MATHEMATICS

Class-VIII

Topic-9 <u>ALGEBRAIC IDENTITIES</u>

	INDEX					
S. No.	Торіс	Page No.				
1.	Theory	1 – 9				
2.	Exercise-1	10 - 12				
3.	Exercise-2	13 – 14				
4.	Exercise-3	14				
5.	Answer Key	15 – 16				

CH-09 ALGEBRAIC IDENTITIES

TERMINOLOGIES

Identity, factorisation, factors, monomial, binomial, quadratic, trinomial, perfect square.

INTRODUCTION

In the previous chapter, we have discussed about the multiplication of algebraic expressions by various methods. In this unit, we will discuss various identities for multiplication of algebraic expressions.

9.1 ALGEBRAIC IDENTITIES

An identity is an equality, which is true for all values of the variables. The following three identities are very important.

Identity 1 : $(a + b)^2 = a^2 + 2ab + b^2$ Proof: we have : $(a + b)^2 = (a + b) (a + b)$ = a (a + b) + b(a + b) $= a^{2} + ab + ba + b^{2}$ $= a^{2} + 2ab + b^{2}$ [Since ba = ab] :. $(a + b)^2 = a^2 + 2ab + b^2$. **Identity 2**: $(a - b)^2 = a^2 - 2ab + b^2$. Proof: we have $(a - b)^2 = (a - b) (a - b)$ = a(a-b) - b(a-b) $= a^{2} - ab - ba + b^{2}$ $= a^{2} - ab - ab + b^{2}$ [Since ba = ab] $= a^2 - 2ab + b^2$. $\therefore (a - b)^2 = (a^2 - 2ab + b^2)$ **Identity 3** : $(a + b)(a - b) = a^2 - b^2$ **Proof** We have : (a + b) (a - b) = a (a - b) + b(a - b) $= a^2 - ab + ba - b^2$ $= a^2 - b^2$ [Since ba = ab] :. $(a + b)(a-b) = a^2 - b^2$.

(a) Applications of the above identities

Illustration 9.1

Find each of the following products :

(i)	(3x +2y) (3x +2y)	(ii)	$(4x^2 + 5)(4x^2 + 5)$
(iii)	(2x – 5y) ²	(iv)	$(3x^2+2y^2)(3x^2-2y^2)$

Sol. (i)
$$(3x + 2y)(3x + 2y) = (3x + 2y)^2 = (3x)^2 + (2y)^2 + 2 (3x) (2y)$$

[Using $(a + b)^2 = a^2 + b^2 + 2ab$]
 $= 9x^2 + 4y^2 + 12xy$.
 $\therefore (3x + 2y) (3x + 2y) = 9x^2 + 4y^2 + 12xy$.
(ii) $(4x^2 + 5)(4x^2 + 5) = (4x^2 + 5)^2 = (4x^2)^2 + 5^2 + 2 (4x^2) 5$ [Using $(a + b)^2 = a^2 + b^2 + 2ab$]
 $= 16x^4 + 25 + 40x^2$.
(iii) $(2x - 5y)^2 = (2x)^2 + (5y)^2 - 2 (2x) (5y)$
 $= 4x^2 + 25y^2 - 20xy$.
(iv) $(3x^2 + 2y^2)(3x^2 - 2y^2) = (3x^2)^2 - (2y^2)^2$
 $= (9x^4 - 4y^4)$.

Illustration 9.2

Evaluate the following, using identities :

(i) $(105)^2$ (ii) $(47)^2$ (iii) (8.3×7.7)

Sol. We have:

(i) $(105)^2 = (100 + 5)^2$ = $(100)^2 + (5)^2 + 2 \times 100 \times 5$ = 10000 + 25 + 1000 = 11025.

(ii)
$$(47)^2 = (50 - 3)^2$$

= $(50)^2 + (3)^2 - 2 (50) (3)$
= $2500 + 9 - 300 = 2209$.

(iii)
$$(8.3 \times 7.7) = (8 + 0.3) (8 - 0.3)$$

= $(8)^2 - (0.3)^2$
= $64 - 0.09 = 63.91$.

Illustration 9.3

Find the value of the expression $25x^2 + 9y^2 + 30xy$. when x = 8 and y = 10.

Sol.
$$25x^2 + 9y^2 + 30xy = (5x)^2 + (3y)^2 + 2 (5x) (3y)$$

= $(5x + 3y)^2 = (5 \times 8 + 3 \times 10)^2$ [when x = 8 and y = 10]
= $(40 + 30)^2 = (70)^2 = 4900$.

Illustration 9.4

Find the value of the expression (81x 2 + 16y 2 – 72xy), when x = $\frac{2}{3}$ and y = $\frac{3}{4}$.

Sol.
$$(81x^2 + 16y^2 - 72xy) = (9x)^2 + (4y)^2 - 2 \times 9x \times 4y = (9x - 4y)^2$$

= $\left(9 \times \frac{2}{3} - 4 \times \frac{3}{4}\right)^2$ [when $x = \frac{2}{3}$ and $y = \frac{3}{4}$]
= $(6 - 3)^2 = (3)^2 = 9$.

Illustration 9.5

If $x + \frac{1}{x} = 5$, find the values of :

(i)
$$x^2 + \frac{1}{x^2}$$
 (ii) $x^4 + \frac{1}{x^4}$

Sol. (i) $x + \frac{1}{x} = 5 \Rightarrow \left(x + \frac{1}{x}\right)^2 = (5)^2$

[on squaring both sides]

$$\Rightarrow x^{2} + \frac{1}{x^{2}} + 2(x) \times \frac{1}{x} = 25 \qquad \Rightarrow x^{2} + \frac{1}{x^{2}} + 2 = 25$$

$$\Rightarrow x^{2} + \frac{1}{x^{2}} = (25 - 2) \qquad \Rightarrow x^{2} + \frac{1}{x^{2}} = 23$$

(ii) $x^{2} + \frac{1}{x^{2}} = 23$

$$\Rightarrow \left(x^{2} + \frac{1}{x^{2}}\right)^{2} = (23)^{2} \qquad \text{[on squaring both sides]}$$

$$\Rightarrow x^{4} + \frac{1}{x^{4}} + 2(x^{2}) \times \frac{1}{x^{2}} = 529$$

$$\Rightarrow x^{4} + \frac{1}{x^{4}} + 2 = 529 \qquad \Rightarrow x^{4} + \frac{1}{x^{4}} = (529 - 2)$$

$$\Rightarrow x^{4} + \frac{1}{x^{4}} = 527$$

Ask yourself_____

- **1.** Expand the following :
 - (i) $(10x-3)^2$ (ii) $\left(6x+\frac{y}{3}\right)^2$
- 2. What least value should be added to the following algebraic expressions to make them perfect squares ? $36x^2 65xy + 25y^2$
- **3.** Find the square of (i) $12 x^2 - 13y^2$ (ii) $9x^2 + 15y$

4. Simplify & using identities :
$$\frac{(3.72)^2 - (1.96)^2}{(3.72 + 1.96)}$$

- 5. If $x \frac{1}{x} = 5$, find the value of (i) $x^2 + \frac{1}{x^2}$ (ii) $x^4 + \frac{1}{x^4}$
- 6. Show that
 - (i) $(4x + 5y)^2 (4x 5y)^2 = 80xy$
 - (ii) (a-b)(a+b) + (b-c)(b+c) + (c-a)(c+a) = 0

Answers

1.	(i)	$100x^2 - 60x +$	9		(ii)	36x ²	$+\frac{y^2}{9}+4xy$	2.	5xy
3.	(i)	144x ⁴ + 169y ⁴	– 312x ²	² y ²	(ii)	81x ⁴ +	$225y^2 + 270x^2y$		
4.	1.76		5.	(i)	27	(ii)	727		

9.2 FACTORISATION

Factors : When an algebraic expression can be written as the product of two or more expressions, then each of these expressions is called a factor of the given expression.

Factorisation : The process of finding two or more expressions whose product is the given expression is called **factorisation**.

NOTE :

Factorisation is the reverse process of multiplication.

Example :

Look at the examples given below :

Product	Factorisation
(i) $3x(4x - 5y) = 12x^2 - 15xy$	$12x^2 - 15xy = 3x(4x - 5y)$
(ii) $(x+3)(x-2) = x^2 + x-6$	$x^{2} + x - 6 = (x + 3) (x - 2)$
(iii) $(2a + 3b) (2a - 3b) = 4a^2 -$	$4a^2 - 9b^2 = (2a + 3b) (2a - 1)$
9b ²	3b)

(a) Factorisation when a common monomial factor occurs in each term

METHOD:

Step 1. Find the HCF of all the terms of the given expression.

Step 2. Divide each term of the given expression by this HCF.

Step 3. Write the given expression as the product of this HCF and the quotient obtained in step 2.

Illustration 9.6

Factorise each of the following :

- (i) $3x^2y 6xy^2$ (ii) 6ab 9bc (iii) $25x^2 + 35x^3y 20xy^3$
- Sol. (i)

 $3x^2y - 6xy^2 = 3xy (x - 2y)$

- (ii) 6ab 9bc = 3b (2a 3c)
- (iii) $25x^3 + 35x^2y 20xy^3 = 5x (5x^2 + 7xy 4y^3)$

(b) Factorisation when a binomial is common

METHOD :

Step 1. Find the common binomial.

Step 2. Write the given expression as the product of this binomial and the quotient obtained on dividing the given expression by this binomial.

Illustration 9.7

Factorise : 5a(2x - 3y) + 2b(2x - 3y).

Sol. 5a (2x - 3y) + 2b (2x - 3y) = (2x - 3y) (5a + 2b).

(c) Factorisation by grouping

Sometimes the terms of the given expression need to be arranged in suitable groups in such a way that all the groups have a common factor. After this arrangement factorisation becomes easy.

METHOD

Step 1. Arrange the terms of the given expression in groups in such a way that all the groups have a common factor.

Step 2. Factorise each group.

Step 3. Take out the factor which is common to each group.

Illustration 9.8

(i)

Factorise :

- (i) px + qy + py + qx (ii) $1 + a + ac + a^2c$
- Sol.

$$px + qy + py + qx = px + py + qx + qy$$

= p (x + y) + q (x + y)
= (x + y) (p + q).

(ii)
$$1 + a + ac + a^2c = 1(1 + a) + ac (1 + a)$$

= $(1 + a) (1 + ac)$.

(d) Factorisation when a binomial is the difference of two square.

 $49x^2 - 16y^2 = (7x)^2 - (4y)^2 = (7x + 4y)(7x - 4y).$

In this case, we use the formula : $(a^2 - b^2) = (a + b) (a - b)$

Illustration 9.9

Factorise :

(i) $49x^2 - 16y^2$ (ii) $64 - x^2$ (iii) $48a^2 - 243b^2$ (iv) $3x^3 - 48x$

Sol. (i)

- (ii) $64 x^2 = (8)^2 x^2 = (8 + x)(8 x)$.
- (iii) $48a^2 243b^2 = 3(16a^2 81b^2) = 3\{(4a)^2 (9b)^2\} = 3(4a + 9b)(4a 9b).$
- (iv) $3x^3 48x = 3x(x^2 16) = 3x(x + 4)(x 4)$.

Illustration 9.10

Factorise : $25(x + y)^2 - 36 (x - 2y)^2$

Sol. $25(x + y)^2 - 36(x - 2y)^2$ = $\{5(x + y)\}^2 - \{6(x - 2y)\}^2$ = $\{5(x + y) + 6(x - 2y)\} \{5(x + y) - 6(x - 2y)\}$ = (11x - 7y) (17y - x).

Illustration 9.11

Factorise : $4x^2 - y^2 + 6y - 9$.

Sol. $4x^2 - y^2 + 6y - 9$ = $4x^2 - (y^2 - 6y + 9)$ = $(2x)^2 - (y - 3)^2$ = $(2x + y - 3) \{2x - (y - 3)\}$ = (2x + y - 3) (2x - y + 3).

Illustration 9.12

	Evalu	ate:
	(i)	$(502)^2 - (498)^2$ (ii) $(8.6)^2 - (1.4)^2$
Sol.	(i)	$(502)^2 - (498)^2 = (502 + 498) (502 - 498)$
		= (1000 × 4) = 4000
	(ii)	$(8.6)^2 - (1.4)^2 = (8.6 + 1.4) (8.6 - 1.4) = (10 \times 7.2) = 72.$

(e) Factorisation when the given expression is a perfect square

We know that	(i)	$a^{2} + b^{2} + 2ab = (a + b)^{2}$
	(ii)	$a^{2} + b^{2} - 2ab = (a - b)^{2}$.

Illustration 9.13

Factorise :

(i)	x² + 10x + 25	(ii)	x ² – 20x + 100
(iii)	$4x^2 + 9y^2 + 12xy$	(iv)	$x^4 + 25y^4 - 10x^2y^2$

Sol. (i) $x^2 + 10x + 25 = x^2 + (5)^2 + 2 (x) (5) = (x + 5)^2$

(ii) $x^2 - 20x + 100 = x^2 + (10)^2 - 2 (x) (10) = (x - 10)^2$

- (iii) $4x^2 + 9y^2 + 12xy = (2x)^2 + (3y)^2 + 2(2x)(3y) = (2x + 3y)^2$
- (iv) $x^4 + 25y^4 10x^2y^2 = (x^2)^2 + (5y^2)^2 2(x^2)(5y^2) = (x^2 5y^2)^2$

(f) Factorisation of quadratic trinomials

First Form : $x^2 + px + q$.

 $x^2 + 8x + 15$

Suppose we are given a quadratic trinomial $x^2 + px + q$ Then, we use the identity : $x^2 + (a + b)x + ab = (x + a) (x + b)$

In order to factorise $x^2 + px + q$, we find two numbers 'a' and 'b' such that (a + b) = p and ab = q.

Then, $x^2 + px + q = x^2 + (a + b)x + ab = (x + a) (x + b)$.

Illustration 9.14

Factorise :

(i)

(ii) $x^2 + 15x + 56$ (iii) $x^2 + x - 56$

- Sol. (i) The given expression is $x^2 + 8x + 15$ Find two number whose sum = 8 and product = 15 Clearly, the number are 5 and 3. $\therefore x^2 + 8x + 15 = x^2 + 5x + 3x + 15$ = x (x + 5) + 3 (x + 5) = (x + 5) (x + 3).
 - (ii) The given expression is $x^2 + 15x + 56$. Find two numbers whose sum = 15 and product = 56 Clearly, such numbers are 8 and 7. $\therefore x^2 + 15x + 56 = x^2 + 8x + 7x + 56$ = x (x + 8) + 7 (x + 8)

$$= (x + 8) (x + 7).$$

\sim
TTV E
CLASSROOM

The given expression is $x^2 + x - 56$. (iii) Find two numbers whose sum = 1 and product = -56Clearly, such numbers are 8 and - 7 $\therefore x^2 + x - 56 = x^2 + 8x - 7x - 56 = x (x + 8) - 7 (x + 8) = (x + 8) (x - 7).$ Second Form : $ax^2 + bx + c$. In this case, split it into two parts whose sum = b and product = ac. Now proceed as in the first case. Illustration 9.15 Factorise: (i) $2x^2 + 9x + 10$ (ii) $6x^2 + 7x - 3$ (iii) $15x^2 - 26x + 8$ (iv) $3x^2 - 4x - 4$ Sol. (i) The given expression is $2x^2 + 9x + 10$. Find two numbers whose sum = 9 and product = $(2 \times 10) = 20$. Clearly, such numbers are 5 and 4. $\therefore 2x^2 + 9x + 10 = 2x^2 + 5x + 4x + 10 = x (2x + 5) + 2 (2x + 5) = (2x + 5) (x + 2).$ (ii) The given expression is $6x^2 + 7x - 3$. Find two numbers whose sum = 7 and product = $6 \times (-3) = -18$. Clearly, such numbers are 9 and - 2. $\therefore 6x^2 + 7x - 3 = 6x^2 + 9x - 2x - 3 = 3x(2x + 3) - (2x + 3) = (2x + 3)(3x - 1).$ (iii) The given expression is $15x^2 - 26x + 8$. Find two numbers whose sum = -26 and product = $(15 \times 8) = 120$. Clearly. such numbers are -20 and -6. $\therefore 15x^2 - 26x + 8 = 15x^2 - 20x - 6x + 8 = 5x(3x - 4) - 2(3x - 4) = (3x - 4)(5x - 2).$ (iv) The given expression is $3x^2 - 4x - 4$. Find two numbers whose sum = -4 and product = $3 \times (-4) = -12$. Clearly, such numbers are -6 and 2.

$\therefore 3x^2 - 4x - 4 = 3x^2 - 6x + 2x - 4 = 3x (x - 2) + 2 (x - 2) = (x - 2) (3x + 2).$

Ask yourself____

Factorise the following :

(i)
$$2x^2 + 6xy$$

- (iii) $5y^3(x^2-5)-2y^2(x^2-5)+3y(x^2-5)$
- (v) 10xy + 5x 14y 7
- (vii) 63xy 72y 48 + 42x
- (ix) $49x^4 121y^2$
- (xi) $x^2 + 8xy + 16y^2$
- (xiii) $121 66y^2x + 9y^4x^2$
- (**xv**) x² 8x + 15

- (ii) $24x^2y^2 36x^2y$
- (iv) $x^2y(x-z) + y^2x(z-x)$
- (vi) $15x^2 10xy + 12x 8y$
- (viii) x² 16
- **(x)** 16x^₄ − 1
- (xii) $4x^2 24xy + 36y^2$
- (xiv) $x^2 5x + 6$

Answers

1.	(i)	2x(x + 3y)	
	(iii)	$y(x^2 - 5)(5y^2 - 2y + 3)$	
	(v)	(5x – 7) (2y + 1)	
	(vii)	(9y + 6) (7x – 8)	
	(ix)	(7x ² – 11y) (7x + 11y)	
	(xi)	$(x + 4y)^2$	
	(xiii)	$(11 - 3y^2x)^2$	
	(xv)	(x - 5) (x - 3)	

- (ii) $12x^2y(2y-3)$
- (iv) xy(x-z)(x-y)
- (vi) (5x + 4) (3x 24)
- (viii) (x-4)(x+4)
- (x) $(2x-1)(2x+1)(4x^2+1)$
- (xii) $4[x 3y]^2$
- (xiv) (x-3)(x-2)

Add your knowledge _____

- 1. Some more identities :-
 - (i) $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac$
 - (ii) $(a + b)^3 = a^3 + b^3 + 3ab (a + b)$ or $(a b)^3 = a^3 b^3 3ab (a b)$
 - (iii) If $a^2 + b^2 = 0$, then a = 0 and b = 0 simultaneously.

Concept Map-

Summary _

Some standard identities :

- **1.** $(a + b)^2 = a^2 + 2ab + b^2$
- **2.** $(a b)^2 = a^2 2ab + b^2$
- **3.** $(a + b) (a b) = a^2 b^2$
- 4. $(x + a) (x + b) = x^2 + ax + bx + ab$ OR

 $(x + a) (x + b) = x^{2} + (a + b)x + ab$

Exercise-1

SECTION -A (FIXED RESPONSE TYPE) OBJECTIVE QUESTIONS

1.	(5x +7) (5x +7) is : (A) 25x²+ 70x + 49	(B) 25x ² - 70x + 49	(C) 5x ² + 70x + 7	(D) 5x ² -70x + 7
2.	Square of $3x^2 - 6y^2$ is (A) $9x^4 - 36y^4$ (C) $9x^4 - 36y^4 + 36x^2y$	2	(B) 9x ⁴ + 36y ⁴ - 36x ² y ⁴ (D) 9x ⁴ - 36y ⁴ - 36x ² y ⁴	2
3.	$(4x^2 + 3y^2) (4x^2 - 3y^2)$ (A)16x ⁴ + 9y ⁴ - 24x ² y ² (C)16x ⁴ + 9y ⁴	is :	(B)16x ⁴ + 9y ⁴ + 24x ² y ² (D) 16x ⁴ - 9y ⁴	
4.	If $x + \frac{1}{x} = 7$, the the value	alue of $x^2 + \frac{1}{x^2}$ is :		
	(A) 49	(B) 51	(C) 47	(D) 7
5.	The value of $\frac{97x97}{10}$	87x87 is :		
	(A) 10	(B) 97	(C) 87	(D) 184
6.	The value of is (47) ² (A) 4	+ (43) ² – 2 (47) (43) : (B) 8	(C) 16	(D) 32
7.	The factors of $2x^2 - 3$ (A) $2(x+4)(x-4)$	2 are : (B) 2(x+4)(x+4)	(C) 2(x-4)(x-4)	(D) none of these
8.	The factors of $x^2 + 18$ (A) $(x - 9)^2$	x + 81 are : (B) (x + 9)²	(C) (x – 9) (x + 9)	(D) (x + 81) ²
9.	The factors of $x^2 - 10$ (A) $(x - 5)^2$	x + 25 are : (B) (x + 5)²	(C) (x – 5) (x + 5)	(D) (x + 25) ²
10.	The factors of $16x^2 - (A) (4x + 3y)^2$	24xy + 9y² are : (B)(4x – 3y)²	(C) (4x + 3y) (4x–3y)	(D) none of these

FILL IN THE BLANKS

· · ·

- 1. _____ is the reverse process of multiplication.
- **2**. $(ax+by)(cx+dy) = acx^2 + ($ _____ $)xy + bdy^2$
- **3.** must be added to $(49x^2 42x)$ to make it a perfect square.
- 4. A rectangular parking lot has area $(5x^2 + 17x + 6)$, then sides of the lot are _____ and
- 5. If $x^2 + \frac{1}{x^2} = 27$, then the positive value of $x \frac{1}{x}$ is _____.

TRUE / FALSE

- 1. An identity is an equality, which is true for all values of the variables.
- 2. $(x + \frac{1}{x})^2 = x^2 + \frac{1}{x^2}$
- 3. If a + b = p and ab = q, then $x^2 + px + q = (x + a)(x + b)$
- 4. $(a + b)^2 (a b)^2 = 4ab$
- 5. $(m + n) (m + n) (m n) (m n) = (m^4 n^4)$

MATCH THE COLUMN

1.	Colu	mn–l	Column–II		
	(A)	(a + b) ²	(p)	a² – b²	
	(B)	(a – b) ²	(q)	a² + b² + 2ab	
	(C)	(a + b)(a – b)	(r)	$a^2 - 2ab + b^2 - c^2$	
	(D)	(x + a)(x + b)	(s)	a² + b²– 2ab	
	(E)	(a – b – c) (a – b + c)	(t)	x^{2} + (a + b)x + ab	
2.	2. Column–l		Column–II		
	(A)	$(a + 3)^2 - (a - 3)^2$	(p)	2	
	(B)	$(a+2b-5c)^2-(a-2b+5c)^2$	(q)	12a	
	(C)	$\left(2x+\frac{1}{2x}\right)^2-\left(4x^2+\frac{1}{4x^2}\right)$	(r)	8ab – 20ac	
	(D)	$(1 + x) (1 + x^2) (1 - x)$	(s)	$a^{2} + b^{2} + c^{2} - 2ab + 2bc - 2ca$	
	(E)	$(a - b - c)^2$	(t)	1 – x ⁴	

SECTION -B (FREE RESPONSE TYPE)

VERY SHORT ANSWER TYPE

1. Find the following products:

- (iii) (3x 7y) (3x 7y)
- (v) (x + 3)(x 3)
- 2. Without multiplication find the values of :
 - (i) 107² (ii)
 - (iii) $57 \times 57 47 \times 47$ (iv)

(ii)
$$\left(\frac{5}{6}a^2+2\right)\left(\frac{5}{6}a^2+2\right)$$

(iv) $\left(\frac{1}{3}x^2-9\right)\left(\frac{1}{3}x^2-9\right)$
(vi) $\left(\frac{4x}{5}-\frac{5y}{3}\right)\left(\frac{4x}{5}+\frac{5y}{3}\right)$

$$\frac{96^2}{\frac{5.6 \times 5.6 - 3.6 \times 3.6}{9.2}}$$

3. Simplify :

(i)
$$(2p-3q)^2 - (2p+3q)^2$$

(ii)
$$\left(\frac{1}{2}a^2 + \frac{3}{5}b^3\right)^2 - \left(\frac{1}{2}a^2 - \frac{3}{5}b^3\right)^2$$

- 4. Find the value of the expression $(9x^2 + 24x + 16)$, when x = 12.
- 5. Simplify: $0.645 \times 0.645 + 2 \times 0.645 \times 0.355 + (0.355)^2$

SHORT ANSWER TYPE

6. If $\left(x+\frac{1}{x}\right)=4$, find the value of :

(i)
$$\left(x^2 + \frac{1}{x^2}\right)$$
 (ii) $\left(x^4 + \frac{1}{x^4}\right)$

7. If x + y = 10 and xy = 9, find the value of $(x^2 + y^2)$.

- 8. If x y = 5 and xy = 14, find the value of $(x^2 + y^2)$.
- **9.** If a + b = 5 and $a^2 + b^2 = 13$, find the value of (a b).
- 10. Without actual multiplication find the square of :(i) 1003 (ii) 99.99

LONG ANSWER TYPE

- **11.** Find the continued product :
(i) $(x + 2) (x 2) (x^2 + 4)$ (ii) $(2p + 3) (2p 3) (4p^2 + 9)$ **12.** Prove that: $(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac.$
- **13.** If $(ax^3 + 2)^2 = a^2x^6 + x^3 + 4$, then find a.

14. Factorize:

(i)	15ab ² –20a ² b	(ii)	$14x^3 + 21x^4y - 28x^2y^2$ (iii)	5x(x-4) - 7(x-4)
(iv)	$2a + 6b - 3(a + 3b)^2$	(v)	$6ab - b^2 + 12ac - 2bc (vi)$	$16x^2 - 25y^2$
(vii)	$16x^2 - \frac{1}{144}$	(viii)	(2a + 3b) ² – 16c ²	

15. Factorize:

(i)	$4x^2 - 20xy + 25y^2$	(ii)	49x ² –14x + 1	(iii)	$a^2 - 2ab + b^2 - c^2$
(iv)	x ² + 8x + 16	(v)	$16x^2 - 24x + 9$	(vi)	$a^{2}b^{2}-6abc+9c^{2}$
(vii)	x ² - 10x + 21	(viii)	5x ² - 13x + 6		

Exercise-2

SECTION -A (COMPETITIVE EXAMINATION QUESTION)

MULTIPLE CHOICE QUESTIONS

1.	If $9x^2 + 25y^2 = 30xy$, t (A) 5 : 3	hen the value of x : y is (B) 3 : 5	s : (C) 9 : 25	(D) 25 : 9
2.	If a ² + b ² = 7 and (a – (A) 1	b) ² = 3, what is the va (B) $\sqrt{2}$	lue of ab? (C) 2	(D) 3
3.	If $a^2 + b^2 + c^2 = 20$ an (A) 0	d a + b + c = 0, then th (B) – 5	ne value of ab + bc + c (C) – 10	a is : (D) None of these
4.	The value of $\left[\frac{a^2-a^2}{a^2-6a^2}\right]$	$\frac{5ab}{b+5b^2} \times \frac{a^2 - b^2}{a^2 + ab} \bigg]$		
	(A) – 1	(B)	(C) $\frac{1}{a}$	(D) 1
5.	The value of $(x + 2y + (A) 2x^2 + 8y^2 + 8z^2)$ (C) $2x^2 + 8y^2 + 8z^2 - 8z^2$	+ 2z)² + (x – 2y – 2z)² is 3yz	$S: (B) 2x^{2} + 8y^{2} + 8z^{2} + 8z^$	3xyz 16yz
6.	If x + $\frac{1}{x}$ = 5, the value (A) 21	the of $\frac{x^4 + 1}{x^2}$ is (B) 23	(C) 25	(D) 30
7.	What must be added (A) 16	to 9x ² – 24x + 10 to m (B) 26	ake a perfect square ? (C) 6	, (D) –26
8.	Factors of $(x^2 - 13x + (A) (x - 7)(x - 6)$	42) are : (B) (x + 7)(x – 6)	(C) (x + 7)(6 – x)	(D) (x + 7)(x + 6)
9.	Factors of $\left(x^2 + \frac{x}{6} - \frac{1}{6}\right)$) are :		
	(A) $\frac{1}{6}(2x+1)(3x+2)$	1)	(B) $\frac{1}{6}(2x+1)(3x-1$)
	(C) $\frac{1}{6} (2x - 1)(3x - 1)$)	(D) $\frac{1}{6} (2x - 1)(3x + 1)$)
10.	If $(a - 5)^2 + (b - 6)^2 =$ (A) 8	0, then find the value ((B) – 8	of (a + b – 3) ? (C) 10	(D) –10
_		SECTION -B (TE	<u>CHIE STUFF)</u>	

1. Factorise : $8x^3 + 27y^3 + 36x^2y + 54xy^2$. (A) $(2x + 3y)^3$ (B) $(2x - 3y)^3$ (C) $(3x + 2y)^3$ (D) $(3x - 2y)^3$

ſ											
CLA	ssr00m			Algebraic Identities							
2.	Evaluate (1001)³ by ι (A) 1003003001	using suitable identity. (B) 1004004001	(C) 1002003001	(D) 1002002001							
4.	Simplify (x + 4y)³ – (x (A) 16 xy	(– 4у) ³ . (В) –16ху	(C) 128y ³ – 24yx ²	(D) 128y ³ + 24yx ²							
		Exerc	ise-3								
	PREVIOUS YEAR EXAMINATION QUESTIONS										
1.	If x + $\frac{1}{x}$ = 3, then $\frac{3}{x^2}$	<u><</u> is		[Aryabhatta - 2002]							
	(A) 9	(B) $\frac{1}{3}$	(C) 13	(D) <u>1</u> 13							
2.	If $x - y = 2$, $xy = 24$, t	then $\left \frac{1}{x} + \frac{1}{y}\right $ is equal	to	[Aryabhatta - 2008]							
	(A) $\frac{5}{2}$	(B) 12	(C) $\frac{5}{12}$	(D) 3							
3.	$\frac{3.764 \times 3.764 - (1.236)}{3.764 - 1.236}$	$\frac{2}{2} = ?$		[Aryabhatta - 2009]							
	(A) 2.5	(B) 5	(C) 1.4	(D) 3							
4.	If x + y = 17 and x^2 + (A) 17 + 4 $\sqrt{114}$	y ² = 167, then what is (B) 61	the value of xy = ? (C) 48 + $\sqrt{167}$	[NSTSE - 2009] (D) 122							
5.	If $2x - \frac{1}{2x} = 3$, then the	ne value $16x^4 + \frac{1}{16x^4}$	is	[NSTSE - 2009]							
	(A) 11	(B) 117	(C) 119	(D) 121							
6.	If xy = b and $\frac{1}{x^2} + \frac{1}{y}$	$\frac{1}{x^2}$ = a, then (x + y) ² equ	uals	[NSTSE - 2010]							
	(A) (a + 2b) ²	(B) a ² + b ²	(C) b(ab + 2)	(D) $\frac{1}{a}$ + 2b							
7.	If ab = 6 and a + b = (A) 11	5, then find the value o (B) 12	of a² + b² ? (C) 13	[NSTSE - 2012] (D) 16							
8.	What is the value of	$\frac{(67.542)^2 - (32.458)^2}{75.458 - 40.374}$		[NSTSE - 2013]							
	(A) 1	(B) 10	(C) 100	(D) 1000							

Answer Key

Exercise-1

SECTION -A (FIXED RESPONSE TYPE) OBJECTIVE QUESTIONS

			Ques.	1	2	3	4	5	6	7	8	9	10	
			Ans.	А	В	D	С	D	С	А	В	А	В	
FILL			KS											
1.	Factor	isation		2.	bc	; + ac	b	3.		9			4.	(5x + 2). $(x + 3)$
5.	5													
TRUE	E / FAL	SE												
1.	True			2.	Fa	alse		3.		True	е		4.	True
5.	False													
MATCH THE COLUMN														
1.	1. $(A) - (q), (B) - (s), (C) - (p), (D) - (t), (E) - (r)$													
2.	(A) - (q), (B) - (r), (C) - (p), (D) - (t), (E) - (s)													
SECTION -B (FREE RESPONSE TYPE)														
VERY			WER 1	YPE								<u> </u>		
								2	5 4		10 -	5		
1.	(i)	$4x^2 + 2$	$5y^2 + 20$	xy.			(ii)	3	<u>-</u> a⁴ - 6	+4+	<u></u> a ²	-	(iii)	$9x^2 + 49y^2 - 42xy$
	(iv)	$\frac{1}{9}x^4 +$	81 – 6x	² .			(v)	X²	²–9.				(vi)	$\frac{16x^2}{25} - \frac{25y^2}{9}$
2.	(i) (iv)	11449 2.					(ii)	92	216				(iii)	1040
3.	(i)	(4p) (–	6q) = –	24pc	.		(ii)	(a	a^2) $\left(\frac{e}{2}\right)$	$\left(\frac{b^3}{5}\right)$ =	$=\frac{6}{5}a$	ı²b³.		
4.	1600						5.	1						
SHOP	RT ANS	SWER ⁻	TYPE											
6.	(i)	14	(ii)	194			7.	82	2	8.	5	53.		
9.	+ 1 or	–1	10.	(i)	10	0600	09			(ii)	g	9998.	0001	
LONG	G ANSI	NER T	YPE											
11.	(i)	(x ⁴ – 16	6)		(ii)	(16p	0 ⁴ – 8	1)		1	3.	$\frac{1}{4}$	

14.	(i)	5ab (3b–4a)	(ii)	$7x^2(2x + 3x^2y - 4y^2)$	(iii)	(x – 4) (5x – 7)
	(iv)	(a + 3b) (2 – 3a – 9b)	(v)	(6a – b) (b + 2c)	(vi)	(4x + 5y) (4x – 5y)
	(vii)	$\left(4x+\frac{1}{12}\right)\left(4x-\frac{1}{12}\right)$	(viii)	(2a + 3b + 4c) (2a + 3	3b – 4	c)
15.	(i)	(2x – 5y) ²	(ii)	(7x – 1) ²	(iii)	(a − b + c) (a − b − c)
	(iv)	$(x + 4)^2$	(v)	$(4x - 3)^2$	(vi)	(ab – 3c) ²
	(vii)	(x – 3) (x – 7)	(viii)	(5x – 3) (x – 2)		

Exercise-2

SECTION -A (COMPETITIVE EXAMINATION QUESTION) MULTIPLE CHOICE QUESTIONS

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13
Ans.	А	С	С	D	D	В	С	А	В	А	А	А	D

Exercise-3

PREVIOUS YEAR EXAMINATION QUESTIONS

Ques.	1	2	3	4	5	6	7	8
Ans.	В	С	В	В	С	С	С	С

