallelogram.

Illustration 6.9

Construct a parallelogram whose diagonals are 5.4 cm and 6.2 cm and an angle between them is 70°.

Sol.

(i) Draw AC $=5.4 \mathrm{~cm}$
(ii) Bisect AC at O .
(iii) Make $\angle C O X=70^{\circ}$ and produce XO to Y .
(iv) Cut off $\mathrm{OB}=\frac{1}{2}(6.2)=3.1 \mathrm{~cm}$ and $\mathrm{OD}=\frac{1}{2}(6.2)=3.1 \mathrm{~cm}$
(v) Join AB, BC, CD and DA
$A B C D$ is the required parallelogram

Illustration 6.10

Construct a rectangle $A B C D$ in which side $B C=5 \mathrm{~cm}$ and diagonal $B D=6.2 \mathrm{~cm}$.
Sol.

(i) Draw $\mathrm{BC}=5 \mathrm{~cm}$
(ii) Draw $\mathrm{CX} \perp \mathrm{BC}$.
(iii) With B as centre and radius 6.2 cm draw an arc to cut CX at D .
(iv) Join BD.
(v) With D as centre and radius 5 cm draw an arc.
(vi) With B as centre and radius equal to CD draw another arc, cutting the previous arc at A.
(vii) Join $A B$ and $A D$.
$A B C D$ is the required rectangle

Illustration 6.11

Construct a square with diagonal of 5.2 cm
Sol.

(i) Draw AC $=5.2 \mathrm{~cm}$
(ii) Draw the perpendicular bisector XY of AC meeting AC at O
(iii) From O cut off $\mathrm{OB}=\frac{1}{2}(5.2)=2.6 \mathrm{~cm}$ along OY and $\mathrm{OD}=2.6 \mathrm{~cm}$ along OX .
(iv) Join $A B, B C, C D$ and $D A . A B C D$ is the required square.

Ask yourself

\qquad

1. Construct a quadrilateral $A B C D$ in which $A B=4.2 \mathrm{~cm}, B C=6 \mathrm{~cm}, C D=5.2 \mathrm{~cm}, D A=5 \mathrm{~cm}$ and $A C=8 \mathrm{~cm}$.
2. Construct a quadrilateral $A B C D$, given that $A B=4.2 \mathrm{~cm}, B C=5 \mathrm{~cm}, C D=4.3 \mathrm{~cm}$, $\angle B=60^{\circ}$ and $\angle C=120^{\circ}$.
3. Construct a quadrilateral $A B C D$, given that $A D=5 \mathrm{~cm}, C D=7 \mathrm{~cm}, \angle A=125^{\circ}, \angle B=105^{\circ}$, $\angle C=100^{\circ}$.
4. Construct a square whose each side is 5 cm .
5. Construct a rhombus PQRS where each side measures 5 cm and $\angle \mathrm{P}=60^{\circ}$
6. Contruct a square each of whose sides measures 6.3 cm .

Concept Map

Construction of Quadrilateral

Ordinary Quadrilateral

1. When one diagonal and 4 sides are given.
2. When 3 sides and both diagonals are given.
3. When 4 sides and one angle are given.
4. When 3 sides and 2 included angles are given.
5. When 3 angles and 2 included sides are given.

Summary

\qquad

1. To construct a quadrilateral uniquely, it is necessary to know at least five of its parts.
2. Measurements of five parts of a quadrilateral are sufficient to construct it in the following cases :
(i) Four sides and one diagonal.
(ii) Three sides and both diagonals.
(iii) Two adjacent sides and three angles.
(iv) Three sides and two included angles.
(v) Four sides and one angle.
3. Measurements of five parts of a quadrilateral, are sufficient for its construction, must also satisfy, wherever relevant,
(i) triangle inequality property, i.e., sum of two sides is greater than the third side.
(ii) angle sum property of a quadrilateral.
4. It is always convenient and helpful to draw a rough sketch of the quadrilateral and indicate the given measurements.

Exercise-1

SECTION -B (FREE RESPONSE TYPE)

SHORT ANSWER TYPE

1. Construct a quadrilateral $A B C D$ in which $A B=4.5 \mathrm{~cm}, B C=4 \mathrm{~cm}, C D=6.5 \mathrm{~cm}, D A=3 \mathrm{~cm}$ and $B D=6.5 \mathrm{~cm}$.
2. Construct a quadrilateral $A B C D$ in which $A B=4 \mathrm{~cm}, B C=3 \mathrm{~cm}, A D=2.5 \mathrm{~cm}, A C=4.5 \mathrm{~cm}$ and $B D=4 \mathrm{~cm}$.
3. Construct a quadrilateral ABCD in which $\mathrm{AB}=3.5 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}, C D=4.6 \mathrm{~cm}, \angle \mathrm{~B}=125^{\circ}$ and $\angle \mathrm{C}=60^{\circ}$.
4. Construct a quadrilateral $P Q R S$ in which $P Q=4 \mathrm{~cm}, Q R=5 \mathrm{~cm}, \angle P=50^{\circ} \angle Q=110^{\circ}$ and $\angle R=70^{\circ}$.
5. Construct a parallelogram $A B C D$ in which $A B=5.2 \mathrm{~cm}, B C=4.7 \mathrm{~cm}$ and $A C=7.6 \mathrm{~cm}$
6. Construct a rhombus whose diagonals are 6 cm and 8 cm .
7. Construct a rhombus $A B C D$ in which $A B=4 \mathrm{~cm}$ and diagonal $A C$ is 6.5 cm .
8. Construct a rhombus with side 4.2 cm and one of its angles 65°
9. Construct a rectangle $A B C D$ whose adjacent sides are 5 cm and 4.5 cm
10. Construct a square each of whose side measure 4.6 cm
11. Construct a square each of whose diagonals measure 5.8 cm
12. Construct a quadrilateral $P Q R S$ in which $P Q=3 \mathrm{~cm}, Q R=5 \mathrm{~cm}, Q S=5 \mathrm{~cm}, P S=4 \mathrm{~cm}$ and $S R=4 \mathrm{~cm}$.
13. Construct a quadrilateral ABCD in which $\mathrm{AB}=7.7 \mathrm{~cm}, \mathrm{BC}=6.8 \mathrm{~cm}, \mathrm{CD}=5.1 \mathrm{~cm}$, $A D=3.6 \mathrm{~cm}, \angle C=120^{\circ}$.
14. Construct a quadrilateral ABCD when $\mathrm{BC}=5.5 \mathrm{~cm}, \mathrm{CD}=4.1 \mathrm{~cm}, \angle \mathrm{~A}=70^{\circ}, \angle \mathrm{B}=110^{\circ}$ and $\angle \mathrm{D}=85^{\circ}$
15. Construct a quadrilateral $P Q R S$ in which $Q R=7.5 \mathrm{~cm}, P R=P S=6 \mathrm{~cm}, R S=5 \mathrm{~cm}$ and QS $=10 \mathrm{~cm}$. Measure the fourth side.
16. Construct a quadrilateral $A B C D$ in which $A B=B C=3.5 \mathrm{~cm}, A D=C D=5.2 \mathrm{~cm}$ and $\angle A B C=120^{\circ}$.
17. Construct a quadrilateral $A B C D$ in which $A B=2.9 \mathrm{~cm}, B C=3.2 \mathrm{~cm}, C D=2.7 \mathrm{~cm}$, $D A=3.4 \mathrm{~cm}$ and $\angle \mathrm{A}=70^{\circ}$.

Exercise-2

SECTION -A (COMPETITIVE EXAMINATION QUESTION)

OBJECTIVE QUESTIONS

1. Given below are the steps of construction to construct a quadrilateral $A B C D$ where $A B=5.6 \mathrm{~cm}, B C=4.1 \mathrm{~cm}, C D=4.4 \mathrm{~cm}, A D=3.3 \mathrm{~cm}$ and $\angle A=75^{\circ}$. Which of the following is Incorrect step ?
(P) Step I: Draw $A B=5.6 \mathrm{~cm}$ and construct $\angle B A X=75^{\circ}$.
(Q) Step II : With A as centre and radius $=3.3 \mathrm{~cm}$, cut off $A D=3.3 \mathrm{~cm}$ along $A X$.
(R) Step III: Join BD. With D as centre and radius $=4.1 \mathrm{~cm}$, draw an arc.
(S) Step IV : With B as centre and radius $=4.1 \mathrm{~cm}$, draw an arc to cut the arc drawn in above step at C. Join $B C, C D$ to obtain the required quadrilateral $A B C D$.
(A) P
(B) Q
(C) R
(D) S
2. If a quadrilateral has exactly two pairs of equal adjacent sides and the unequal opposite sides, then it is called \qquad .
(A) Parallelogram
(B) Square
(C) Rectangle
(D) Kite
3. To construct a convex quadrilateral, which of the following cases is not correct?
(A) When the lengths of four sides and one diagonal are given.
(B) When the lengths of three sides and the two diagonals are given.
(C) When the lengths of four sides and one angle are given.
(D) When the lengths of two sides and two included angles are given.
4. To construct a quadrilateral uniquely, it is necessary to have the knowledge of at least
\qquad independent elements.
(A) Four
(B) Five
(C) Three
(D) Six
5. Given below are the steps of construction of a quadrailateral $A B C D$, where $A B=3.5 \mathrm{~cm}$, $B C=6.5 \mathrm{~cm}, \angle A=75^{\circ}, \angle B=105^{\circ}$ and $\angle C=120^{\circ}$. Which of the following is a wrong step?
(P) Step I: Draw AB $=3.5 \mathrm{~cm}$
(Q) Step II: Draw $\angle X A B=75^{\circ}$ at A and $\angle A B Y=105^{\circ}$ at B.
(R) Step III : With B as centre and radius $B C=6.5 \mathrm{~cm}$, draw an arc to intersect $B Y$ at C.
(S) Step IV : At C draw $\angle A D C=120^{\circ}$ such that $C Z$ meets $A X$ at D.
(A) P
(B) Q
(C) R
(D) S

Exercise-3

PREVIOUS YEAR EXAMINATION QUESTIONS

1. The construction of which figure is shown in the diagram?
[NSTSE - 2013]

(A) A trapezium
(B) A rhombus
(C) A rectangle
(D) A kite
2. The diagram shows the construction of a paralellogram KLMN. The width of the compasses for step-I and step-II are the same. How much does the angle KLM measure?
[NSTSE - 2014]

(A) 45°
(B) 60°
(C) 120°
(D) 135°

Answer Key

Exercise-2

SECTION -A (COMPETITIVE EXAMINATION QUESTION) MULTIPLE CHOICE QUESTIONS

Ques.	1	2	3	4	5
Ans.	C	D	D	B	D

Exercise-3

(PREVIOUS YEAR EXAMINATION QUESTIONS)

Ques.	$\mathbf{1}$	$\mathbf{2}$
Ans.	B	C

