MATHEMATICS

Class-IX

Topic-2 POLYNOMIALS

INDEX								
S. No.	Торіс	Page No.						
1.	Theory	1 – 18						
2.	Exercise (Board Level)	19 – 20						
3.	Exercise-1	21 – 24						
4.	Exercise-2	24 – 25						
5.	Exercise-3	25 – 29						
6.	Answer Key	30 - 31						

CH-02 POLYNOMIALS

A. INTRODUCTION AND CLASSIFICATION OF POLYNOMIALS

(a) General Terms

(i) **Constant** : A symbol having a fixed numerical value is called a 'constant' e.g. '2' has a definite value. So, it is a constant

(ii) Variable : A symbol which takes on various numerical values is called a 'variable'.

e.g. x,y

(iii) **Coefficient :** In the product of a constant and a variable, each is called the coefficient of the other.

e.g. In 6x, 6 is the coefficient of x.

(iv) Algebraic expression : Combination of constants and variables with (+), (–), (×), () is called an 'Algebraic expression'.

e.g. 17 - x, $3x^2 - 4x + 12$, etc.

(v) Equation : Two expressions combined with equality symbol (=) is called an equation e.g. 17 - x = 0, $3x^2 - 4x + 12 = 2x^2 - 3x$. etc.

(vi) Degree of an expression : The highest number of times the variable is present in the terms of an expression is the degree of an expression.

(b) Types of Polynomial

An algebraic expression f(x) of the form $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$, where $a_0, a_1, a_2, \dots, a_n$ are real numbers and all the index of 'x' are non-negative integers is called a **polynomial** in x.

• Identification of Polynomial :

For this, we have following examples :

(i) $\sqrt{3} x^2 + x - 5$ is a polynomial in variable x as all the exponents of x are non negative integers.

(ii) $\sqrt{3} x^2 + \sqrt{x} - 5x$ is not a polynomial as the exponent of second term ($\sqrt{x} = x^{1/2}$) is not a non negative integer.

(iii) $5x^3 + 2x^2 + 3x - \frac{5}{x} + 6$ is not a polynomial as the exponent of fourth term $-\frac{5}{x}$ is not non-negative integer.

• Degree of the Polynomial :

Highest index of **x** in algebraic expression is called the **degree of the polynomial**, here a_0 , a_1x , a_2x^2 ,...., a_nx^n , are called the terms of the polynomial and a_0 , a_1 , a_2 ,..., a_n are called various coefficients of the polynomial f(x).

For example:

(i) $p(x) = 3x^4 - 5x^2 + 2$ is a polynomial of degree 4

(ii) $q(x) = 5x^4 + 2x^5 - 6x^6 - 5$ is a polynomial of degree 6

(iii) $f(x) = 2x^3 + 7x - 5$ is a polynomial of degree 3.

• Different Types of Polynomials :

Generally, we divide the polynomials in the following categories.

(i) **Based on degrees :** There are four types of polynomials based on degrees. These are listed below :

→ Zero degree polynomial : Any non-zero number (constant) is regarded as a polynomial of degree zero or zero degree polynomial. i.e. f(x) = a, where $a \neq 0$ is a zero degree polynomial, since we can write f(x) = a as $f(x) = ax^{\circ}$.

→ Linear Polynomial : A polynomial of degree one is called a linear polynomial. The general form of linear polynomial is ax + b, where a and b are any real constant and $a \neq 0$.

 \rightarrow Quadratic Polynomial : A polynomial of degree two is called a quadratic polynomial. The general form of a quadratic polynomial is $ax^2 + bx + c$, where $a \neq 0$.

→ Cubic Polynomial : A polynomial of degree three is called a cubic polynomial. The general form of a cubic polynomial is $ax^3 + bx^2 + cx + d$, where $a \neq 0$.

Biquadratic (or quartic) Polynomials : A polynomial of degree four is called a **biquadratic (quartic) polynomial**. The general form of a biquadratic polynomial is $ax^4 + bx^3 + cx^2 + dx + e$, where $a \neq 0$.

NOTE : A polynomial of degree five or more than five does not have any particular name. Such a polynomial usually called a polynomial of degree five or six or etc.

(ii) Based on number of terms

There are three types of polynomials based on number of terms. These are as follows :

 \rightarrow Monomial : A polynomial is said to be a monomial if it has only one term. e.g. x, $9x^2$, $5x^3$ all are monomials.

 \rightarrow Binomial : A polynomial is said to be a binomial if it contains two terms. e.g. $2x^2 + 3x$, $\frac{x}{2} + 5x^3$,

 $-8x^3 + 3$, all are binomials.

 \rightarrow Trinomials : A polynomial is said to be a trinomial if it contains three terms. e.g. $3x^3 - 8x + \frac{5}{2}$,

 $5 - 7x + 8x^9$, $\sqrt{7} x^{10} + 8x^4 - 3x^2$ are all trinomials.

NOTE : A polynomial having four or more than four terms does not have particular name. These are simply called **polynomials**.

(c) Operation on polynomials

(i) Arithmetic operations over polynomials

(I) Addition : Addition of all like terms in given polynomials gives the sum of polynomials.

(II) Subtraction : The difference between the like term in given polynomials is known as subtraction of the given polynomials.

(III) Multiplication : multiply each term of the multiplicand by each term of the multiplier and take the algebraic sum of the products. This gives the product of the given polynomials.

(d) Division algorithm for polynomial

If p(x) and g(x) are any two polynomials with $g(x) \neq 0$, then we can find polynomials r(x) and q(x) such that $p(x) = g(x) \times q(x) + r(x)$ i.e. Dividend = (Divisor x Quotient) + Remainder where r(x)=0 or degree of r(x) < degree of g(x).

(i) If r(x) = 0, g(x) is a factor of p(x)

(ii) If deg(p(x)) > deg(g(x)), then deg(q(x)) = deg(p(x)) - deg(g(x))

(iii) If deg(p(x)) = deg(g(x)), then deg(q(x)) = 0 and deg(r(x)) < deg(g(x))

(i) Value of a Polynomial :

The value of a polynomial f(x) at $x = \alpha$ is obtained by substituting $x = \alpha$ in the given polynomial and is denoted by $f(\alpha)$.

Consider the polynomial $f(x) = x^3 - 6x^2 + 11x - 6$, If we replace x by - 2 everywhere in f(x), we get

$$f(-2) = (-2)^3 - 6(-2)^2 + 11(-2) - 6$$

$$f(-2) = -8 - 24 - 22 - 6$$

$$f(-2) = -60$$

So, we can say that value of f(x) at x = -2 is -60.

(ii) Zero or Root of a Polynomial :

The real number α is a root or zero of a polynomial f(x), if $f(\alpha) = 0$. Consider the polynomial $f(x) = 2x^3 + x^2 - 7x - 6$, If we replace x by 2 everywhere in f(x), we get

 $f(2) = 2(2)^3 + (2)^2 - 7(2) - 6 = 16 + 4 - 14 - 6 = 0$ Hence, x = 2 is a root of f(x).

(iii) Remainder Theorem:

Let 'p(x)' be any polynomial of degree greater than or equal to one and **a** be any real number and If p(x) is divided by (x - a), then the remainder is equal to p(a).

(iv) Factor Theorem:

Let p(x) be a polynomial of degree greater than or equal to 1 and 'a' be a real number such that p(a) = 0, then (x - a) is a factor of p(x). Conversely, if (x - a) is a factor of p(x), then p(a) = 0.

Solved Examples

Example.1

Find the sum of the following : $P(x) = 4t^3 - 3t^2 + 2$, $Q(x) = t^4 - 2t^3 + 6$ and $R(x) = t^3 + 4t^2 - 4$

Sol. $P(x) = 4t^3 - 3t^2 + 2$ $Q(x) = t^4 - 2t^3 + 6$ $R(x) = t^3 + 4t^2 - 4$ $P(x) + Q(x) + R(x) = t^4 + 3t^3 + t^2 + 4$

Example.2

Subtract g(x) from f(x) where $f(x) = 2 + x^2 + 4x^3$, $g(x) = x^4 + x^2 + 3x + 5$.

Sol. $f(x) = 4x^3 + x^2 + 0.x + 2 = 0.x^4 + 4x^3 + x^2 + 0.x + 2$ $g(x) = x^4 + 0.x^3 + x^2 + 3x + 5$ $f(x) - g(x) = (0.x^4 + 4x^3 + x^2 + 0.x + 2) - (x^4 + 0x^3 + x^2 + 3x + 5)$ $f(x) - g(x) = (0 - 1)x^4 + (4 - 0)x^3 + (1 - 1)x^2 + (0 - 3)x + (2 - 5)$ $= -x^4 + 4x^3 + 0.x^2 - 3x - 3 = -x^4 + 4x^3 - 3x - 3.$

Example.3

Multiply : $(x^2 - 5x + 2)$ by $(3x^2 + 2x - 5)$ Sol. We have $x^2 - 5x + 2$

 $x = 3x^2 + 2x - 5$

$$3x^{4} - 15x^{3} + 6x^{2}$$

$$+ 2x^{3} - 10x^{2} + 4x$$

$$- 5x^{2} - 25x + 10$$

$$3x^{4} - 13x^{3} - 9x^{2} + 29x - 10$$

If $p(x) = x^2 - 2x + 1$ and $q(x) = x^3 - 3x^2 + 2x - 1$. Find $p(x) \times q(x)$ and check the degree of $p(x) \times q(x)$

Sol. $p(x) \times q(x) = (x^2 - 2x + 1) \times (x^3 - 3x^2 + 2x - 1)$ = $x^2(x^3 - 3x^2 + 2x - 1) - 2x(x^3 - 3x^2 + 2x - 1) + 1 (x^3 - 3x^2 + 2x - 1)$ = $(x^5 - 3x^4 + 2x^4 + 2x^3 + 6x^3 + x^3 - x^2 - 4x^2 - 3x^2 + 2x + 2x - 1)$ = $x^5 - 5x^4 + 9x^3 - 8x^2 + 4x - 1$ The degree of $p(x) \times q(x)$ is '5'

Example.5

What must be added to $3x^3 + x^2 - 22x + 9$ so that the result is exactly divisible by $3x^2 + 7x - 6$.

Sol. Let $p(x) = 3x^3 + x^2 - 22x + 9$ and $q(x) = 3x^2 + 7x - 6$ We know if p(x) is divided by q(x) which is quadratic polynomial then the remainder be r(x) and degree of r(x) is less than q(x) or Divisor.

By long division method

$$3x^{2} + 7x - 6 \quad \overline{\big) \qquad 3x^{3} + x^{2} - 22x + 9} \\ - \underbrace{3x^{3} + 7x^{2} + 6x}_{-6x^{2} + 16x + 9} \\ \underbrace{\frac{-6x^{2} + 16x + 9}_{\pm 6x^{2} + 14x \pm 12}}_{-2x - 3}$$

Hence if in p(x) we added 2x + 3 then it is exactly divisible by $3x^2 + 7x - 6$.

Example.6

What must be subtracted from $x^3 - 6x^2 - 15x + 80$ so that the result is exactly divisible by $x^2 + x - 12$.

Sol: Let $p(x) = x^3 - 6x^2 - 15x + 80$ so that it is exactly divisible by $q(x) = x^2 + x - 12$. We know if p(x) is divided by q(x) which is quadratic polynomial then the remainder be r(x) and degree of r(x) is less than q(x) or Divisor. By long division method

$$\frac{x-7}{x^{2}+x-12} \xrightarrow{x^{3}-6x^{2}-15x+80} \\
\underline{x^{3} \pm x^{2} \pm 12x} \\
-7x^{2}-3x+80 \\
\underline{-7x^{2}-3x+80} \\
\underline{-7x^{2}-7x\pm84} \\
4x-4$$

Hence, if in p(x) we subtract 4x - 4 then it is exactly divisible by $x^2 + x - 12$.

Example.7

If $x = \frac{4}{3}$ is a root of the polynomial $f(x) = 6x^3 - 11x^2 + kx - 20$ then find the value of k.

Sol.
$$f(x) = 6x^3 - 11x^2 + kx -$$

$$\Rightarrow \qquad f\left(\frac{4}{3}\right) = 6\left(\frac{4}{3}\right)^3 - 11\left(\frac{4}{3}\right)^2 + k\left(\frac{4}{3}\right) - 20 = 0$$

$$\Rightarrow \qquad 6 \times \frac{64}{9 \times 3} - 11 \times \frac{16}{9} + \frac{4k}{3} - 20 = 0$$

$$\Rightarrow \qquad 128 - 176 + 12k - 180 = 0$$

$$\Rightarrow \qquad 12k + 128 - 356 = 0$$

$$\Rightarrow \qquad 12k = 228$$

$$\Rightarrow \qquad k = 19.$$

20

If x = 2 & x = 0 are two roots of the polynomial $f(x) = 2x^3 - 5x^2 + ax + b$. Find the values of a and b.

Sol.
$$f(2) = 2(2)^3 - 5(2)^2 + a(2) + b = 0$$

 $\Rightarrow 16 - 20 + 2a + b = 0$
 $\Rightarrow 2a + b = 4$...(i)
 $f(0) = 2(0)^3 - 5(0)^2 + a(0) + b = 0$
 $\Rightarrow b = 0$
Put b = 0 in eq. (i)
 $\Rightarrow 2a + 0 = 4$
So, $2a = 4$
 $\Rightarrow a = 2$.
Hence, $a = 2, b = 0$.

Example. 9

Find the remainder, when $f(x) = x^3 - 6x^2 + 2x - 4$ is divided by g(x) = 1 - 2x.

-4

Sol.
$$f(x) = x^3 - 6x^2 + 2x - 4$$

Let, $1 - 2x = 0$
 $2x = 1$
 $x = \frac{1}{2}$
Remainder $= f\left(\frac{1}{2}\right)$
 $f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^3 - 6\left(\frac{1}{2}\right)^2 + 2\left(\frac{1}{2}\right)$
 $= \frac{1}{8} - \frac{3}{2} + 1 - 4$
 $= \frac{1 - 12 + 8 - 32}{8} = -\frac{35}{8}$.

Example.10

The polynomials $ax^3 + 3x^2 - 13$ and $2x^3 - 5x + a$ are divided by x + 2 and if the remainder in each case is the same, find the value of a.

Sol. p(x) = ax³ + 3x² - 13 and q(x) = 2x³ - 5x + a When p(x) & q(x) are divided by x + 2 Let x + 2 = 0 x = -2. ∴ Remainder are same. So, p (-2) = q(-2) ⇒ a (-2)³ + 3 (-2)² - 13 = 2 (-2)³ - 5 (-2) + a ⇒ -8a + 12 - 13 = -16 + 10 + a ⇒ -9a = -5 ⇒ a = $\frac{5}{9}$.

Example.11

If $f(x) = x^4 - 2x^3 + 3x^2 - ax + b$ is a polynomial such that when it is divided by x - 1 and x + 1, the remainders are respectively 5 and 19. Determine the remainder when f(x) is divided by (x - 2).

Sol. When f(x) is divided by (x - 1) and (x + 1) the remainders are 5 and 19 respectively.

 $\therefore \quad f(1) = 5$


```
\begin{array}{l} \Rightarrow \quad (-1)^4 - 2(-1)^3 + 3(-1)^2 - a \ (-1) + b = 19 \\ \Rightarrow \quad 1 + 2 + 3 + a + b = 19 \\ \Rightarrow \quad a + b = 13 \qquad \dots (ii) \\ \text{From equation (i) and (ii)} \\ \text{We have } a = 5 \text{ and } b = 8 \\ \text{So,} \quad f(x) = x^4 - 2x^3 + 3x^2 - 5x + 8 \\ \text{The remainder when } f(x) \text{ is dividing by } (x - 2) \text{ is equal to } f(2). \\ \quad f(2) = 2^4 - 2(2^3) + 3(2)^2 - 5(2) + 8 \\ \quad = 16 - 16 + 12 - 10 + 8 \\ \quad = 10. \end{array}
```

The polynomials $ax^3 + 3x^2 - 3$ and $2x^3 - 5x + a$ when divided by (x - 4) leaves remainder $R_1 \& R_2$ respectively then find the value of 'a' if $2R_1 - R_2 = 0$.

Sol. Let
$$f(x) = ax^3 + 3x^2 - 3$$
 and $g(x) = 2x^3 - 5x + a$
 $R_1 = f(4) = a (4)^3 + 3 (4)^2 - 3$
 $R_1 = 64 a + 45$.
 $R_2 = g(4) = 2 (4)^3 - 5 (4) + a$
 $= 128 - 20 + a$
 $= 108 + a$.
Given : $2R_1 - R_2 = 0$
 $2 (64 a + 45) - (108 + a) = 0$
 $128 a + 90 - 108 - a = 0$
 $127 a = 18$
 $a = \frac{18}{127}$.

Example.13

Show that x + 1 and 2x - 3 are factors of $2x^3 - 9x^2 + x + 12$.

Sol. To prove that (x + 1) and (2x - 3) are factors of $2x^3 - 9x^2 + x + 12$ it is sufficient to show that p(-1) and $p\left(\frac{3}{2}\right)$ both are equal to zero.

$$p(-1) = 2(-1)^{3} - 9(-1)^{2} + (-1) + 12 = -2 - 9 - 1 + 12 = -12 + 12 = 0.$$

And, $p\left(\frac{3}{2}\right) = 2\left(\frac{3}{2}\right)^{3} - 9\left(\frac{3}{2}\right)^{2} + \left(\frac{3}{2}\right) + 12 = \frac{27}{4} - \frac{81}{4} + \frac{3}{2} + 12$
$$= \frac{27 - 81 + 6 + 48}{4} = \frac{-81 + 81}{4} = 0.$$

Hence, (x + 1) and (2x - 3) are the factors 2x³ - 9x² + x + 12.

Example.14

Find the values of a and b so that the polynomials $x^3 - ax^2 - 13x + b$ has (x - 1) and (x + 3) as factors.

Sol. Let $f(x) = x^3 - ax^2 - 13x + b$ Because (x - 1) and (x + 3) are the factors of f(x), ∴ f(1) = 0 and f(-3) = 0 f(1) = 0⇒ $(1)^3 - a(1)^2 - 13(1) + b = 0$ ⇒ 1 - a - 13 + b = 0⇒ -a + b = 12 (i) f(-3) = 0⇒ $(-3)^3 - a(-3)^2 - 13(-3) + b = 0$ ⇒ -27 - 9a + 39 + b = 0

If $ax^3 + bx^2 + x - 6$ has x + 2 as a factor and leaves a remainder 4 when divided by (x - 2), find the values of a and b?

```
Sol.
        Let p(x) = ax^3 + bx^2 + x - 6 be the given polynomial.
        Now, (x + 2) is a factor of p(x).
         p(-2) = 0
         a(-2)^3 + b(-2)^2 + (-2) - 6 = 0
         -8a + 4b - 2 - 6 = 0
         -8a + 4b = 8
                                          .... (i)
        It is given that p(x) leaves remainder 4 when it is divided by (x - 2).
         p(2) = 4
         a(2)^3 + b(2)^2 + (2) - 6 = 4
         8a + 4b + 2 - 6 = 4
         8a + 4b = 8
                                                   .... (ii)
        Add equation (i) & (ii)
                -8a + 4b + 8a + 4b = 8 + 8
         8b = 16
                           b = 2.
        Put b = 2 in equation (i)
                -8a + 4(2) = 8
         - 8a + 8 = 8
         - 8a = 0
                           a = 0.
        Hence, a = 0 and b = 2.
```

Check Your Level

1.	Classif	y the following point $x + 3$	olynomia (h)	als based on nun $x^2 + x + 2$	nber of to	erms. x³ + 1	(d)	8 x ³
	(4)	X · O	(••)	3	(0)	2	(9)	<u>o</u> x
	(e)	$7x^2 + 8x + 3$	(f)	$\frac{x^3}{12}$	(g)	$x^4 + \frac{x^2}{2}$	(h)	$x^{2} + x + 3$
2.	Classify the following polynomials based on their degree.							
	(a)	$3x^2 + 4x$	(b)	$2x^3 + \frac{x}{2} + 3$	(c)	7x + 2	(d)	5x ²
	(e)	$x^3 + \sqrt{2}x^2 + 1$	(f)	x ³ – 1	(g)	8x + 3		
3.	Find ze	eroes of the follow	wing poly	ynomials				
	(a)	7x – 14	(b)	8x + 1	(c)	$x^2 - 5x - 6$	(d)	$2x^2 + 3x + 1$
4.	Divide	6x ² + 13x + 16 b	y 2x + 3	and find the quo	tient and	d remainder.		
5.	The polynomial $5x^2 + 7x + 3$ is divided by $x - 2$. Find the remainder by using remainder theorem.							

6. Examine whether (a - 1) is a factor of $a^3 - 3a^2 + 3a - 1$.

Ans	vers							
1.	(a) (e)	binomial trinomial	(b) (f)	trinomial monomial	(c) (g)	binomial binomial	(d) (h)	monomial trinomial
2.	(a) (e)	quadratic cubic	(b) (f)	cubic cubic	(c) (g)	linear linear	(d)	quadratic
3.	(a)	x = 2	(b)	$x = -\frac{1}{8}$	(c)	x = -1 or 6	(d)	$x = -\frac{1}{2} \text{ or } -1$
4.	q = 3	x + 2, r = 10	5.	37	6.	Yes it's a fact	or	

B. ALGEBRAIC IDENTITIES

Some important identities are :

(i) $(a + b)^2 = a^2 + 2ab + b^2$ (ii) $(a - b)^2 = a^2 - 2ab + b^2$ (iii) $a^2 - b^2 = (a + b) (a - b)$ (iv) $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$ (v) $a^3 + b^3 = (a + b) (a^2 - ab + b^2)$ (vi) $a^3 - b^3 = (a - b) (a^2 + ab + b^2)$ (vii) $(a + b)^3 = a^3 + b^3 + 3ab (a + b)$ (viii) $(a - b)^3 = a^3 - b^3 - 3ab (a - b)$ (ix) $a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ac)$ **Special case :** if a + b + c = 0 then $a^3 + b^3 + c^3 = 3abc$. Value Form : (i) $a^2 + b^2 = (a + b)^2 - 2ab$, if **a + b** and **ab** are given. (ii) $a^2 + b^2 = (a - b)^2 + 2ab$, if **a** – **b** and **ab** are given. (iii) $a + b = \sqrt{(a-b)^2 + 4ab}$, if a - b and ab are given. (iv) $a - b = \sqrt{(a+b)^2 - 4ab}$, if a + b and ab are given. (v) $a^2 + \frac{1}{a^2} = \left(a + \frac{1}{a}\right)^2 - 2$, if $a + \frac{1}{a}$ is given. (vi) $a^2 + \frac{1}{a^2} = \left(a - \frac{1}{a}\right)^2 + 2$, if $a - \frac{1}{a}$ is given. (vii) $a^3 + b^3 = (a + b)^3 - 3ab (a + b)$, if (a + b) and ab are given. (viii) $a^3 - b^3 = (a - b)^3 + 3ab (a - b)$, if (a - b) and ab are given. (ix) $a^3 + \frac{1}{a^3} = \left(a + \frac{1}{a}\right)^3 - 3\left(a + \frac{1}{a}\right)$, if $a + \frac{1}{a}$ is given. (x) $a^3 - \frac{1}{a^3} = \left(a - \frac{1}{a}\right)^3 + 3\left(a - \frac{1}{a}\right)$, if $a - \frac{1}{a}$ is given. (xi) $a^4 - b^4 = (a^2 + b^2) (a^2 - b^2) = [(a + b)^2 - 2ab](a + b) (a - b).$

NOTE : (i) $(x^n - a^n)$ is divisible by (x - a) for all the values of n.

- (ii) $(x^n a^n)$ is divisible by (x + a) and (x a) for all the even values of n.
- (iii) $(x^n + a^n)$ is divisible by (x + a) for all the odd values of n.

Solved Examples

Example.16 $\left(\frac{x^a}{x^b}\right)^{a^2+ab+b^2} \left(\frac{x^b}{x^c}\right)^{b^2+bc+c^2} \left(\frac{x^c}{x^a}\right)^{c^2+ca+a^2} = 1$

Sol.

Sol.

$$\begin{split} &\left(\frac{x^{a}}{x^{b}}\right)^{a^{2}+ab+b^{2}} \left(\frac{x^{b}}{x^{c}}\right)^{b^{2}+bc+c^{2}} \left(\frac{x^{c}}{x^{a}}\right)^{c^{2}+ca+a^{2}} \\ &= \left(x^{a-b}\right)^{a^{2}+ab+b^{2}} \left(x^{b-c}\right)^{b^{2}+bc+c^{2}} \left(x^{c-a}\right)^{c^{2}+ca+a^{2}} \\ &= \left(x^{a^{3}-b^{3}}\right)^{a^{2}-c^{3}+c^{3}-a^{3}} = x^{0} = 1. \end{split}$$

Example.17

Expand :

(i)
$$\left(2x - \frac{1}{3x}\right)^2$$
 (ii) $\left(3x^2 + 5y\right)^2$
(iii) $\left(\sqrt{2}x - 3y\right)\left(\sqrt{2}x + 3y\right)$ (iv) $\left(\frac{1}{4}a - \frac{1}{2}b + 1\right)^2$
(i) $\left(2x - \frac{1}{3x}\right)^2 = (2x)^2 - 2(2x)\left(\frac{1}{3x}\right) + \frac{1}{(3x)^2} = 4x^2 - \frac{4}{3} + \frac{1}{9x^2}$.
(ii) $(3x^2 + 5y)^2 = (3x^2)^2 + 2(3x^2)(5y) + (5y)^2 = 9x^4 + 30x^2y + 25y^2$
(iii) $\left(\sqrt{2}x - 3y\right)\left(\sqrt{2}x + 3y\right) = \left(\sqrt{2}x\right)^2 - (3y)^2 = 2x^2 - 9y^2$
(iv) $\left(\frac{1}{4}a - \frac{1}{2}b + 1\right)^2 = \left(\frac{1}{4}a\right)^2 + \left(-\frac{1}{2}b\right)^2 + (1)^2 + 2\left(\frac{1}{4}a\right)\left(-\frac{1}{2}b\right) + 2\left(-\frac{1}{2}b\right)$ (1) + 2(1) $\left(\frac{1}{4}a\right)$
 $= \frac{1}{16}a^2 + \frac{1}{4}b^2 + 1 - \frac{ab}{4} - b + \frac{a}{2}$.

Example.18

Simplify :

(i)
$$\left(x - \frac{1}{x}\right)\left(x + \frac{1}{x}\right)\left(x^2 + \frac{1}{x^2}\right)\left(x^4 + \frac{1}{x^4}\right)$$
 (ii) $(2x + y)\left(2x - y\right)\left(4x^2 + y^2\right)$
(iii) $(x + y - 2z)^2 - x^2 - y^2 - 3z^2 + 4xy$

(i)
$$\left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) \left(x^{2} + \frac{1}{x^{2}} \right) \left(x^{4} + \frac{1}{x^{4}} \right) = \left(x^{2} - \frac{1}{x^{2}} \right) \left(x^{2} + \frac{1}{x^{2}} \right) \left(x^{4} + \frac{1}{x^{4}} \right)$$
$$= \left[(x^{2})^{2} - \left(\frac{1}{x^{2}} \right)^{2} \right] \left(x^{4} + \frac{1}{x^{4}} \right) = \left(x^{4} - \frac{1}{x^{4}} \right) \left(x^{4} + \frac{1}{x^{4}} \right)$$
$$= (x^{4})^{2} - \left(\frac{1}{x^{4}} \right)^{2}$$
$$= x^{8} - \frac{1}{x^{8}} .$$

(ii)
$$(2x + y)(2x - y)(4x^2 + y^2) = [(2x)^2 - (y)^2](4x^2 + y^2)$$

= $(4x^2 - y^2)(4x^2 + y^2) = (4x^2)^2 - (y^2)^2 = 16x^4 - y^4$.

(iii) $(x + y - 2z)^2 - x^2 - y^2 - 3z^2 + 4xy$ = $x^{2} + y^{2} + (-2z)^{2} + 2(x)(y) + 2(y)(-2z) + 2(-2z)(x) - x^{2} - y^{2} - 3z^{2} + 4xy$ $= x^{2} + y^{2} + 4z^{2} + 2xy - 4yz - 4zx - x^{2} - y^{2} - 3z^{2} + 4xy$ $= z^{2} + 6xy - 4yz - 4zx.$ Example.19 Evaluate : (i) $(107)^2$ (ii) (94)² (iii) $(0.99)^2$ $(107)^2 = (100 + 7)^2$ Sol. (i) $= (100)^{2} + (7)^{2} + 2 \times 100 \times 7$ = 10000 + 49 + 1400 = 11449 (ii) $(94)^2 = (100 - 6)^2$ $= (100)^{2} + (6)^{2} - 2 \times 100 \times 6$ = 10000 + 36 - 1200 = 8836 (iii) $(0.99)^2 = (1 - 0.01)^2$ $= (1)^{2} + (0.01)^{2} - 2 \times 1 \times 0.01$ = 1 + 0.0001 - 0.02= 0.9801Example.20 If $x^2 + \frac{1}{x^2} = 23$, find the values of $\left(x + \frac{1}{x}\right)$, $\left(x - \frac{1}{x}\right)$ and $\left(x^4 + \frac{1}{x^4}\right)$. $x^2 + \frac{1}{x^2} = 23$ Sol. ...(i) $\Rightarrow \qquad x^2 + \frac{1}{x^2} + 2 = 25$ [Adding 2 on both sides of (i)] $\Rightarrow \qquad (x^2) + \left(\frac{1}{x}\right)^2 + 2 \cdot x \cdot \frac{1}{x} = 25$ $\Rightarrow \left(x+\frac{1}{x}\right)^2 = (5)^2$ \Rightarrow x + $\frac{1}{x}$ = 5 $\left(x-\frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} - 2$ $\Rightarrow \left(x-\frac{1}{x}\right)^2 = 23-2=21$ $\Rightarrow \qquad \left(\mathbf{x} - \frac{1}{\mathbf{x}}\right) = \pm \sqrt{21}.$ $\left(x^{2}+\frac{1}{x^{2}}\right)^{2}=\left(x^{4}+\frac{1}{x^{4}}\right)+2$ $\Rightarrow \qquad \left(x^4 + \frac{1}{x^4}\right) = \left(x^2 + \frac{1}{x^2}\right)^2 - 2$ $\Rightarrow \left(x^4 + \frac{1}{x^4}\right) = (23)^2 - 2 = 529 - 2$ $\Rightarrow \left(x^4 + \frac{1}{x^4}\right) = 527.$

Prove that :
$$a^{2} + b^{2} + c^{2} - ab - bc - ca = \frac{1}{2} \Big[(a - b)^{2} + (b - c)^{2} + (c - a)^{2} \Big]$$

Sol. Here, L.H.S. $a^{2} + b^{2} + c^{2} - ab - bc - ca$
 $= \frac{1}{2} \Big[2a^{2} + 2b^{2} + 2c^{2} - 2ab - 2bc - 2ca \Big]$
 $= \frac{1}{2} \Big[(a^{2} - 2ab + b^{2}) + (b^{2} - 2bc + c^{2}) + (c^{2} - 2ca + a^{2}) \Big]$
 $= \frac{1}{2} \Big[(a - b)^{2} + (b - c)^{2} + (c - a)^{2} \Big] = RHS$ Hence Proved.

Example.22

If a + b + c = 9 and ab + bc + ca = 23, then find the value of $a^2 + b^2 + c^2$.

(ii) $(4+3x)^3$

 $(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)$ Sol. $(9)^2 = a^2 + b^2 + c^2 + 2(23)$ $a^2 + b^2 + c^2 = 81 - 46$ $a^2 + b^2 + c^2 = 35.$

Example.23

Expand :

(i)

(i)

Sol.

(i)
$$\left(\frac{1}{3x} - \frac{2}{5y}\right)^3$$
 (ii) $(4+3x)^3$
(i) $\left(\frac{1}{3x} - \frac{2}{5y}\right)^3$
 $= \left(\frac{1}{3x}\right)^3 - \left(\frac{2}{5y}\right)^3 - 3\left(\frac{1}{3x}\right)\left(\frac{2}{5y}\right)\left(\frac{1}{3x} - \frac{2}{5y}\right)$
 $= \frac{1}{27x^3} - \frac{8}{125y^3} - \frac{2}{5xy}\left(\frac{1}{3x} - \frac{2}{5y}\right)$
 $= \frac{1}{27x^3} - \frac{8}{125y^3} - \frac{2}{15x^2y} + \frac{4}{25xy^2}$
(ii) $(4+3x)^3$
 $= (4)^3 + (3x)^3 + 3(4)(3x)(4+3x)$
 $= 64 + 27x^3 + 36x (4 + 3x)$
 $= 64 + 27x^3 + 144x + 108x^2$

Simplify :

(i)
$$(3x+4)^3 - (3x-4)^3$$
 (ii) $\left(x+\frac{2}{x}\right)^3 + \left(x-\frac{2}{x}\right)^3$

Sol.

(i)
$$(3x + 4)^3 - (3x - 4)^3$$

= $[(3x)^3 + (4)^3 + 3 (3x) (4) (3x + 4)] - [(3x)^3 - (4)^3 - 3 (3x) (4) (3x - 4)]$
= $[27x^3 + 64 + 36x (3x + 4)] - [27x^3 - 64 - 36x (3x - 4)]$
= $[27x^3 + 64 + 108x^2 + 144x] - [27x^3 - 64 - 108x^2 + 144x]$
= $27x^3 + 64 + 108x^2 + 144x - 27x^3 + 64 + 108x^2 - 144x$
= $128 + 216x^2$.
(ii) $\left(x + \frac{2}{x}\right)^3 + \left(x - \frac{2}{x}\right)^3$

Polynomials

$$= x^{3} + \left(\frac{2}{x}\right)^{3} + 3(x)\left(\frac{2}{x}\right)\left(x + \frac{2}{x}\right) + x^{3} - \left(\frac{2}{x}\right)^{3} - 3(x)\left(\frac{2}{x}\right)\left(x - \frac{2}{x}\right)^{3}$$
$$= x^{3} + \frac{8}{x^{3}} + 6x + \frac{12}{x} + x^{3} - \frac{8}{x^{3}} - 6x + \frac{12}{x}$$
$$= 2x^{3} + \frac{24}{x}.$$

Example.25

Evaluate :

(i) $(1005)^3$ (ii) $(997)^3$ Sol. (i) $(1005)^3 = (1000 + 5)^3$ $= (1000)^3 + (5)^3 + 3 (1000) (5) (1000 + 5)$ = 1000000000 + 125 + 15000 (1000 + 5) = 1000000000 + 125 + 15000000 + 75000 = 1015075125.(ii) $(997)^3 = (1000 - 3)^3$ $= (1000)^3 - (3)^3 - 3 \times 1000 \times 3 \times (1000 - 3)$ $= 10000000000 - 27 - 00000 \times (1000 - 3)$

Example.26

If
$$x - \frac{1}{x} = 5$$
, find the value of $x^3 - \frac{1}{x^3}$.

Sol. We have,
$$x - \frac{1}{x} = 5$$
 ...(i)

$$\Rightarrow \qquad \left(x - \frac{1}{x}\right)^3 = (5)^3 \qquad [\text{Cubing both sides of (i)}]$$

$$\Rightarrow \qquad x^3 - \frac{1}{x^3} - 3x \cdot \frac{1}{x} \cdot \left(x - \frac{1}{x}\right) = 125 \qquad \Rightarrow \qquad x^3 - \frac{1}{x^3} - 3\left(x - \frac{1}{x}\right) = 125$$

$$\Rightarrow \qquad x^3 - \frac{1}{x^3} - 3 \times 5 = 125 \qquad [\text{Substituting } \left(x - \frac{1}{x}\right) = 5]$$

$$\Rightarrow \qquad x^3 - \frac{1}{x^3} - 15 = 125 \qquad \Rightarrow \qquad x^3 - \frac{1}{x^3} = (125 + 15) = 140.$$

Example.27

(i)

Find the products of the following expression :

(i)
$$(4x + 3y) (16x^2 - 12xy + 9y^2)$$

(ii) $(5x - 2y) (25x^2 + 10xy + 4y^2)$

Sol.

(ii)
$$(5x - 2y) (25x^2 + 10xy + 4y^2)$$

= $(5x - 2y) [(5x)^2 + (5x) \times (2y) + (2y)^2]$
= $(a - b) (a^2 + ab + b^2)$ [Where $a = 5x, b = 2y$]
= $a^3 - b^3$
= $(5x)^3 - (2y)^3$
= $125x^3 - 8y^3$.

Find the product of following expression :

(i)
$$(3x - 4y + 5z) (9x^2 + 16y^2 + 25z^2 + 12xy - 15zx + 20yz)$$

(ii) $(2a - 3b - 2c) (4a^2 + 9b^2 + 4c^2 + 6ab - 6bc + 4ca)$
Sol. (i) $(3x - 4y + 5z)(9x^2 + 16y^2 + 25z^2 + 12xy - 15zx + 20yz)$
Let, $a = 3x$, $b = -4y$, $c = 5z$
 $= (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$
 $= (a^3 + b^3 + c^3 - 3abc)$
 $= (3x)^3 + (-4y)^3 + (5z)^3 - 3(3x)(-4y)(5z)$
 $= 27x^3 - 64y^3 + 125z^3 + 180 xyz$
(ii) $(2a - 3b - 2c)(4a^2 + 9b^2 + 4c^2 + 6ab - 6bc + 4ca)$
Let $x = 2a$, $y = -3b$, $z = -2c$
 $= (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)$
 $= (x^3 + y^3 + z^3 - 3xyz)$
 $= (2a)^3 + (-3b)^3 + (-2c)^3 - 3(2a)(-3b)(-2c)$
 $= 8a^3 - 27b^3 - 8c^3 - 36abc$

Example.29

If a + b + c = 9 and ab + bc + ac = 26, find the value of $a^3 + b^3 + c^3 - 3abc$.

Sol. We have
$$a + b + c = 9$$
 ...(i)
 $\Rightarrow (a + b + c)^2 = 81$ [On squaring both sides of (i)]
 $\Rightarrow a^2 + b^2 + c^2 + 2(ab + bc + ac) = 81$
 $\Rightarrow a^2 + b^2 + c^2 + 2 \times 26 = 81$ [$ab + bc + ac = 26$]
 $\Rightarrow a^2 + b^2 + c^2 = (81 - 52)$
 $\Rightarrow a^2 + b^2 + c^2 = 29.$
Now, we have
 $a^3 + b^3 + c^3 - 3abc$
 $= (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ac)$
 $= (a + b + c) [(a^2 + b^2 + c^2) - (ab + bc + ac)]$
 $= 9 \times [(29 - 26)]$
 $= (9 \times 3) = 27.$

Example.30

Sol.

Simplify:
$$\frac{(a^2 - b^2)^3 + (b^2 - c^2)^3 + (c^2 - a^2)^3}{(a - b)^3 + (b - c)^3 + (c - a)^3}.$$
Here, $(a^2 - b^2) + (b^2 - c^2) + (c^2 - a^2) = 0$

$$\therefore \qquad (a^2 - b^2)^3 + (b^2 - c^2)^3 + (c^2 - a^2)^3 = 3 \quad (a^2 - b^2) \quad (b^2 - c^2) \quad (c^2 - a^2)$$
Also, $(a - b) + (b - c) + (c - a) = 0$

$$\therefore \qquad (a - b)^3 + (b - c)^3 + (c - a)^3 = 3(a - b) \quad (b - c) \quad (c - a)$$

$$= \frac{3(a^2 - b^2)(b^2 - c^2)(c^2 - a^2)}{3(a - b)(b - c)(c - a)}$$

$$= \frac{3(a - b)(a + b)(b - c)(c + a)}{3(a - b)(b - c)(c - a)}$$

$$= (a + b)(b + c)(c + a).$$

Prove that :
$$(x - y)^3 + (y - z)^3 + (z - x)^3 = 3(x - y)(y - z)(z - x)$$
.

Sol. Let (x - y) = a, (y - z) = b and (z - x) = c.Then, a + b + c = (x - y) + (y - z) + (z - x) = 0 $a^3 + b^3 + c^3 = 3abc$ or $(x - y)^3 + (y - z)^3 + (z - x)^3 = 3 (x - y) (y - z) (z - x).$

Example.32

Find the value of $(28)^3 - (78)^3 + (50)^3$.

Sol. Let a = 28, b = -78, c = 50Then, a + b + c = 28 - 78 + 50 = 0 $a^3 + b^3 + c^3 = 3abc.$ So, $(28)^3 + (-78)^3 + (50)^3 = 3 \times 28 \times (-78) \times 50 = -327600.$

Check Your Level

1. Expand $(2x + 3y - 2z)^2$.	
---------------------------------------	--

- **2.** If a + b = 7 and ab = 12, find the value of $a^3 + b^3$.
- 3. If $a + \frac{1}{a} = 5$ then $a^2 + \frac{1}{a^2}$ is
- 4. If $a + \frac{1}{a} = 4$ then $a^3 + \frac{1}{a^3}$ is equal to
- 5. If p q = 9, prove that $p^3 q^3 27pq = 729$.

Answers

1. $4x^2 + 9y^2 + 4z^2 + 12xy - 12yz - 8xz$ **2.** 91 **3.** 23

4. 52

C. FACTORIZATION

To express a given polynomial as the product of polynomials, each of degree less than that of the given polynomial such that no such a factor has a factor of lower degree, is called **factorization**.

(a) Factorization by taking out the common factor :

Working Rule: When each term of an expression has a common factor, divide each term by this factor and take out as a multiple.

(b) Factorization by grouping :

Working Rule:Sometimes in a given expression it is not possible to take out a common factor directly.However, the terms of the given expression are grouped in such a manner that we may have a common factor.This can be factorized as discussed above.

(c) Factorization by making a perfect square :

Working Rule : $a^2 + 2ab + b^2 = (a + b)^2$

(d) Factorization the difference of two squares :

Working Rule: $a^2 - b^2 = (a + b) (a - b)$

(e) Factorization of a Quadratic Polynomial by Splitting the Middle Term :

Working Rule: **Case 1:** Polynomials of the form x^2+bx+c we find integers p and q such that p+q=b and pq=c. Then, $x^2+bx+c = x^2+(p+q)x + pq$ $=x^2+px + qx + pq$ =x(x + p) + q(x + p) =(x + p)(x + q) **Case 2:** Polynomials of the form ax^2+bx+c we find integers p and q such that p+q=b and pq=ac. Then,

 $ax^{2}+bx + c = ax^{2} + (p + q) x + \frac{pq}{a}$ =a^{2}x^{2} + a(p + q)x + pq =ax(ax + p) + q(ax + p) =(ax + p)(ax + q)

(f) Factorization of an algebraic expression as the sum or difference of two cubes

Working Rule: (i) $a^3 + b^3 = (a + b) (a^2 - ab + b^2)$ (ii) $a^3 - b^3 = (a - b) (a^2 + ab + b^2)$

(g) Factorization of an algebraic expression of the form $a^3 + b^3 + c^3 - 3abc$:

Working Rule: $a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ac)$

Special case : if a + b + c = 0 then $a^3 + b^3 + c^3 = 3abc$.

Solved Examples

Example.33

Factorize :

	Factoria	20.	
	(i)	2a (x + y) – 3b (x + y) (ii)	$x(x + y)^3 - 3x^2y(x + y)$
	(iii)	8(3a – 2b)² – 10(3a – 2b)	
Sol.	(i)	2a (x + y) – 3b (x + y)	
		= (x + y) (2a – 3b).	
	(ii)	$x(x + y)^{3} - 3x^{2}y(x + y)$	
		$= x(x + y) [(x + y)^{2} - 3xy]$	
		$= x(x + y) [x^{2} + y^{2} + 2xy - 3xy]$	
		$= x(x + y) [x^{2} + y^{2} - xy]$	
		$= x(x^3 + y^3).$	
	(iii)	8 (3a – 2b)² – 10 (3a – 2b)	
		= 2 (3a − 2b) [4 (3a − 2b) − 5]	
		= 2 (3a – 2b) [12a – 8b – 5].	
Examp	le.34		
	Factoria	ze :	
	(i)	$x^{2} + \frac{1}{x^{2}} + 2 - 2x - \frac{2}{x}$ (ii)	$(x^2 + 3x)^2 - 5(x^2 + 3x) - y(x^2 + 3x) + 5y$
Sol.	(i)	$x^{2} + \frac{1}{x^{2}} + 2 - 2x - \frac{2}{x} = \left(x + \frac{1}{x}\right)^{2} - 2\left(x + \frac{1}{x}\right)^{2}$	$\left(x+\frac{1}{x}\right) = \left(x+\frac{1}{x}\right)\left(x+\frac{1}{x}-2\right).$
	(ii)	$(x^{2} + 3x)^{2} - 5(x^{2} + 3x) - y(x^{2} + 3x) + 5$	5y
	. ,	= $(x^2 + 3x)(x^2 + 3x - 5) - y(x^2 + 3x - 5)$	5)
		$= (x^2 + 3x - 5) (x^2 + 3x - y).$	

Exa

Examp	le.35									
-	Factori	ze :								
	(i)	4 (x – y) ² – 12 (x – y) (x -	+ y) + 9 (x	(+ y) ²		(ii)	2a ² +2	√6 ab +	3b ²
	(iii)	$25x^2 + 4y^2 + 9z^2$	² – 20xy –	- 12yz + 3	0xz					
Sol.	(i)	$4(x-y)^2 - 12($	x – y) (x -	+ y) + 9 (x	(+ y) ²					
	()	Let, $x - y = a \&$	x + y = b		•					
		= 4a ² – 12ab +	9b ²							
		$= (2a)^2 - 2(2a)($	3b) + (3b) ²						
		$= (2a - 3b)^2$								
		= [2(x - y) - 3(x -	(+ y)] ²							
		= [2x - 2y - 3x]	– 3y]²							
		= [− x − 5y]².								
	(ii)	$2a^{2}+2\sqrt{6}ab+$	3b ²							
		$= \left(\sqrt{2}a\right)^2 + 2 \left(\frac{1}{2}a\right)^2 + 2 \left(\frac{1}{2}a\right)$	(√2a) (√	$\overline{3}b$ + $(\sqrt{3}l$	b) ²					
		$=\left(\sqrt{2}a+\sqrt{3}b\right)^{2}$	2							
	(iii)	$25x^2 + 4y^2 + 9z^2$	² – 20xy –	- 12yz + 3	0xz					
		$= (5x)^2 + (-2y)^2$	$(3z)^{2}$	+ 2(5x)(–2	2y) + 2	2(–2y)(3z	z) + 2 (3	z)(5x)		
		= (5x - 2y + 3)	Z) ².							
Examp	le.36									
	Factoria	ze :								
	(i)	x ⁸ - y ⁸	(ii)	x ⁴ + 5x ² +	9	(iii)	x ⁴ + 4x	² + 3	(iv)	$x^4 + x^2y^2 + y^4$
Sol.	(i)	x ⁸ - y ⁸								
		$= (X^4)^2 - (Y^4)^2$								
		$= (x^4 + y^4)(x^4 - y^4)$	⁴)							
		$= (x^4 + y^4) [(x^2)^2]$	$-(y^2)^2$	2)						
		$= (x^4 + y^4) (x^2 + y^4) (x^4 + y^4) (x$	y^{2})($x^{2} - y$	²)						
		$= (x^4 + y^4) (x^2 + y^4)$	y²)(x−y)(x + y).						
	(ii)	x ⁴ + 5x ² + 9								
		$= (x^2)^2 + 5x^2 + (x^2)^2$	3)²							
		$= (x^2)^2 + 6x^2 + (3)^2$	3) ² – X ²							
		$= (x^{2} + 3)^{2} - (x)^{2}$	2							
	<i></i>	$= (x^2 + 3 + x) (x$	$(x^2 + 3 - x)$							
	(111)	$x^4 + 4x^2 + 3$								
		$= (x^2)^2 + 2(2)x^2$	$+(2)^2 - 1$							
		$= (x^2 + 2)^2 - (1)^2$	2 2 . 0 . 4 .							
		$= (x^2 + 2 + 1)(x^2)$	• + 2 – 1)							
		$= (x^2 + 3)(x^2 + 1)$).							
	(iv)	$x^4 + x^2y^2 + y^4$								
		$= (x^2)^2 + 2.x^2.y^2$	+ (y ²) ² - >	⁽² y ²						
		$= (x^2 + y^2)^2 - (xy^2)^2$	y)²							
		$= (x^2 + y^2 + xy)($	$x^{2} + y^{2} - x$	ky).						
Examp	le.37									
-	Factori	ze :								
	(i)	$x^2 + 6\sqrt{2} x + 10$)	(i	i)	$5\sqrt{5} x^2$	+ 20x -	+3√5		
	(iii)	$2x^2 - \frac{5}{6}x + \frac{1}{12}$		(i	V)	7(x – 2y	/)² – 25	(x – 2y)	+ 12	

Sol. (i)

$$x^{2} + 6\sqrt{2} x + 10 = x^{2} + 5\sqrt{2} x + \sqrt{2} x + 10$$

= x(x + 5\sqrt{2}) + \sqrt{2} (x + 5\sqrt{2}) = (x + 5\sqrt{2})(x + \sqrt{2})

_

(ii)
$$5\sqrt{5} x^2 + 20x + 3\sqrt{5} = 5\sqrt{5} x^2 + 15x + 5x + 3\sqrt{5}$$

 $= 5x (\sqrt{5} x + 3) + \sqrt{5} (\sqrt{5} x + 3) = (5x + \sqrt{5})(\sqrt{5} x + 3)$
 $= \sqrt{5} (\sqrt{5} x + 1) (\sqrt{5} x + 3)$
(iii) $2x^2 - \frac{5}{6}x + \frac{1}{12} = \frac{24x^2 - 10x + 1}{12}$
 $= \frac{1}{12} (24x^2 - 4x - 6x + 1) = \frac{1}{12} [4x(6x - 1) - 1(6x - 1)]$
 $= \frac{1}{12} (6x - 1)(4x - 1).$
(iv) $7(x - 2y)^2 - 25 (x - 2y) + 12$
Let, $x - 2y = a = 7a^2 - 25a + 12$
 $= 7a^2 - 21a - 4a + 12 = 7a(a - 3) - 4(a - 3)$
 $= (a - 3)(7a - 4)$
 $= (x - 2y - 3)(7x - 14y - 4)$

What are the possible expressions for the dimensions of the cuboid whose volume is $3x^2 - 12x$.

Sol. Volume of cuboid = $3x^2 - 12x = 3x (x - 4)$ Possible dimensions are : Length = 3 unit, Breadth = x unit and Height = (x - 4) unit.

Example.39

Factorize :

	(i)	27a ³ + 125b ³	(ii)	(a - 2b) ³ - 512b ³					
	(iii)	$x^9 - y^9$	(iv)	$a^3 - \frac{1}{a^3} - 2a + \frac{2}{a}$					
Sol.	(i)	$27a^{3} + 125b^{3}$ = (3a) ³ + (5b) ³ = (3a + 5b) [(3a) ² + (5b) = (3a + 5b) [9a ² + 25b ² -	² – (3a) - 15ab].	(5b)]					
	(ii)	$(a - 2b)^{3} - 512b^{3}$ = $(a - 2b)^{3} - (8b)^{3}$ = $(a - 2b - 8b) [(a - 2b)^{2} + (8b)^{2} + (a - 2b)(8b)]$ = $(a - 10b) [a^{2} + 4b^{2} - 4ab + 64b^{2} + 8ab - 16b^{2}]$ = $(a - 10b) [a^{2} + 52b^{2} + 4ab]$							
	(iii)	$ \begin{array}{l} x^9 - y^9 \\ = (x^3)^3 - (y^3)^3 \\ = (x^3 - y^3) \left[(x^3)^2 + x^3y^3 + (y^3)^2 \right] \\ = (x - y) \left(x^2 + xy + y^2 \right) \left(x^6 + x^3y^3 + y^6 \right] \end{array} $							
	(iv)	$a^{3} - \frac{1}{a^{3}} - 2a + \frac{2}{a}$ = $a^{3} - \frac{1}{a^{3}} - 2\left(a - \frac{1}{a}\right)$ = $\left(a - \frac{1}{a}\right)\left(a^{2} + 1 + \frac{1}{a^{2}}\right) - \frac{1}{a^{2}}$ = $\left(a - \frac{1}{a}\right)\left(a^{2} + 1 + \frac{1}{a^{2}}\right)$	$a^{3} - \frac{1}{a^{3}} - 2a + \frac{2}{a}$ $a^{3} - \frac{1}{a^{3}} - 2\left(a - \frac{1}{a}\right)$ $= \left(a - \frac{1}{a}\right)\left(a^{2} + 1 + \frac{1}{a^{2}}\right) - 2\left(a - \frac{1}{a}\right)$ $= \left(a - \frac{1}{a}\right)\left(a^{2} + 1 + \frac{1}{a^{2}} - 2\right)$						
		$= \left(a - \frac{1}{a}\right) \left(a^2 + \frac{1}{a^2} - 1\right).$							

	Prove t	hat : $\frac{0.87 \times 0.87 \times 0.87 + 0.13 \times 0.13 \times 0.13}{0.87 \times 0.87 \times 0.13 \times 0.13 + 0.13 \times 0.13} = 1.$						
	$0.07 \times 0.07 - 0.07 \times 0.13 + 0.13 \times 0.13$							
Sol.	0.87×	$0.87 \times 0.87 + 0.13 \times 0.13 \times 0.13$						
	0.87×	$0.87 - 0.87 \times 0.13 + 0.13 \times 0.13$						
	Let 0.8	37 = a and 0.13 = b						
	$= \frac{a^3}{2}$	$\frac{a^{2} + b^{3}}{a^{2} + b^{2}} = \frac{(a + b)(a^{2} - ab + b^{2})}{a^{2} + b^{2}} = a + b = 0.87 + 0.13 = 1.0$						
_	a² –	$ab + b^2$ $a^2 - ab + b^2$						
Examp	le.41							
	Factoria	ze :						
	(i)	$2\sqrt{2a^3 + 8b^3 - 27c^3 + 18\sqrt{2abc}}$ (ii) $(2x - 3y)^3 + (4z - 2x)^3 + (3y - 4z)^3$						
	(iii)	$p^{3} (q - r)^{3} + q^{3} (r - p)^{3} + r^{3} (p - q)^{3}$						
Sol.	(i)	$2\sqrt{2}a^3 + 8b^3 - 27c^3 + 18\sqrt{2}abc = (\sqrt{2}a)^3 + (2b)^3 + (-3c)^3 - 3(\sqrt{2}a)(2b)(-3c)$						
		$= \left(\sqrt{2}a + 2b - 3c\right) \left[\left(\sqrt{2}a\right)^2 + \left(2b\right)^2 + \left(-3c\right)^2 - \left(\sqrt{2}a\right)(2b) - (2b)(-3c) - (-3c)\left(\sqrt{2}a\right) \right] \right]$						
		$= \left(\sqrt{2}a + 2b - 3c\right) \left[2a^{2} + 4b^{2} + 9c^{2} - 2\sqrt{2}ab + 6bc + 3\sqrt{2}ac\right]$						
	(ii)	$(2x - 3y)^3 + (4z - 2x)^3 + (3y - 4z)^3$						
		Let $a = 2x - 3y$, $b = 4z - 2x$ and $c = 3y - 4z$						
		So, $(2x - 3y)^3 + (4z - 2x)^3 + (3y - 4z)^3 = a^3 + b^3 + c^3$						
		Now, $a + b + c = 2x - 3y + 4z - 2x + 3y - 4z = 0$						
		So, $a^3 + b^3 + c^3 = 3abc = 3(2x - 3y)(4z - 2x)(3y - 4z)$.						
	(iii)	$p^{3} (q - r)^{3} + q^{3} (r - p)^{3} + r^{3} (p - q)^{3}$						
		Let $x = p(q - r)$, $y = q(r - p)$, $z = r(p - q)$						
		So, $p^3 (q - r)^3 + q^3 (r - p)^3 + r^3 (p - q)^3 = x^3 + y^3 + z^3$						
		Now, $x + y + z = p(q - r) + q(r - p) + r(p - q) = pq - pr + qr - qp + rp - rq = 0$						
		So, $x^3 + y^3 + z^3 = 3xyz = 3p(q - r) q(r - p) r(p - q) = 3pqr(q - r)(r - p)(p - q).$						
Examp	le.42							
-	lf p = 2	$-a$, then find the value of $a^3 + 6ap + p^3 - 8$.						
Sol.	p = 2 –	а						

p = 2 - a a + p - 2 = 0Now, $a^3 + 6ap + p^3 - 8 = a^3 + p^3 + (-2)^3 - 3(a)(p)(-2)$ $= (a + p - 2) (a^2 + p^2 + 4 - ap + 2p + 2a) = (0)(a^2 + p^2 + 4 - ap + 2p + 2a) = 0.$

ੰ □.

Check Your Level

- **1.** Factorize: $x^2(xy + 5) 2y^2(xy + 5)$
- **2.** Factorize: $3x^2 + 8x + 4$
- **3.** Factorize: 2a + 4b ac 2bc
- 4. Factorize: $27a^3 b^3 + c^3 + 9abc$.
- **5.** Factorize: $32x^3 4d^3$

Answers

1.	$(xy + 5) (x^2 - 2y^2)$	2.	(x + 2) (3x + 2)	3.	(2 – c) (a + 2b)
4.	$(3a - b + c) (9a^2 + b^2 + c^2 + 3a)$	b + bc –	3ac)	5.	$4 (2x - d) (4x^2 + 2xd + d^2)$

		E	xercise Bo	ard	Leve		
ТҮРЕ	(I) : VEF		YPE QUESTION	S :			[01 MARK EACH]
1.	What i	s the degree of polynom					
2.	What i	s the degree of the zero	polynomial?				
3.	lf p(x)	$= x^{2} - 2\sqrt{2}x + 1$, then fin	d the value of p()	2√2)			
4.	If x ² +	kx + 6 = (x + 2)(x + 3)f(x + 3)	or all x, then find	the value	e of k.		
5.	lf x ⁵¹ +	51 is divided by $x + 1$, f	ind the remainde	r.			
6.	Find th	ne coefficient of x in the	expansion of (x +	- 3)³ .			
7.	lf 49x ²	$-b = \left(7x + \frac{1}{2}\right) \left(7x - \frac{1}{2}\right)$	$\left(\frac{1}{2}\right)$, then find the	value of	b.		
8.	lfa+b	c + c = 0, then find the v	alue of a ³ + b ³ + o	C ³ .			
9.	lf x + 1	is a factor of $ax^3 + x^2 -$	2x + 4a – 9, find	the value	e of a.		
10.	Factor (i) (iii)	ise : x² + 9x + 18 2x² - 7x - 15	(ii) (iv)	6x² + 7 84 – 2	7x – 3 r – 2r²		
11.	Using (i)	suitable identity, evaluat 103³ (ii)	te the following : 101 × 102		(iii)	999²	
ТҮРЕ	(II) : SH	ORT ANSWER TYPE C	UESTIONS :				[02 MARKS EACH]
12.	(i) (ii)	Check whether $p(x)$ is p (x) = $x^3 - x + 1$, Check whether g(x) is p (x) = 8 $x^3 - 6 x^2 - 4 x$	a multiple of g(x) g(x) = 2 - 3 x a factor of p(x) o + 3, g(x) = $\frac{x}{3} - \frac{1}{4}$) or not, or not, wh	where		
13.	Find th	ne value of a, if x – a is a	a factor of x ³ – ax	² + 2x + a	a – 1.		
14.	(i) (ii)	Without actually calcul Without finding the cul	lating the cubes, bes, factorise (x -	find the - y)³ + (y	value oʻ ′ – z)³ +	f 48 ³ – 30 (z – x) ³ .) ³ – 18 ³ .
15.	For the	e polynomial $\frac{x^3 + 2x + 1}{5}$	$-\frac{7}{2}x^2 - x^6$, write	e			
	(i) (iii)	the degree of the poly the coefficient of x ⁶	nomial	(ii) (iv)	the co	pefficient onstant te	of x ³ erm
16.	Give a (i) (iii)	n example of a polynom monomial of degree 1 trinomial of degree 2	ial, which is:	(ii)	binom	nial of de	gree 20

- **17.** If $p(x) = x^2 4x + 3$, evaluate : $p(2) p(-1) + p\left(\frac{1}{2}\right)$.
- **18.** By actual division, find the quotient and the remainder when the first polynomial is divided by the second polynomial : $x^4 + 1$; x 1
- 19. Show that :
 - (i) x + 3 is a factor of $69 + 11x x^2 + x^3$.
 - (ii) 2x 3 is a factor of $x + 2x^3 9x^2 + 12$.
- **20.** Find the value of m so that 2x 1 be a factor of $8x^4 + 4x^3 16x^2 + 10x + m$.

TYPE (III) : LONG ANSWER TYPE QUESTIONS:

[04 MARK EACH]

- **21.** Factorise : (i) $a^3 - 8b^3 - 64c^3 - 24abc$ (ii) $2\sqrt{2}a^3 + 8b^3 - 27c^3 + 18\sqrt{2}abc$.
- 22. Find the value of (i) $x^3 + y^3 - 12xy + 64$, when x + y = -4(ii) $x^3 - 8y^3 - 36xy - 216$, when x = 2y + 6
- **23.** If x + y = 12 and xy = 27, find the value of $x^3 + y^3$.
- **24.** If the polynomials $az^3 + 4z^2 + 3z 4$ and $z^3 4z + a$ leave the same remainder when divided by z 3, find the value of a.
- **25.** Multiply $x^2 + 4y^2 + z^2 + 2xy + xz 2yz$ by (-z + x 2y).
- **26.** If a + b + c = 5 and ab + bc + ca = 10, then prove that $a^3 + b^3 + c^3 3abc = -25$.
- **27.** Simplify $(2x 5y)^3 (2x + 5y)^3$.

TYPE (IV): VERY LONG ANSWER TYPE QUESTIONS

[05 MARK EACH]

- **28.** Without actual division, prove that $2x^4 5x^3 + 2x^2 x + 2$ is divisible by $x^2 3x + 2$.
- **29.** The polynomial $p(x) = x^4 2x^3 + 3x^2 ax + 3a 7$ when divided by x + 1 leaves the remainder 19. Find the value of a. Also find the remainder when p(x) is divided by x + 2.
- **30.** Prove that $(a + b + c)^3 a^3 b^3 c^3 = 3(a + b) (b + c) (c + a)$.

Exercise-1

SUBJECTIVE QUESTIONS

Subjective Easy, only learning value problems

Section (A) : Introduction and classification of polynomials

- **A.1** What is the degree of the polynomial $\sqrt{5}$.
- **A.2** Find the coefficient of x in the expansion of $(x-4)^2$
- A.3 A zero polynomial has how many zeroes?
- **A.4** If x 3 is the factor of $ax^2 + 5x + 12$ find the value of a.
- **A.5** Determine whether x 3 is a factor of polynomial $p(x) = x^3 3x^2 + 4x 12$.
- **A.6** Using factor theorem, prove that p(x) is divisible by g(x) if $P(x) = 4x^4 + 5x^3 12x^2 11x + 5$, g(x) = 4x + 5.
- **A.7** If the polynomial $2x^3 + ax^2 + 3x 5$ and $x^3 + x^2 4x + a$ leave the same remainder when divided by x 2, find the value of a.
- **A.8** Find the value of p and q so that $x^4 + px^3 + 2x^2 3x + q$ is divisible by $x^2 1$.

Section (B) : Algebraic identity

- **B.1** Evaluate : (999)³.
- **B.2** If x+y+z=0 then find the value of $x^3+y^3+z^3$.
- B.3 Evaluate :

(i) $(5x + 4y)^2$ (ii) $(4x - 5y)^2$ (iii) $\left(2x - \frac{1}{x}\right)^2$

- **B.4** Without actually calculating the cubes ,evaluate the expression $30^3 + (-18)^3 + (-12)^3$.
- **B.5** If $x = \sqrt{7} \sqrt{5}$, $y = \sqrt{5} \sqrt{3}$, $z = \sqrt{3} \sqrt{7}$, then find the value of $x^3 + y^3 + z^3 2xyz$.
- **B.6** If a + b = 10 and $a^2 + b^2 = 58$, find the value of $a^3 + b^3$.
- **B.7** If x + y = 3 and xy = -18, find the value of $x^3 + y^3$.
- **B.8** If $a^4 + \frac{1}{a^4} = 119$, then find the value of $a^3 \frac{1}{a^3}$.
- **B.9** Evaluate : $\frac{(a-b)^2}{(b-c)(c-a)} + \frac{(b-c)^2}{(a-b)(c-a)} + \frac{(c-a)^2}{(a-b)(b-c)}$.
- **B.10** Prove that $a^2 + b^2 + c^2 ab bc ca$ is always non negative for all values of a, b & c.

- **B.11** Prove that : $a^3 + b^3 + c^3 3abc = \frac{1}{2}(a+b+c)\left[\left(a-b\right)^2 + \left(b-c\right)^2 + \left(c-a\right)^2\right]$
- **B.12** If a + b + c = 15, $a^2 + b^2 + c^2 = 83$, then find the value of $a^3 + b^3 + c^3 3abc$.
- **B.13** Find the value of $x^3 8y^3 36xy 216$ when x = 2y + 6.

Section (C) : Factorization

- C.1 Factorize :
 - (i) $25x^2 10x + 1 36y^2$ (ii) $2x^2 + 3\sqrt{5}x + 5$ (iii) $\left(x^2 + \frac{1}{x^2}\right) - 4\left(x + \frac{1}{x}\right) + 6$ (iv) $2y^3 + y^2 - 2y - 1$
- C.2 Factorize :
 - (i) (x + 1)(x + 2)(x + 3)(x + 4) 3(iii) $x^4 + 2x^3y - 2xy^3 - y^4$ (v) $x^3 - 23x^2 + 142x - 120$
- (ii) 64a³ 27b³ 144a²b + 108ab²
- (iv) $x^4 + x^3 7x^2 x + 6$
- (vi) $x^3 + 13x^2 + 32x + 20$

OBJECTIVE QUESTIONS

Single Choice Objective, straight concept/formula oriented

Section (A) : Introduction and classification of polynomials

A.1	If x ⁵¹ + 51 is divided b (A) 0	y (x + 1) the remainder is (B) 1	6 : (C) 49	(D) 50
A.2	$\sqrt{2}$ is a polynomial of	degree :		
	(A) 2	(B) 0	(C) 1	(D) 1/2
A.3	The remainder obtain	ed when the polynomial	p(x) is divided by (b – ax) is :
	(A) $p\left(\frac{-b}{a}\right)$	(B) $p\left(\frac{a}{b}\right)$	(C) $p\left(\frac{b}{a}\right)$	(D) $p\left(\frac{-a}{b}\right)$
A.4	The coefficient of x ² ir (A) 12	n (3x ² -5) (4 + 4x ²) is : (B) 5	(C) – 8	(D) 8
A.5	Which of the following	g is a quadratic polynomia	al in one variable ?	
	(A) $\sqrt{2x^3} + 5$	(B) 2x ² + 2x ⁻²	(C) X ²	(D) 2x ² + y ²
A.6	If p (x) = 2 + $\frac{x}{2} + x^2 - \frac{x}{2}$	$\frac{x^3}{3}$, then p (–1) is :		
	(A) <u>15</u> <u>6</u>	(B) <u>17</u> 6	(C) $\frac{1}{6}$	(D) <u>13</u> 6

A.7	If $(x + a)$ is a factor of $x^2 + px + q$ and $x^2 + mx + n$ then the value of a is :					
	(A) $\frac{m-p}{n-q}$	(B) $\frac{n-q}{m-p}$	(C) $\frac{n+q}{m+p}$	(D) $\frac{m+p}{n+q}$		
A.8	If $x^2 - 4$ is a factor of 2 are :	$2x^{3} + ax^{2} + bx + 12$, whe	re a and b are constant.	Then the values of a and b		
	(A) – 3, 8	(B) 3, 8	(C) –3, – 8	(D) 3, – 8		
A.9	The value of p for whicl (A) 1	n x + p is a factor of x ² + (B) – 1	px + 3 – p is : (C) 3	(D) – 3		
A.10	Which of the following i (A) x^3 + $3x^2$ - $4x$ + 3	s cubic polynomial. (B) x²+ 4x -7	(C) 3x ² +4	(D) 3(x ² + x + 1)		
Sectio	on (B) : Algebraic ide	ntity				
B.1	The product of $(x + a)$ (A) x^{2} + (a + b) x + ab	(x + b) is : (B) x² – (a – b) x + ab	(C) x² + (a – b)x + ab	(D) x ² + (a – b) x – ab.		
B.2	The value of 150 × 98 i (A) 10047	s : (B) 14800	(C) 14700	(D) 10470		
B.3	The expansion of $(x + y)$ (A) $x^2 + y^2 + z^2 + 2xy + z^2$ (C) $x^2 + y^2 + z^2 + 2xy - z^2$	/ – z)² is ∶ 2yz + 2zx 2yz – 2zx	(B) $x^2 + y^2 - z^2 - 2xy + y^2$ (D) $x^2 + y^2 - z^2 + 2xy - z^2$	yz + 2zx 2yz – 2zx		
B.4	The value of $(x + 2y + 2z + 3z)$ (A) $2x^2 + 8y^2 + 8z^2$ (C) $2x^2 + 8y^2 + 8z^2 - 8y^2$	2z) ² + (x – 2y – 2z) ² is : z	(B) 2x ² + 8y ² + 8z ² + 8x (D) 2x ² + 8y ² + 8z ² + 16	yz yz		
B.5	The value of 25x ² + 16y (A) 81	<pre>/² + 40 xy at x = 1 and y (B) - 49</pre>	= – 1 is : (C) 1	(D) None of these		
B.6	On simplifying (a + b) ³ - (A) 8a²	+ (a – b)³ + 6a(a² – b²) w (B) 8a²b	e get : (C) 8a³b	(D) 8a³		
B.7	Find the value of $\frac{a^3}{ab+b}$	$\frac{a^{3}+b^{3}+c^{3}-3abc}{bc+ca-a^{2}-b^{2}-c^{2}}$, wh	hen a = - 5, b = - 6, c =	10.		
	(A) 1	(B) –1	(C) 2	(D) –2		
B.8	lf (x + y + z) = 1, xy + y (A) –1	z + zx = –1, xyz = –1, the (B) 1	en value of x ³ + y ³ + z ³ is (C) 2	: (D) –2		
B.9	If $x^{\frac{1}{3}} + y^{\frac{1}{3}} + z^{\frac{1}{3}} = 0$ the	en which one of the follo	wing expression is corre	ect :		
	(A) $x^3 + y^3 + z^3 = 0$ (C) $x + y + z = 3xyz$		(B) $x + y + z = 3x^{\frac{1}{3}} y^{\frac{1}{3}}$ (D) $x^3 + y^3 + z^3 = 3xyz$	$\frac{1}{z^3}$		
Sectio	on (C) : Factorization					
C.1	Factors of $(a + b)^3 - (a (A) 2ab(3a^2 + b^2))$	– b)³ is : (B) ab(3a² + b²)	(C) 2b(3a ² + b ²)	(D) 3a ² + b ²		
C.2	Factors of $(42 - x - x^2)$ (A) $(x - 7)(x - 6)$	are : (B) (x + 7)(x – 6)	(C) (x + 7)(6 – x)	(D) (x + 7)(x + 6)		

(D) x + 4

C.3	Factors of $\left(x^2 + \frac{x}{6} - \frac{1}{6}\right)$ are :	
	(A) $\frac{1}{6} (2x + 1)(3x + 1)$ (B) $\frac{1}{6} (2x + 1)(3x - 1)$	(C) $\frac{1}{6} (2x - 1)(3x - 1)$ (D) $\frac{1}{6} (2x - 1)(3x + 1)(3x + 1)(3x + 1)(3x + 1)(3x + 1))$
C.4	Factors of polynomial $x^3 - 3x^2 - 10x + 24$ are : (A) $(x - 2)(x + 3)(x - 4)$ (C) $(x + 2)(x - 3)(x - 4)$	(B) $(x + 2)(x + 3)(x + 4)$ (D) $(x - 2)(x - 3)(x - 4)$

- C.5One of the factors of the expression $(2a + 5b)^3 + (2a 5b)^3$ would be :
(A) 4a(B) 10b(C) 2a + 5b(D) 2a 5bC.6One of the factors of $(x-1) (x^2 1)$ is:
 - C.6 One of the factors of $(x-1) (x^2 1)$ is: (A) $x^2 - 1$ (B) x + 1 (C) x - 1

Exercise-2

OBJECTIVE QUESTIONS

1.	If $x + \frac{1}{x} = 5$, the value	e of $\frac{x^4 + 1}{x^2}$ is :		
	(A) 21	(B) 23	(C) 25	(D) 30
2.	Which two of the follow I. $x^4 + x^2 + 1$ II. $x^4 + 2x + 2$ III. $x^4 - 2x^2 + 1$ IV. $x^4 = x + 1$ (A) and	wing can be factorised wi	th integral coefficients ?	(D) I and III
2	Λ factor of x^3 Gy^2 Gy^2			
3.	(A) $x + 1$	(B) x – 1	(C) x – 2	(D) 2x + 1
4.	Let $x = (2008)^{1004} + (2008)^{1004}$	$(B)^{-1004}$ and $y = (2008)^{100}$ (B) - 4	⁰⁴ – (2008) ⁻¹⁰⁰⁴ then the v (C) 0	alue of (x² – y²) is equal to : (D) None
5.	If $x^2 + \frac{1}{x^2} = 62$, then the (A) $8^4 - 2^8 - 2$	the value of $x^4 + \frac{1}{x^4}$ is : (B) 8 ⁴ + 2	(C) 8 ⁴ – 2 ⁸ + 2	(D) 8 ⁴ + 2 ⁸ - 2
6.	If a + b + c = 0 then va (A) 1	alue of $\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}$ is : (B) - 1	(C) 0	(D) 3
7.	If $x + y = -4$, then the (A) 0	e value of x³ + y³ – 12xy + (B) 128	64 will be (C) 64	(D) – 64
8.	The value of $\left[\frac{a^2-a^2}{a^2-6a}\right]$	$\frac{5ab}{b+5b^2} \times \frac{a^2 - b^2}{a^2 + ab} \bigg] \text{ is :}$		
	(A) – 1	(B)	(C) $\frac{1}{a}$	(D) 1

9.	Evaluate : $\frac{(a-b)^2}{(b-c)(c-a)^2}$	$\frac{(b-c)^2}{(a-b)(c-a)} + \frac{(c-b)^2}{(a-b)(c-a)} + \frac{(c-b)^2}{(a-b)^2}$	$(b-a)^2$.								
	(A) 0	(B) 1	(C) 2	(D) 3							
10.	If $(a^2 + b^2)^3 = (a^3 + b^3)^2 t$	hen $\frac{a}{b} + \frac{b}{a} =$									
	(A) $\frac{2}{3}$	(B) $\frac{3}{2}$	(C) $\frac{5}{6}$	(D) <u>6</u> 5							
11.	$\frac{x^{-3} - y^{-3}}{x^{-3}y^{-1} + (xy)^{-2} + y^{-3}x^{-1}}$	- =									
	(A) x + y	(B) y – x	(C) $\frac{1}{x} - \frac{1}{y}$	(D) $\frac{1}{x} + \frac{1}{y}$							
12.	If $\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{a-b} =$	$\frac{5}{3}$, then the value of a	: b is :								
	(A) 1 : 16	(B) 1 : 4	(C) 4 : 1	(D) 16 : 1							
13.	If the polynomial P(x) =	$= 2x^4 + x^3 - 5x^2 - x + 1$	is divided by the polyno	pmial Q(x) = $x^2 - x$ then the							
	(A) $\frac{2}{3}$ (B) $\frac{3}{2}$ $\frac{x^{-3} - y^{-3}}{x^{-3}y^{-1} + (xy)^{-2} + y^{-3}x^{-1}} =$ (A) x + y (B) y - x If $\frac{(\sqrt{a} - \sqrt{b})^2 + 4\sqrt{ab}}{a - b} = \frac{5}{3}$, then the val (A) 1 : 16 (B) 1 : 4 If the polynomial P(x) = 2x^4 + x^3 - 5x^2 remainder is a linear polynomial R(x) = 3 (A) - 2 (B) -1 The polynomial P(x) = x^4 + 4x^3 + 5x + 8 (A) divisible by (x + 2) but not divisible b (B) divisible by (x + 1) as well as (x + 2) (C) divisible by (x + 1) but not divisible b (D) neither divisible by (x + 1) nor by (x + 1) The value of k for which x + k is a factor (A) - 5 (B) 2 If a + 1 = b + 2 = c + 3 = d + 4 = a + b + (A) -5 (B) -10/3 If $x = \sqrt{2 + \sqrt{2}}$, then $x^4 + \frac{4}{x^4}$ is : (A) 2(3 - $\sqrt{2}$) (B) 6 - 2 E NTSE PROBLE		(C) 1	(D) 2							
14.	The polynomial $P(x) = x^4 + 4x^3 + 5x + 8$ is : (A) divisible by $(x + 2)$ but not divisible by $(x + 1)$ (B) divisible by $(x + 1)$ as well as $(x + 2)$ (C) divisible by $(x + 1)$ but not divisible by $(x + 2)$ (D) neither divisible by $(x + 1)$ nor by $(x + 2)$ The value of k for which $x + k$ is a factor of $x^3 + kx^2 - 2x + k + 4$ is :										
15.	The value of k for which	$x + k$ is a factor of $x^3 +$	$kx^2 - 2x + k + 4$ is :								
	(A) – 5	(B) 2	$(C) - \frac{4}{3}$	(D) $\frac{6}{7}$							
16.	If a + 1 = b + 2 = c + 3 = (A) - 5	= d + 4 = a + b + c + d + (B) – 10/3	5, then (a + b + c + d) is (C) – 7/3	equal to : (D) 5/3							
17.	If $x = \sqrt{2 + \sqrt{2}}$, then x^4	+ $\frac{4}{x^4}$ is :									
	(A) 2(3 – $\sqrt{2}$)	(B) 6 – 2	(C) $6 - \sqrt{2}$	(D) 12							
		Evono	iso 2								
		Exerc	186-3								
	NTS	E PROBLEMS (P	REVIOUS YEAR	S)							
1.	One of the factors of the (A) $x^2 + 2$	e expression x ⁴ + 8x is: (B) x ² + 8	(C) x + 2	[Raj. NTSE Stage-1 2006] (D) x – 2							
2.	One of the factors of the (A) $2x - 3y - 10$	e expression (2x – 3y)²- (B) 2x – 3y + 10	- 7 (2x – 3y) – 30 is : (C) 3x – 2y + 5	[Raj. NTSE Stage-1 2007] (D) 6x – 4y – 15							
3.	If $x + \frac{1}{x} = 3$, then the v	value of $x^6 + \frac{1}{x^6}$ is :	[Raj. N	TSE Stage-1 2013]							
	(A) 927	(B) 114	(C) 364	(D) 322							

(D) 322

(CLAS	SROOM			Polynomials
4.	If $(a - 5)^2 + (b - c)^2 + (c - c)^2$;– d)² + (b + c + d − 9)² =	0, then the value	e of (a + b + c) (b + c + d) is :
	(A) 0	(B) 11	(C) 33	[Harayana NTSE Stage-1 2013] (D) 99
5.	If x + y + z = 1, then 1-3 (A) 6xyz	3x ² -3y ² -3z ² + 2x ³ + 2y ³ + (B) 3xyz	2z³ is equal to : (C) 2xyz	[Harayana NTSE Stage-1 2013] (D) xyz
6.	If $x + \frac{1}{x} = 4$, then the v	alue of $x^6 + \frac{1}{x^6}$ is :		[Delhi NTSE Stage - 1 2013]
	(A) 927	(B) 114	(C) 364	(D) 2702
7.	If a + b = 6 and ab = 8, (A) 18	then a ³ + b ³ = (B) 36	(C) 54	[Gujarat NTSE Stage - 1 2013] (D) 72
8.	If polynomial $P(x) = 3x^3$	– x ² – ax – 45 has one z	ero of 3, then a =	=
	(A) 3	(B) 6	(C) 9	[Gujarat NTSE Stage - 1 2013] (D) 12
9.	(A) 0 (B) 11 If $x + y + z = 1$, then $1 - 3x^2 - 3y^2 - 3z^2 + 2x^3 + 2y^3$ (A) $6xyz$ (B) $3xyz$ If $x + \frac{1}{x} = 4$, then the value of $x^6 + \frac{1}{x^6}$ is : (A) 927 (B) 114 If $a + b = 6$ and $ab = 8$, then $a^3 + b^3 = \dots$ (A) 18 (B) 36 If polynomial P(x) = $3x^3 - x^2 - ax - 45$ has one (A) 3 (B) 6 If one factor of $27x^3 + 64y^3$ is $(3x + 4y)$ wh (A) $(3x^2 - 4y)$ (B) $(3x^2 + 12xy + 4y^2)$ Which one of the following is a factor of the ex- (A) a (B) $3a^2 - b$ If $x + 3$ divides $x^3 + 5x^2 + kx$, then k is equal to (A) 2 (B) 4 If $x^2 - x - 1 = 0$, then the value of $x^3 - 2x + 1$ (A) 0 (B) 2 If $x^{\%}$ of y is equal to 1% of z, y% of z is equivalue of $xy + yz + zx$ is - (A) 1 (B) 0 If $a + b + c = 0$ and $a^2 + b^2 + c^2 = k$ ($a^2 - bc$) th		is the second	factor ?
	(A) (3x ² -4y)	(B) (3x ² + 12xy + 4y ²)	(C) (9x ² +12xy -	[Gujarat NTSE Stage - 1 2013] -16y²) (D) (9x² -12xy + 16y²)
10.	Which one of the follow	ing is a factor of the exp	ression (a + b) ³ –	- (a – b)³ ?
	(A) a	(B) 3a² – b	[Madhy (C) 2b	ya Pradesh NTSE Stage-1 2013] (D) (a + b) (a – b)
11.	If x + 3 divides x ³ + 5x ² (A) 2	+ kx, then k is equal to : (B) 4	(C) 6	[Odisha NTSE Stage-1 2013] (D) 8
12.	If $x^2 - x - 1 = 0$, then the theorem 1 is the second se	The value of $x^3 - 2x + 1$ is		[Harayana NTSE Stage-1 2014]
	(A) 0	(B) 2	(C) $\frac{1+\sqrt{5}}{2}$	(D) $\frac{1-\sqrt{5}}{2}$
13.	If x% of y is equal to 1 value of xy + yz + zx is (A) 1	% of z, y% of z is equal - (B) 2	to 1% of x and z [H (C) 3	2% of x is equal to 1% of y, then the Harayana NTSE Stage-1 2014] (D) 4
14.	If $(x + a)^2 + (y + b)^2 = 4$	(ax + by), where x, a, y,	b are real, the va	alue of xy – ab is :
	(A) a	(B) 0	[We s (C) b	st Bengal NTSE Stage-1 2014] (D) None of these
15.	If a + b + c = 0 and a ² + (A) 0	- b ² + c ² = k (a ² – bc) ther (B) 1	n k = (C) 2	[Bihar NTSE Stage-1 2014] (D) 3
16.	If (x – 2) is a factor of p	olynomial x³ + 2x² – kx +²	10. Then the valu	e of k will be :
	(A) 10	(B) 13	(C) 16	(D) 9
17.	If $\frac{x+a}{b+c} + \frac{x+b}{c+a} + \frac{x+b}{a+b}$	<mark>c</mark> + 3 = 0, a > 0, b > 0, c	> 0, then the val	ue of x is :
	$(A) - (a^2 + b^2 + c^2)$	(B) (a + b + c)	(C) – (a + b + c	[Delhi NTSE Stage - 1 2014]) (D) √a+b+c

18.	If $x = \frac{1}{1+\sqrt{2}}$, then values	ie of x ² + 2x + 3 is :	[Delhi NTSE Stage - 1 2014]				
	(A) 3	(B) 0	(C) 4	(D) 1			
19.	If x + $\frac{1}{x}$ = 5, then x ³ - 5	$5x^2 + x + \frac{1}{x^3} - \frac{5}{x^2} + \frac{1}{x}$	=:	[Bihar NTSE Stage-1 2014]			
	(A) –5	(B) 0	(C) 5	(D) 10			
20.	If x + y = 1 then x ³ + y ³ (A) 0	+ 3xy = (B) 1	[Jharkh (C) 2	and NTSE Stage - 1 2014] (D) None of these			
21.	If x – y = 5, xy = 24 the (A) 23	n the value of x³+ y³ will l (B) 73	be - [Uttar Pra (C) 65	desh NTSE Stage-1 2014] (D) 74			
22.	If x + $\frac{1}{x}$ = 2 then \sqrt{x} +	$\frac{1}{\sqrt{x}}$ will be -	[Uttar Pra	desh NTSE Stage-1 2014]			
	(A) √2	(B) 2	(C) √2 + 1	(D) 1			
23.	If x + y = 8, xy = 15, the (A) 32	e value of x ² + y ² will be (B) 34	[Uttar Prade (C) 36	esh NTSE Stage-1 2014] (D) 38			
24.	If p – q = – 8 and p.q. = (A) 224	– 12 then the value of p (B) – 224	³ – q ³ is : [Madhya F (C) 242	Pradesh NTSE Stage-1 2014] (D) – 242			
25.	(a + b + c) (ab + bc + c) (A) $(a + b) (c + b) (c + a)$ (C) $(a + b) (b - c) (c + a)$	a) – abc is equal to the a) a)	[Madhya Pr (B) (a – b) (b + c) (c (D) (a + b) (b + c) (c	adesh NTSE Stage-1 2014] + a) – a)			
26.	Find the factors of the (A) $(2a + 3b + 4c) (4a^2)$ (B) $(2a + 3b + 4c) (4a^2)$ (C) $(2a + 3b + 4c) (4a^2)$ (D) $(2a + 3b + 4c) (4a^2)$	bolynomial $8a^3 + 27b^3 + 6b^2 + 9b^2 + 16c^2 - 6ab + 12b^2 + 9b^2 + 16c^2 + 6ab - 12b^2 + 9b^2 + 16c^2 - 6ab - 12b^2 + 9b^2 + 16c^2 - 6ab - 12b^2$	64c ³ – 72abc. [Maha c – 8ac) c + 8ac) c – 8ac) c – 8ac) c + 8ac)	rashtra NTSE Stage-1 2014]			
27.	If $\frac{p}{q} + \frac{q}{p} = 2$, what is	the value of $\left(\frac{p}{q}\right)^{23} + \left(\frac{q}{p}\right)^{23}$		elhi NTSE Stage - 1 2015]			
	(A) 0	(B) 2	(C) –2	(D) none of these			
28.	Value of $x\left[\left(1+\frac{1}{x}\right)\left(1+\frac{1}{x}\right)\right]$	$\left(\frac{1}{x+1}\right)\left(1+\frac{1}{x+2}\right)-1\right]$ is	[D	elhi NTSE Stage - 1 2015]			
	(A) 3	(B) 2x	(C) 5x	(D) 1			
29.	Simplify the value of $\frac{3}{2}$.75 × 3.75 + 1.25 × 1.25 - 2	$\frac{2 \times 3.75 \times 1.25}{1.25}$ [D	elhi NTSE Stage - 1 2015]			
	(A) 5.0	(B) 0.5	(C) 2.5	(D) 1.5			
30.	If $p(x) = 2x^3 - 3x^2 + 5x$	- 4 is divided by $(x - 2)$,	what is remainder?				
	(A) 12	(B) 8	[Gu (C) 10	jarat NTSE Stage - 1 2015] (D) –10			
31.	What is the co-efficient (A) 3	of x ² y ² in the expansion (B) 4	of (x + y)⁴? [Gu (C) 5	ijarat NTSE Stage - 1 2015] (D) 6			

Clas	SROOM			Polynomial
32.	Zeroes of which quadra (A) x ² + 7x + 12	atic polynomial are 4 and (B) x² – 7x + 12	d 3. [Gu (C) x ² + 7x – 12	jarat NTSE Stage - 1 2015] (D) x²- 7x - 12
33.	If $x^2 - 3x + 1 = 0$, then	the value of $x^5 + \frac{1}{x^5}$	[Jharkha	nd NTSE Stage - 1 2015]
	(A) 87	(B) 123	(C) 135	(D) 201
34.	If $\frac{xy}{x+y} = a$, $\frac{xz}{x+z} = b$	and $\frac{yz}{y+z}$ = c, where a	, b, c are non-zero num	bers, then the value of x ?
	(A) $\frac{2abc}{ab+ac-bc}$	(B) $\frac{2abc}{ac+bc-ab}$	[Jharkha (C) $\frac{abc}{ab+bc+ac}$	nd NTSE Stage - 1 2015] (D) $\frac{2abc}{ab+bc-ac}$
35.	If pqr = 1, then the valu	ue of $\left(\frac{1}{1+p+q^{-1}}+\frac{1}{1+q+1}\right)$	$\frac{1}{1+r+p^{-1}} + \frac{1}{1+r+p^{-1}}$ [Odi	sha NTSE Stage-1 2015]
	(A) 0	(B) pq	(C) 1	(D) pq
36.	The square root of x^{b^2}	$x^{b^2+2ab}x^{a^2-b^2}$ is	[Rajasthan	NTSE Stage-1 2016]
	(A) x ^{2(a+b)}	(B) $x^{\frac{a+b}{2}}$	(C) $x^{\frac{(a+b)^2}{2}}$	(D) X ^{a + b}
37.	If a + b + c = 0, then th (A) 1	e value of $\frac{(a+b)^2}{ab} + \frac{(b-b)^2}{bb}$ (B) 2	$\frac{(c+c)^2}{cc} + \frac{(c+a)^2}{ca}$ is [Ra (C) 3]	jasthan NTSE Stage-1 2016] (D) – 3
38.	One of the factors of 8	1a⁴+ (x – 2a) (x – 5a) (x	– 8a) (x – 11a) is [Har	yana NTSE Stage-1 2016]
	(A) x ² -13ax + 31a ²	(B) x ² +13ax + 31a ²	(C) x ² +18ax – 31a ²	(D) x ² -18ax + 31a ²
39.	If $f\left(2x+\frac{1}{x}\right) = x^2 + \frac{1}{4x}$	$\frac{1}{2}$ + 1(x ≠ 0), the value of	f(x) is [West Be	ngal NTSE Stage-1 2016]
	(A) 4x ²	$(B) \frac{1}{4} \left(2x + \frac{1}{x}\right)^2$	(C) $\frac{1}{4}x^2$	(D) $4\left(2x+\frac{1}{x}\right)^2$
40.	If $2r = h + \sqrt{r^2 + h^2}$, the (A) 4 : 3	e value of r : h is (r, h ≠ 0 (B) 3 : 4) [West Ber (C) 1 : 2	ngal NTSE Stage-1 2016] (D) 2 : 1
41.	Let a, b, x, y be real nu of ay – bx is : (A) –1	(B) 1	= 81, x ² + y ² = 121 and [West Ben (C) 0	ax + by = 99. Then the values gal NTSE Stage-1 2016] (D) None of these
42.	The value of $\frac{(0.03)^2}{2}$	$(0.01)^2$ is	[B	ihar NTSE Stage-1 2016]
	0.03 – (A) 0.02	0.01 (B) 0.004	- (C) 0.4	(D) 0.04
43.	If (x+ 2), is a factor of 2 (A) 6	2x³ - 5x + k, then the valu (B) – 6	ue of k is [(C) 26	Raj. NTSE Stage-1 2016] (D) -26
		$(a+b)^2$ $(b+b)^2$	$(c+a)^2$	Dei NTOF 04 4 00401
44.	IT $a + p + c = 0$, then th	e value of ${ab} + {b}$	$\frac{1}{100} + \frac{1}{100}$ is [Kaj. NI SE Stage-1 2016]
	(A) 1	(B) Z	(U) 3	(D) -3

45.	The simplified fo	form of the expression given by $\frac{y^4 - x^4}{x(x+y)} - \frac{y^3}{x}$ $\frac{y^2 - xy + x^2}{y^2 - xy + x^2}$	elow is	[Delhi NTSE Stage - 1 2016]				
	(A) 1	(B) 0	(C) –1	(D) 2				
46.	If $a = \frac{4xy}{x+y}$, the v	value of $\frac{a+2x}{a-2x} + \frac{a+2y}{a-2y}$ in (most simplified form	is[Delhi NTSE Stage - 1 2016]				
	(A) 0	(B) 1	(C) –1	(D) 2				
47.	lf x, y, z are rea respectively	al numbers such that $\sqrt{x-x}$	$\overline{1} + \sqrt{y-2} + \sqrt{z-3}$	= 0 then the values of x, y, z are [Delhi NTSE Stage - 1 2016]				
	(A) 1, 2, 3	(B) 0, 0, 0	(C) 2, 3, 1	(D) 2, 4, 1				
48.	If x – 2 is a factor	$f \text{ of } 3x^4 - 2x^3 + 7x^2 - 21x + k,$	then the value of k	is Cuieret NTSE Store d 2010				
	(A) 2	(B) 9	(C) 18	(D) – 18				
49.	If $2x + 3y + z = 0$	then $8x^3 + 27y^3 + z^3 \div xyz$ is	equal to					
	(A) 0	(B) 6	(C) 18	(D) 9				
50.	If $p = x + \frac{1}{x}$ then	the value of $p - \frac{1}{p}$ will be-	[Uttar Pradesh	NTSE Stage-1 2017]				
	(A) 3x	(B) $\frac{3}{x}$	(C) $\frac{x^4 + x^2 + 1}{x^3 + x}$	(D) $\frac{x^4 + 3x^2 + 1}{x^3 + x}$				
51.	Factors of $\frac{1}{3}c^2$ –	2c – 9 are-	[Uttar Prades	h NTSE Stage-1 2017]				
	$(A)\left(\frac{1}{3}c+3\right)(c+$	3) (B) $\left(\frac{1}{3}c - 3\right)(c - 3)$	$(C)\left(\frac{1}{3}c-3\right)(c+$	-3) (D) $\left(c - \frac{1}{3}\right)(3c + 1)$				

Answer Key

BOARD LEVEL EXERCISE

TYPE ((1)									
1.	0	2.	Not define	ed	3.	1	4.	5	5.	50
6.	27	7.	1⁄4		8.	3abc	9.	a = 2		
10.	(i) (x + 3) (x + 6	5)	(ii) (3x – ²	1) (2x +	+ 3)	(iii) (2x + 3) (x -	- 5)	(iv) 2 (6 – r) (r +	· 7)	
11.	(i) 1092727		(ii) 10302	2		(iii) 998001				
TYPE ((II)									
12.	(i) NO	(ii) YES	6		13.	1/3				
14.	(i) 77760	(ii) 3 (x	— y) (y — z	z) (z – x	()					
15.	(i) 6	(ii) 1/5	(i	ii) – 1		(iv) 1/5				
16.	(i) 10x	(ii) x ²⁰ +	·1 (i	ii) 2x ²	– x – 1					
17.	$\frac{-31}{4}$	18.	$Q = x^3 + x$	(² + χ +	1; R=	2	20.	m = – 2		
TYPE ((III)									
21.	(i) (a – 2b – 4c) (ii) (√2a + 2b –	(a² + 4b · 3c) (2a²	$a^{2} + 16c^{2} + a^{2} + 4b^{2} + 9c^{2}$	2ab – 8 c² – 2√	8bc + 4a ⁄2ab + 6	ac) bc + 3√2ac)				
22.	(i) 0	(ii) 0	2	3.	756		24.	– 1		
25.	$x^3 - 8y^3 - z^3 - 6$	xyz	2	7.	– 250y³	– 120x²y				
TYPE ((IV)									
29.	62									

EXERCISE - 1

SUBJECTIVE QUESTIONS

Sectio	n (A)											
A.1	0	A.2	- 8		A.3	infinite		A.4	- 3	A.5	yes	
A.7	<u>-13</u> 3	A.8	p = 3, c	= - 3								
Sectio	on (B)											
B.1	997002	999		B.2	3xyz							
B.3	(i) 25x ²	+ 16y ² +	⊦ 40xy	(ii) 16x	² + 25y² ·	– 40xy	(iii) 4x ²	$+\frac{1}{x^2}$ -	- 4.			
B.4	19440			B.5	-4 √5 ·	+ 2√3 +	· 2 √7		B.6	370.	B.7	189.
B.8	- 36.			B.9	3.		B.12	180.			B.13	0

Section (C)

C.1	(i)	(5x – 1 – 6y) (5x – 1 + 6y).	(ii)	$(x + \sqrt{5}) (2x + \sqrt{5}).$
	(iii)	$\left(x+\frac{1}{x}-2\right)^2$	(iv)	(2y + 1) (y + 1)(y - 1)
C.2	(i)	$(x^2 + 5x + 3) (x^2 + 5x + 7).$	(ii)	(4a − 3b)³.
	(iii)	$(x + y)^3 (x - y).$	(iv)	(x - 1) (x + 1) (x + 3) (x - 2).
	(v)	(x - 12) (x - 10) and $(x - 1)$	(vi)	(x + 1)(x + 2)(x + 10).
		OBJECTI	/E QUES	TIONS

Section (A)

A .1	(D)	A.2	(B)	A.3	(C)	A.4	(C)	A.5	(C)
A.6	(B)	A.7	(B)	A.8	(C)	A.9	(C)	A.10	(A)
Sectio	on (B)								
B.1	(A)	B.2	(C)	B.3	(C)	B.4	(D)	B.5	(C)
B.6	(D)	B.7	(A)	B.8	(B)	B.9	(B)		
Sectio	on (C)								
C.1	(C)	C.2	(C)	C.3	(B)	C.4	(A)	C.5	(A)
C.6	(C)								

EXERCISE - 2

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	В	D	А	А	С	D	А	D	D	А	В	D	А	С	С
Ques.	16	17													
Ans.	В	D													

EXERCISE - 3

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	С	А	D	D	А	D	D	С	D	С	С	В	С	В	С
Ques.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	В	С	С	В	В	В	В	В	В	А	С	В	А	В	С
Ques.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	D	В	В	В	С	С	С	С	С	Α	С	D	Α	С	С
Ques.	46	47	48	49	50	51									
Ans.	D	А	D	С	С	С									

