MATHEMATICS

Class-IX

Topic-9
 AREA OF
 PARALLELOGRAMS AND
 TRIANGLES

INDEX		
S. No.	Topic	Page No.
1.	Theory	$1-10$
2.	Exercise (Board Level)	$11-14$
3.	Exercise-1	$15-18$
4.	Exercise-2	$19-20$
5.	Exercise-3	$20-22$
6.	Answer Key	23

CH-09

AREA OF PARALLELOGRAMS AND TRIANGLES

(A) AREA OF PARALLELOGRAMS AND TRIANGLES

(a) Polygon region

Polygon region can be expressed as the union of a finite number of triangular regions in a plane such that if two of these intersect, their intersection is either a point or a line segment. It is the shaded portion including its sides as shown in the figure.

Area Axioms :

Every polygonal region R has an area, measured in square units and denoted by $\operatorname{ar}(\mathrm{R})$.
(i) Congruent area axiom : If R_{1} and R_{2} be two regions such that $R_{1} \cong R_{2}$ then $\operatorname{ar}\left(R_{1}\right)=\operatorname{ar}\left(R_{2}\right)$.
(ii) Area addition axiom : If R_{1} and R_{2} are two polygonal regions, whose intersection is a finite number of points \& line segments such that $R=R_{1} \cup R_{2}$, then $\operatorname{ar}(R)=\operatorname{ar}\left(R_{1}\right)+\operatorname{ar}\left(R_{2}\right)$.
(iii) Rectangular area axiom : If $A B=a$ metre and $A D=b$ metre then, ar $($ Rectangular region $A B C D)=a b$ sq.m.
(b) Area of a parallelogram

Base and Altitude of a Parallelogram :

(i) Base : Any side of a parallelogram can be called its base.
(ii) Altitude : The length of the line segment which is perpendicular to the base from the opposite side is called the altitude or height of the parallelogram corresponding to the given base.

(i) DL is the altitude of $\|^{\mathrm{gm}} \mathrm{ABCD}$, corresponding to the base AB .
(ii) DM is the altitude of $\|^{g m} A B C D$, corresponding to the base $B C$.

Theorem : A diagonal of a parallelogram divides it into two triangles of equal area.
Given : A parallelogram $A B C D$ whose one of the diagonals is $B D$.
To prove : $\operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle C D B)$.
Proof

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CDB}$
$A B=D C$
[Opposite sides of a || ${ }^{\text {gm }}$]
$A D=B C$
[Opposite sides of a || ${ }^{\text {gm }}$]
$B D=B D$
[Common side]
$\Delta \mathrm{ABD} \cong \triangle \mathrm{CDB}$
$\operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{CDB})$
[By SSS congruency]
Hence Proved.
Theorem : Parallelograms on the same base and between the same parallels lines are equal in area.

Given : Two $\|^{\text {gms }} A B C D$ and $A B E F$ on the same base $A B$ and between the same parallels $A B$ and FC.
To prove : $\operatorname{ar}\left(\left|\left.\right|^{g m} A B C D\right)=\operatorname{ar}\left(| |{ }^{g m} A B E F\right)\right.$
Proof: In $\triangle A D F$ and $\triangle B C E$, we have

$$
\mathrm{AD}=\mathrm{BC} \quad\left[\text { Opposite sides of a } \|^{\mathrm{gm}]}\right]
$$

$\mathrm{AF}=\mathrm{BE} \quad$ [Opposite sides of a $\left.\|^{\mathrm{gm}}\right]$
[$A D$ || $B C$ and $A F|\mid B E$]
$\angle \mathrm{DAF}=\angle \mathrm{CBE}$
[Angle between $A D$ and $A F=$ Angle between $B C$ and $B E$]

$$
\begin{array}{rlrl}
\therefore & \Delta \mathrm{ADF} \cong \triangle \mathrm{BCE} & \text { [By SAS } \\
\therefore & \operatorname{ar}(\triangle \mathrm{ADF})= & \operatorname{ar}(\Delta \mathrm{BCE}) & \ldots(\mathrm{i}) \tag{i}\\
\therefore & \operatorname{ar}\left(\|^{g \mathrm{gm}} \mathrm{ABCD}\right) & =\operatorname{ar}(\mathrm{ABED})+\operatorname{ar}(\triangle \mathrm{BCE}) \\
& & =\operatorname{ar}(\mathrm{ABED})+\operatorname{ar}(\Delta \mathrm{ADF}) & \text { [Using (i)] } \\
& & =\operatorname{ar}\left(\|^{\lg } \mathrm{ABEF}\right) .
\end{array}
$$

[By SAS congruency]

Hence, $\operatorname{ar}\left(\mid{ }^{g m} A B C D\right)=\operatorname{ar}\left(\mid{ }^{g m} A B E F\right)$.
Hence Proved.
Theorem : The area of parallelogram is the product of its base and the corresponding altitude.

Given : $A \|^{g m} A B C D$ in which $A B$ is the base and $A L$ is the corresponding height.
To prove : Area $\left(\|^{g m} A B C D\right)=A B \times A L$.
Construction : Draw $B M \perp D C$, so that rectangle $A B M L$ is formed.
Proof : $\|^{9 m} A B C D$ and rectangle $A B M L$ are on the same base $A B$ and between the same parallel lines $A B$ and $L C$.
$\operatorname{ar}\left(\|^{g m} \mathrm{ABCD}\right)=\operatorname{ar}($ rectangle ABML$)=\mathrm{AB} \times \mathrm{AL}$.
area of a $\|^{9 m}=$ base \times height. Hence Proved.
(c) Area of a Triangle

Theorem : Two triangles on the same base (or equal bases) and between the same parallels are equal in area.
Given : Two triangles $A B C$ and PBC on the same base $B C$ and between the same parallel lines $B C$ and AP.
To prove : $\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{PBC})$
Construction : Through B, draw $B D|\mid C A$ intersecting AP produced in D and through C, draw $C Q| \mid$ $B P$, intersecting PA produced in Q.

Proof : BD || CA
And, $\quad B C|\mid D A$
\therefore Quadrilateral BCAD is a parallelogram
Similarly, Quadrilateral BCQP is a parallelogram.
Now, parallelogram BCQP and BCAD are on the same base BC, and between the same parallels.
$\therefore \quad$ ar $\left(\|^{g m} B C Q P\right)=\operatorname{ar}\left(\|^{g m} B C A D\right)$
Diagonals of a parallelogram divides it into two triangles of equal area.
$\therefore \quad \operatorname{ar}(\triangle \mathrm{PBC})=\frac{1}{2} \operatorname{ar}\left(\|\left.\right|^{g m} \mathrm{BCQP}\right)$
And $\quad \operatorname{ar}(\triangle \mathrm{ABC})=\frac{1}{2} \operatorname{ar}\left(\mid{ }^{\mathrm{gm}} \mathrm{BCAD}\right)$
Now, ar $\left(\|^{g m} B C Q P\right)=\operatorname{ar}\left(| |^{g m}\right.$ BCAD) \quad [From (i)]
$\Rightarrow \quad \frac{1}{2} \operatorname{ar}\left(\|^{g m} B C A D\right)=\frac{1}{2} \operatorname{ar}\left(\|^{g m} B C Q P\right)$
Hence, $\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{PBC}) \quad$ [Using (ii) and (iii)] Hence Proved.

Theorem : If a triangle and a parallelogram are on the same base and between the same parallels, the area of the triangle is equal to half of the parallelogram.
Given : $A \triangle A B C$ and a paralellogram $B C D E$ on the same ase $B C$ and between the same parallels $B C$ and $A D$.
To prove : $\operatorname{ar}(\triangle A B C)=\frac{1}{2}$ ar (parallelogram $B C D E$)
Construction : Draw $\mathrm{AL} \perp \mathrm{BC}$ and $\mathrm{DM} \perp \mathrm{BC}$, meeting BC producted in M .
Proof: Since, E and D are colinear and BC \| AD
$\therefore \quad \mathrm{AL}=\mathrm{DM} \quad$.............(i) $[\because$ distance between parallel lines is always same]
Now, $\quad \operatorname{ar}(\triangle A B C)=\frac{1}{2}(B C \times A L)$

$$
\begin{aligned}
& \Rightarrow \quad \operatorname{ar}(\triangle A B C)=\frac{1}{2}(B C \times D M) \quad[\because A L=D M(\text { from }(i)] \\
& \left.\Rightarrow \quad \operatorname{ar}(\triangle A B C)=\frac{1}{2} \text { ar (parallelogam } B C D E\right) .
\end{aligned}
$$

Theorem : The area of a trapezium is half the product of its height and the sum of the parallel sides.

Given : Trapezium $A B C D$ in which $A B \| D C, A L \perp D C, C N \perp A B$ and $A L=C N=h$ (say), $A B=a$, DC = b.
To prove : $\operatorname{ar}($ trapezium $A B C D)=\frac{1}{2} h \times(a+b)$.

Construction : Join AC.
Proof : $\because A C$ is a diagonal of quad. $A B C D$.
$\therefore \operatorname{ar}($ trapezium $A B C D)=\operatorname{ar}(\triangle A B C)+\operatorname{ar}(\triangle A C D)$
$=\frac{1}{2} h \times a+\frac{1}{2} h \times b=\frac{1}{2} h(a+b) . \quad$ Hence Proved.
Theorem : Median of a triangle divides it into two triangles of equal area.
Given : $A \triangle A B C$ in which $A D$ is the median.
To Prove : $\operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle A D C)$
Construction : Draw AL $\perp B C$
Proof : Since, $A D$ is the median of $\triangle A B C$. Therefore, D is the mid point of $B C$.

$$
\begin{array}{ll}
\Rightarrow & \operatorname{ar}(\triangle \mathrm{ABD})=\frac{1}{2}(\mathrm{BD} \times \mathrm{AL}) \tag{i}\\
\Rightarrow & \operatorname{ar}(\triangle \mathrm{ADC})=\frac{1}{2}(\mathrm{CD} \times \mathrm{AL}) \\
\Rightarrow & \operatorname{ar}(\triangle \mathrm{ADC})=\frac{1}{2}(\mathrm{BD} \times \mathrm{AL})
\end{array}
$$

.. (ii) $\quad[\because B D=C D, A D$ is the median of $\triangle A B C]$
From (i) \& (ii)

$$
\text { ar }(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ADC}) . \quad \text { Hence Proved. }
$$

Solved Examples

Example. 1

In a parallelogram $A B C D, A B=8 \mathrm{~cm}$. The altitudes corresponding to sides $A B$ and $A D$ are respectively 4 cm and 5 cm . Find $A D$.
Sol. Area of a $\|^{g m}=$ Base \times corresponding altitude

Area of parallelogram $A B C D=A D \times B N=A B \times D M$
$A D \times 5=8 \times 4$
$\mathrm{AD}=\frac{8 \times 4}{5}=6.4 \mathrm{~cm}$.

Example. 2

The diagonals of a parallelogram $A B C D$ intersect in O. A line through O meets $A B$ in X and the opposite side $C D$ in Y. Show that ar (quadrilateral $A X Y D)=\frac{1}{2} \operatorname{ar}$ (parallelogram $A B C D$).
Sol. $\quad A C$ is a diagonal of the parallelogram $A B C D$.

$\operatorname{ar}(\triangle \mathrm{ACD})=\frac{1}{2} \operatorname{ar}(| | \mathrm{gm} \mathrm{ABCD})$

Now, in $\Delta \mathrm{s}$ AOX and COY,
$\mathrm{AO}=\mathrm{CO}$
$\angle A O X=\angle C O Y$
$\angle \mathrm{OAX}=\angle \mathrm{OCY}$
$\therefore \triangle \mathrm{AOX} \cong \triangle \mathrm{COY}$
$\operatorname{ar}(\triangle \mathrm{AOX})=\operatorname{ar}(\triangle \mathrm{COY})$
[\because Diagonals of a parallelogram bisect each other]
[Vertically opposite $\angle \mathrm{s}$]
[Alternate interior $\angle \mathrm{s}$]
[$\because \mathrm{AB}|\mid \mathrm{DC}$ and transversal $A C$ intersects them]
[By ASA congruency]

Adding ar(quad. AOYD) to both sides of (ii), we get
$\operatorname{ar}(q u a d . A O Y D)+\operatorname{ar}(A O X)=\operatorname{ar}(q u a d . A O Y D)+\operatorname{ar}(C O Y)$

$$
\begin{aligned}
& \Rightarrow \operatorname{ar}(\text { quad. } A X Y D)=\operatorname{ar}(A C D) \\
& =\frac{1}{2} \operatorname{ar}(\| \operatorname{gm} A B C D) \quad \text { Hence Proved. }
\end{aligned}
$$

Example. 3

$A B C D$ is a trapezium with $A B \| D C$. A line parallel to $A C$ intersects $A B$ at X and $B C$ at Y. Prove that $\operatorname{ar}(\triangle \mathrm{ADX})=\operatorname{ar}(\triangle \mathrm{ACY})$.
Sol.

Join CX, DX and AY.
Clearly, triangles $A D X$ and $A C X$ are on the same base $A X$ and between the parallels $A B$ and $D C$.
$\therefore \quad \operatorname{ar}(\triangle A D X)=\operatorname{ar}(\triangle A C X)$
Also, $\triangle A C X$ and $\triangle A C Y$ are on the same base $A C$ and between the parallels $A C$ and $X Y$.
$\therefore \quad \operatorname{ar}(\triangle A C X)=\operatorname{ar}(\triangle A C Y)$
From (i) and (ii), we get $\operatorname{ar}(\triangle \mathrm{ADX})=\operatorname{ar}(\triangle \mathrm{ACY})$.

Example. 4

$A B C D$ is a quadrilateral. A line through D, parallel to $A C$, meets $B C$ produced in P as shown in figure. Prove that ar $(\triangle A B P)=\operatorname{ar}(q u a d . ~ A B C D)$.

Sol. Since $\triangle s A C P$ and $A C D$ are on the base $A C$ and between the same parallels $A C$ and $D P$.

$$
\begin{aligned}
& \therefore \operatorname{ar}(\triangle A C P)=\operatorname{ar}(\triangle A C D) \\
& \Rightarrow \quad \operatorname{ar}(\triangle A C P)+\operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle A C D)+\operatorname{ar}(\triangle A B C) \\
& \Rightarrow \quad \operatorname{ar}(\triangle A B P)=\operatorname{ar}(\text { quad. } A B C D)
\end{aligned}
$$

Example. 5

In figure, E is any point on median $A D$ of a $\triangle A B C$. Show that $\operatorname{ar}(\triangle A B E)=\operatorname{ar}(\triangle A C E)$.

Sol. Construction : From A, draw $A G \perp B C$ and from E draw $E F \perp B C$.
Proof : $\operatorname{ar}(\triangle A B D)=\frac{B D \times A G}{2} \quad$ and $\quad \operatorname{ar}(\triangle A D C)=\frac{D C \times A G}{2}$

But, $\quad B D=D C$
$\therefore \operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle A D C)$
Again, $\operatorname{ar}(\triangle \mathrm{EBD})=\frac{\mathrm{BD} \times \mathrm{EF}}{2}$
But, $\quad B D=D C$
$\operatorname{ar}(\triangle E B D)=\operatorname{ar}(\triangle E D C)$
Subtracting (ii) from (i), we get
$\operatorname{ar}(\triangle \mathrm{ABD})-\operatorname{ar}(\triangle \mathrm{EBD})=\operatorname{ar}(\triangle \mathrm{ADC})-\operatorname{ar}(\triangle \mathrm{EDC})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ABE})=\operatorname{ar}(\triangle \mathrm{ACE})$.

Hence Proved.

Example. 6

Triangles $A B C$ and DBC are on the same base $B C$; with A, D on opposite sides of the line $B C$, such that $\operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle D B C)$. Show that $B C$ bisects $A D$.

Sol. Construction : Draw $A L \perp B C$ and $D M \perp B C$
Proof :

$\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{DBC})$ [Given]
$\Rightarrow \quad \frac{B C \times A L}{2}=\frac{B C \times D M}{2}$
$\Rightarrow \quad \mathrm{AL}=\mathrm{DM}$
Now in Δs OAL and OMD
$A L=D M$
[From (i)]
$\Rightarrow \quad \angle A L O=\angle D M O$
[Each = 90 ${ }^{\circ}$]
$\Rightarrow \quad \angle A O L=\angle M O D$
[Vertically opposite $\angle \mathrm{s}$]
$\therefore \quad \triangle \mathrm{OLA} \perp \triangle \mathrm{OMD}$
[By AAS congruency]
$\therefore \quad O A=O D$
i.e., $B C$ bisects AD.
[By CPCT]
Hence Proved.

Example. 7

$A B C$ is a triangle in which D is the mid-point of $B C$ and E is the mid-point of $A D$. Prove that the area of $\triangle B E D=\frac{1}{4}$ area of $\triangle A B C$.
Sol. Given : $A \triangle A B C$ in which D is the mid-point of $B C$ and E is the mid-point of $A D$.
To prove : $\operatorname{ar}(\triangle B E D)=\frac{1}{4} \operatorname{ar}(\triangle A B C)$.
Proof : $\because A D$ is a median of $\triangle A B C$.

$$
\begin{equation*}
\therefore \operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ADC})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC}) \tag{i}
\end{equation*}
$$

[\because Median of a triangle divides it into two triangles of equal area]
Again,
$\because \quad B E$ is a median of $\triangle A B D$.
$\therefore \quad \operatorname{ar}(\triangle B E A)=\operatorname{ar}(\triangle B E D)=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABD})$
[\because Median of a triangle divides it into two triangles of equal area]
And $\quad \operatorname{ar}(\triangle \mathrm{BED})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABD})=\frac{1}{2} \times \frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC}) \quad[$ From (i)]

$$
\operatorname{ar}(\triangle B E D)=\frac{1}{4} \operatorname{ar}(\triangle A B C) . \quad \text { Hence Proved. }
$$

Example. 8

If the medians of a $\triangle A B C$ intersect at G, show that

$$
\operatorname{ar}(\Delta \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{AGC})=\operatorname{ar}(\Delta \mathrm{BGC})=\frac{1}{3} \operatorname{ar}(\Delta \mathrm{ABC})
$$

Sol. Given : A $\triangle A B C$ and its medians $A D, B E$ and $C F$ intersect at G.

To prove :

$\operatorname{ar}(\Delta \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{AGC})=\operatorname{ar}(\Delta \mathrm{BGC})=\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$.

Proof : A median of a triangle divides it into two triangles of equal area.
In $\triangle A B C, A D$ is the median.

$$
\begin{equation*}
\therefore \operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ACD}) \tag{i}
\end{equation*}
$$

In $\triangle G B C, G D$ is the median.

$$
\begin{equation*}
\therefore \operatorname{ar}(\Delta \mathrm{GBD})=\operatorname{ar}(\Delta \mathrm{GCD}) \tag{ii}
\end{equation*}
$$

Subtract equation (ii) from (i), we get
$\operatorname{ar}(\triangle A B D)-\operatorname{ar}(\Delta G B D)=\operatorname{ar}(\Delta A C D)-\operatorname{ar}(\triangle G C D)$

$$
\begin{equation*}
\operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{AGC}) \tag{iii}
\end{equation*}
$$

Similarly, $\operatorname{ar}(A G B)=\operatorname{ar}(B G C)$
From (iii) \& (iv)
$\operatorname{ar}(\Delta \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{AGC})=\operatorname{ar}(\Delta \mathrm{BGC})$
But, $\quad \operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{AGB})+\operatorname{ar}(\triangle \mathrm{AGC})+\operatorname{ar}(\Delta \mathrm{BGC})=3 \operatorname{ar}(\Delta \mathrm{AGB})$

$$
\operatorname{ar}(\triangle \mathrm{AGB})=\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})
$$

Hence, $\operatorname{ar}(\triangle A G B)=\operatorname{ar}(\triangle A G C)=\operatorname{ar}(\triangle B G C)=\frac{1}{3} \operatorname{ar}(\triangle A B C)$.

Example. 9

D, E and F are respectively the mid points of the sides $B C, C A$ and $A B$ of a $A B C$. Show that :
(i) BDEF is a parallelogram
(ii) $\quad \operatorname{ar}\left(\|{ }^{g m} B D E F\right)=\frac{1}{2} \operatorname{ar}(\mathrm{ABC})$
(iii) $\operatorname{ar}(\triangle D E F)=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$

Sol.

(i) $\ln \triangle \mathrm{ABC}$,
$\because \quad F$ is the mid-point of side $A B$ and E is the mid point of side $A C$.
$\therefore \quad E F \| B D$
[\because Line joining the mid-points of any two sides of a Δ is parallel to the third side.]
Similarly, ED || FB.
Hence, BDEF is a parallelogram.
Hence Proved.
(ii) Similarly, we can prove that AFDE and FDCE are parallelograms.
$\because F D$ is a diagonal of parallelogram BDEF.
$\therefore \quad \operatorname{ar}(\triangle F B D)=\operatorname{ar}(\triangle D E F)$
Similarly, $\operatorname{ar}(\triangle F A E)=\operatorname{ar}(\triangle D E F)$
And , ar($\triangle D C E)=\operatorname{ar}(\triangle D E F)$
From above equations, we have

$$
\begin{equation*}
\operatorname{ar}(\triangle \mathrm{FBD})=\operatorname{ar}(\triangle \mathrm{FAE})=\operatorname{ar}(\Delta \mathrm{DCE})=\operatorname{ar}(\triangle \mathrm{DEF}) \tag{iii}
\end{equation*}
$$

$$
\text { and } \quad \operatorname{ar}(\triangle \mathrm{FBD})+\operatorname{ar}(\triangle \mathrm{DCE})+\operatorname{ar}(\triangle \mathrm{DEF})+\operatorname{ar}(\triangle \mathrm{FAE})=\operatorname{ar}(\triangle \mathrm{ABC})
$$

$\Rightarrow \quad 2[\operatorname{ar}(\triangle \mathrm{FBD})+\operatorname{ar}(\triangle \mathrm{DEF})]=\operatorname{ar}(\triangle \mathrm{ABC}) \quad$ [By using (ii) and (iii)]
$\Rightarrow \quad 2$ [ar. (IIgm $B D E F)]=\operatorname{ar}(\triangle A B C) \quad \Rightarrow \quad \operatorname{ar}\left(\|\left.\right|^{g m} B D E F\right)=\frac{1}{2} \operatorname{ar}(\triangle A B C)$.
(iii) Since, $\triangle A B C$ is divided into four non-overlapping triangles FBD, FAE, DCE and DEF.

$$
\begin{array}{ll}
\therefore & \operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle F B D)+\operatorname{ar}(\triangle F A E)+\operatorname{ar}(\triangle D C E)+\operatorname{ar}(\triangle D E F) \\
\Rightarrow & \operatorname{ar}(\triangle A B C)=4 \operatorname{ar}(\triangle A B C) \\
\Rightarrow & \operatorname{ar}(\triangle D E F)=\frac{1}{4} \operatorname{ar}(\triangle A B C) .
\end{array} \quad \text { Hence Proved. }
$$

Example. 10

In figure, P is a point in the interior of a rectangle ABCD . Show that

(i) $\quad \operatorname{ar}(\triangle \mathrm{APD})+\operatorname{ar}(\triangle \mathrm{PBC})=\frac{1}{2} \operatorname{ar}($ rectangle ABCD$)$
(ii) $\quad \operatorname{ar}(\triangle \mathrm{APD})+\operatorname{ar}(\triangle \mathrm{PBC})=\operatorname{ar}(\triangle \mathrm{APB})+\operatorname{ar}(\triangle \mathrm{PCD})$

Sol. Construction : Draw EPF || $A B \| C D$ and $L P M||A D|| B C$.
Proof:
(i) $\quad E P F|\mid A B$ and $D A$ cuts them.
$\therefore \quad \angle \mathrm{DEP}=\angle \mathrm{EAB}=90^{\circ} \quad$ [Corresponding angles]
$\therefore \quad \mathrm{PE} \perp \mathrm{AD}$.
Similarly, $\mathrm{PF} \perp \mathrm{BC} ; \mathrm{PL} \perp \mathrm{AB}$ and $\mathrm{PM} \perp \mathrm{DC}$.
$\therefore \operatorname{ar}(\triangle \mathrm{APD})+\operatorname{ar}(\triangle \mathrm{BPC})=\left(\frac{1}{2} \times \mathrm{AD} \times \mathrm{PE}\right)+\left(\frac{1}{2} \times \mathrm{BC} \times P F\right)=\frac{1}{2} A D \times(P E+P F)[\because B C=A D]$
$=\frac{1}{2} \times A D \times E F=\frac{1}{2} \times A D \times A B$
$[\because E F=A B]$
$=\frac{1}{2} \times \operatorname{ar}($ rectangle $A B C D)$.
(ii) $\quad \operatorname{ar}(\triangle A P B)+\operatorname{ar}(\triangle P C D)=\left(\frac{1}{2} \times A B \times P L\right)+\left(\frac{1}{2} \times D C \times P M\right)=\frac{1}{2} \times A B \times(P L+P M)[\because D C=A B]$
$=\frac{1}{2} \times A B \times L M=\frac{1}{2} \times A B \times A D \quad[\because L M=A D]$
$=\frac{1}{2} \times \operatorname{ar}($ rect. $A B C D)$.
$\therefore \quad \operatorname{ar}(\triangle \mathrm{APD})+\operatorname{ar}(\mathrm{PBC})=\operatorname{ar}(\triangle \mathrm{APB})+\operatorname{ar}(P C D)$
Hence Proved.

Check Your Level

1. Find the area of the parallelogram whose base is 8.5 cm and height 4 cm .
2. Find the base of a parallelogram whose area is $85 \mathrm{sq} . \mathrm{cm}$ and the altitude is 17 cm .
3. Prove that the area of a rhombus is equal to half the product of its diagonals.

4. In $\triangle A B C, P$ is any point on the base $B C . Q$ is the mid point of $A P$. Show that area of the $\triangle Q B C=$ $\frac{1}{2}$ area of $\triangle A B C$.

5. $\quad A B C$ is a triangle and a straight line $D E$, drawn parallel to $B C$ cuts the sides $A B$ and $A C$ at D and E respectively. Prove that area of $\triangle A B E=$ area of $\triangle A C D$.

6. In the quadrilateral $A B C D$, diagonal $B D$ bisects $A C$ at right angles. If P and Q are the middle points of $A B$ and $A D$ respectively, prove that $\triangle P Q C=\frac{3}{8}$ quadrilateral $A B C D$.

7. $A B C D$ is a quadrilateral. A line drawn through D parallel to $A C$ meets $B C$ produced at P. Prove that
(i) Area of $\triangle \mathrm{BAP}=$ Area of quadrilateral ABCD
(ii) Area of $\triangle \mathrm{AOD}=$ Area of $\triangle \mathrm{COP}$

8. $\quad A B C D$ is a parallelogram whose diagonals $A C$ and $B D$ meet at O. M and N are the mid points of $O B$ and OD respectively. Prove that $A M C N$ is a parallelogram whose area is half that of $A B C D$.

9. In the figure $A B C D$ is a parallelogram. P, Q, R and S are the mid points of $A B, B C, C D$ and $D A$ respectively. Prove that the area of the parallelogram $P Q R S$ in equal to the half the area of the parallelogram ABCD.

10. In the figure $A B C D$ is a trapezium and $Y X \| A C$. Show that area of triangle $B C X$ is equal to area of triangle ACY.

Answers

1. $34 \mathrm{~cm}^{2}$ 2. 5 cm

Exercise Board Level

TYPE (I) : VERY SHORT ANSWER TYPE QUESTIONS :
[01 MARK EACH]

1. Find the area of the figure formed by joining the mid-points of the adjacent sides of a rhombus with diagonals 12 cm and 16 cm .
2. In which of the following figures (Figure), you find two polygons on the same base and between the same parallels?
(i)

(ii)

(iii)

(iv)

3. Name the figure obtained by joining the mid-points of the adjacent sides of a rectangle of sides 8 cm and 6 cm and also find its area.
4. The mid-point of the sides of a triangle along with any of the vertices as the fourth point make a parallelogram of area equal to $x(\operatorname{ar} \triangle A B C)$. Find x.
5. If a triangle and a parallelogram are on the same base and between same parallels, then find the ratio of the area of the triangle to the area of parallelogram.
TYPE (II) : SHORT ANSWER TYPE QUESTIONS :
[02 MARKS EACH]
6. If in Figure, PQRS and EFRS are two parallelograms, then prove that ar (MFR) = $\frac{1}{2}$ ar (PQRS).

7. $P Q R S$ is a rectangle inscribed in a quadrant of a circle of radius $13 \mathrm{~cm} . A$ is any point on $Q R$. If $P S=5 \mathrm{~cm}$, then prove that ar $(P A S)=30 \mathrm{~cm}^{2}$.
8. $\quad A B C$ and $B D E$ are two equilateral triangles such that D is the mid-point of $B C$. Then prove that ar $(B D E)=\frac{1}{4} \operatorname{ar}(A B C)$.
9. $\quad P Q R S$ is a square. T and U are respectively, the mid-points of $P S$ and $Q R$ (Figure). Find the area of $\triangle O T S$, if $P Q=8 \mathrm{~cm}$, where O is the point of intersection of TU and QS.

10. $A B C D$ is a parallelogram and $B C$ is produced to a point Q such that $A D=C Q$ (Figure). If $A Q$ intersects $D C$ at P, show that $\operatorname{ar}(B P C)=\operatorname{ar}(D P Q)$

11. In Figure , PSDA is a parallelogram. Points Q and R are taken on $P S$ such that $P Q=Q R=R S$ and PA || QB || RC. Prove that ar $(P Q E)=\operatorname{ar}(C F D)$.

12. X and Y are points on the side $L N$ of the triangle $L M N$ such that $L X=X Y=Y N$. Through X, a line is drawn parallel to LM to meet MN at Z (See Figure). Prove that ar (LZY) = ar (MZYX)

13. The area of the parallelogram $A B C D$ is $90 \mathrm{~cm}^{2}$ (see Figure). Find

(i) ar (ABEF)
(ii) ar (ABD)
(iii) ar (BEF)
14. $A B C D$ is a square. E and F are respectively the mid- points of $B C$ and $C D$. If R is the mid-point of $E F$ (Figure), prove that ar (AER) $=$ ar (AFR)

TYPE (III) : LONG ANSWER TYPE QUESTIONS:
[04 MARK EACH]
15. $A B C D$ is a trapezium with parallel sides $A B=a c m$ and $D C=b c m$ (Figure). E and F are the midpoints of the non-parallel sides. Then find ratio of ar (ABFE) and ar (EFCD).

16. $A B C D$ is a parallelogram in which $B C$ is produced to E such that $C E=B C$ (Figure). $A E$ intersects $C D$ at F. If ar $(D F B)=3 \mathrm{~cm}^{2}$, find the area of the parallelogram $A B C D$.

17. If the mid-points of the sides of a quadrilateral are joined in order, prove that the area of the parallelogram so formed will be half of the area of the given quadrilateral (Figure).

[Hint: Join BD and draw perpendicular from A on BD .]
18. In Figure I, m, n, are straight lines such that I \| m and n intersects I at P and m at Q. $A B C D$ is a quadrilateral such that its vertex A is on I. The vertices C and D are on m and $A D \| n$. Show that $\operatorname{ar}(\mathrm{ABCQ})=\operatorname{ar}(\mathrm{ABCDP})$

19. In Figure, $B D \| C A, E$ is mid-point of $C A$ and $B D=\frac{1}{2} C A$. Prove that $\operatorname{ar}(A B C)=2 a r(D B C)$.

20. A point E is taken on the side $B C$ of a parallelogram $A B C D$. $A E$ and $D C$ are produced to meet at F. Prove that ar (ADF) = ar (ABFC)
21. The diagonals of a parallelogram $A B C D$ intersect at a point O. Through O, a line is drawn to intersect $A D$ at P and $B C$ at Q. Show that $P Q$ divides the parallelogram into two parts of equal area.
22. The medians $B E$ and $C F$ of a triangle $A B C$ intersect at G. Prove that the area of $\triangle G B C=$ area of the quadrilateral AFGE.
23. In Figure, $C D \| A E$ and $C Y \| B A$. Prove that $\operatorname{ar}(C B X)=\operatorname{ar}(A X Y)$

TYPE (IV): VERY LONG ANSWER TYPE QUESTIONS

24. In Figure, $A B C D$ is a parallelogram. Points P and Q on $B C$ trisects $B C$ in three equal parts. Prove that $\operatorname{ar}(A P Q)=\operatorname{ar}(D P Q)=\frac{1}{6} \operatorname{ar}(A B C D)$

25. $A B C D$ is a trapezium in which $A B \| D C, D C=30 \mathrm{~cm}$ and $A B=50 \mathrm{~cm}$. If X and Y are, respectively the mid-points of $A D$ and $B C$, prove that $\operatorname{ar}(D C Y X)=\frac{7}{9} \operatorname{ar}(X Y B A)$.
26. In Figure, $A B C D E$ is any pentagon. $B P$ drawn parallel to $A C$ meets $D C$ produced at P and $E Q$ drawn parallel to $A D$ meets $C D$ produced at Q. Prove that ar $(A B C D E)=\operatorname{ar}(A P Q)$

27. If the medians of a $\triangle A B C$ intersect at G, show that $\operatorname{ar}(A G B)=\operatorname{ar}(A G C)=\operatorname{ar}(B G C)=\frac{1}{3} \operatorname{ar}(A B C)$.
28. In Figure, X and Y are the mid-points of $A C$ and $A B$ respectively, $Q P|\mid B C$ and $C Y Q$ and $B X P$ are straight lines. Prove that ar $(A B P)=\operatorname{ar}(A C Q)$.

29. In Figure, $A B C D$ and $A E F D$ are two parallelograms. Prove that $\operatorname{ar}(P E A)=\operatorname{ar}(O F D)$

[Hint: Join PD].

Exercise-1

SUBJECTIVE QUESTIONS

Subjective Easy, only learning value problems

Section (A) : Area of parallelograms and triangles

A-1 $\quad A B C D E$ is a pentagon. A line through B parallel to $A C$ meets $D C$ produced at F. Show that:
(i) $\operatorname{ar}(\triangle A C B)=\operatorname{ar}(\triangle A C F)$
(ii) $\operatorname{ar}(\mathrm{AEDF})=\operatorname{ar}(\mathrm{ABCDE})$

A-2. $\quad P$ and Q are any two points lying on the sides $D C$ and $A D$ respectively of a parallelogram $A B C D$. Prove that : ar $(\triangle A P B)=\operatorname{ar}(\triangle B Q C)$.

A-3. In the figure, $P Q R S$ and $A B R S$ are parallelograms and X is any point on side $B R$. Prove that :

(i) $\quad \operatorname{ar}\left(\left|\left.\right|^{g m} \mathrm{PQRS}\right)=\operatorname{ar}\left(| |^{g m} \mathrm{ABRS}\right)\right.$
(ii) $\quad \operatorname{ar}(\mathrm{AXS})=\frac{1}{2} \operatorname{ar}\left(\mid{ }^{\mathrm{gm}} \mathrm{PQRS}\right)$

A-4. $\quad B D$ is one of the diagonals of a quadrilateral $A B C D$. If $A L B D$ and $C M B D$, show that : ar(quadrilateral $A B C D)=\frac{1}{2} \times B D \times(A L+C M)$.

A-5. In the adjoining figure, PQRS and PABC are two parallelograms of equal area. Prove that $\mathrm{QC} \| \mathrm{BR}$.

A-6. $\quad O$ is any point on the diagonal $B D$ of the parallelogram $A B C D$. Prove that ar $(\triangle O A B)=\operatorname{ar}(\triangle O B C)$.

A-7. In figure, $A P\|B Q\| C R$. Prove that $\operatorname{ar}(\triangle A Q C)=\operatorname{ar}(\triangle P B R)$.

A-8. The base $B C$ of $\triangle A B C$ is divided at D such that $B D=\frac{1}{2} D C$. Prove that $\operatorname{ar}(\triangle A B D)=\frac{1}{3} \operatorname{ar}(\triangle A B C)$.

A-9. In the given figure, $X Y$ is a line parallel to side $B C$ of a $\triangle A B C$. $B E \| A C$ and $C F \| A B$ meet $X Y$ in E and F respectively. Show that $\operatorname{ar}(\triangle A B E)=\operatorname{ar}(\triangle A C F)$.

A-10. Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at O, such that $O B=O D$. If $A B=C D$, then show that :

(i) $\operatorname{ar}(\triangle \mathrm{DOC})=\operatorname{ar}(\triangle \mathrm{AOB})$
(ii) $\operatorname{ar}(\triangle \mathrm{DCB})=\operatorname{ar}(\triangle \mathrm{ACB})$
(iii) $D A$ || $C B$ or $A B C D$ is a parallelogram.

A-11. In figure, $A B C D$ is a parallelogram and $B C$ is produced to point Q such that $A D=C Q$. If $A Q$ intersect $D C$ at P, show that $\operatorname{ar}(\triangle B P C)=\operatorname{ar}(\triangle \mathrm{DPQ})$.

A-12. In figure, $A B C D$ is a trapezium in which $A B \| D C$ and $D C=40 \mathrm{~cm}$ and $A B=60 \mathrm{~cm}$. If X and Y are, respectively, the mid-points of $A D$ and $B C$, prove that :

(i) $\mathrm{XY}=50 \mathrm{~cm}$
(ii) DCYX is a trapezium
(iii) Area (trapezium DCYX) $=\frac{9}{11}$ Area (trapezium XYBA)

A-13. In $\triangle A B C, D$ is the midpoint of $A B . P$ is any point on $B C . C Q \| P D$ meets $A B$ in Q. Show that $\operatorname{ar}(\triangle \mathrm{BPQ})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$.

A-14. D is the midpoint of side $B C$ of $\triangle A B C$ and E is the midpoint of $B D$. If O is the midpoint of $A E$, prove that $\operatorname{ar}(\triangle \mathrm{BOE})=\frac{1}{8} \operatorname{ar}(\triangle \mathrm{ABC})$.

OBJECTIVE QUESTIONS

Single Choice Objective, straight concept/formula oriented

Section (A) : Area of parallelograms and triangles

A-1. In parallelogram $A B C D, A B=12 \mathrm{~cm}$. The altitudes corresponding to the sides $A B$ and $A D$ are respectively 9 cm and 11 cm . Find AD.

(A) $\frac{108}{11} \mathrm{~cm}$
(B) $\frac{108}{10} \mathrm{~cm}$
(C) $\frac{99}{10} \mathrm{~cm}$
(D) $\frac{108}{17} \mathrm{~cm}$

A-2. $\quad A B C D$ is a parallelogram. Points P and Q, on $B C$ trisects it in three equal parts. $P R$ and $Q S$ are also drawn parallel to $A B$, then $\operatorname{ar}(A P Q)=$ \qquad $\operatorname{ar}(A B C D)$.

(A) $\frac{1}{3}$
(B) $\frac{1}{2}$
(C) $\frac{1}{4}$
(D) $\frac{1}{6}$

A-3. In the figure, D and E are the mid-point of the sides $A C$ and $B C$ respectively of $\triangle A B C$. If $\operatorname{ar}(\triangle B E D)=$ $12 \mathrm{~cm}^{2}$, then ar $(\triangle \mathrm{AEC})=$

(A) $48 \mathrm{~cm}^{2}$
(B) $24 \mathrm{~cm}^{2}$
(C) $36 \mathrm{~cm}^{2}$
(D) none of these

A-4. In $A B C, A D$ is a median and P is a point on $A D$ such that $A P: P D=1: 2$, then the area of $A B P=$
(A) $\frac{1}{2} \times$ Area of $A B C$
(B) $\frac{2}{3} \times$ Area of $A B C$
(C) $\frac{1}{3} \times$ Area of $A B C$
(D) $\frac{1}{6} \times$ Area of $A B C$

A-5. In $\triangle A B C$, if $A D$ divides $B C$ in the ratio $m: n$ then area of $\triangle A B D$: area of $\triangle A B C$ is :

(A) $m: n$
(B) $(m+1): n$
(C) $m:(n+m)$
(D) $n: m$

A-6 The area of figure formed by joining the mid points of the adjacent sides of a rhombus with diagonals 12 cm and 16 cm is
(A) $48 \mathrm{~cm}^{2}$
(B) $64 \mathrm{~cm}^{2}$
(C) $96 \mathrm{~cm}^{2}$
(D) $192 \mathrm{~cm}^{2}$

A-7. \quad In figure, if $\operatorname{ar}(\triangle \mathrm{ABC})=28 \mathrm{~cm}^{2}$ then $\operatorname{ar}(\mathrm{AEDF})=$

(A) $21 \mathrm{~cm}^{2}$
(B) $18 \mathrm{~cm}^{2}$
(C) $16 \mathrm{~cm}^{2}$
(D) $14 \mathrm{~cm}^{2}$

A-8. If the area of $\triangle A B C$ is $120 \mathrm{~cm}^{2}$ and the median $A D$ is bisected at point P. then find $\frac{\operatorname{ar}(\triangle A B P)}{\operatorname{ar}(\triangle A C D)}$
(A) $\frac{1}{4}$
(B) $\frac{1}{3}$
(C) $\frac{1}{6}$
(D) $\frac{1}{2}$

Exercise-2

OBJECTIVE QUESTIONS

1. In quadrilateral $A B C D$, diagonals $A C$ and $B D$ intersect at point E. Then
(A) ar (AED) $+\operatorname{ar}(B C E)=\operatorname{ar}(A B E)+\operatorname{ar}(C D E)$
(B) $\operatorname{ar}(A E D)-\operatorname{ar}(B C E)=\operatorname{ar}(A B E)-\operatorname{ar}(C D E)$
(C) $\operatorname{ar}(\mathrm{AED}) \div \operatorname{ar}(\mathrm{BCE})=\operatorname{ar}(\mathrm{ABE}) \div \operatorname{ar}(\mathrm{CDE})$
(D) $\operatorname{ar}(A E D) \times \operatorname{ar}(B C E)=\operatorname{ar}(A B E) \times \operatorname{ar}(C D E)$
2. $A D$ is a median of $\triangle A B C$. If X is any point on $A D$, then find ratio of $\operatorname{ar}(\triangle A B X)$ to the $\operatorname{ar}(\triangle A C X)$.
(A) 1
(B) $\frac{1}{2}$
(C) 2
(D) None of these
3. In $\triangle \mathrm{ABC}, \mathrm{P}$ is mid-point of median AD . Then $\frac{\operatorname{ar}(\mathrm{BPD})}{\operatorname{ar}(\mathrm{ABC})}=$
(A) $\frac{1}{2}$
(B) $\frac{1}{3}$
(C) $\frac{1}{4}$
(D) $\frac{1}{6}$
4. In $\triangle A B C, D$ is a point on $B C$ such that it divides $B C$ in the ratio $3: 5$ i.e., $B D: D C=3: 5$. Find ar (ADC) : ar (ABC).
(A) $3: 5$
(B) $5: 8$
(C) $3: 8$
(D) None of these
5. In the given figure, $A B C$ and $B D E$ are two equilateral triangles and D is the mid-point of $B C$. Then $\frac{\operatorname{ar}(\mathrm{BDE})}{\operatorname{ar}(\mathrm{ABC})}=$

(A) $\frac{1}{2}$
(B) $\frac{1}{3}$
(C) $\frac{1}{4}$
(D) $\frac{1}{6}$
6. In the figure, $A B C D$ is a parallelogram and $P B Q R$ is a rectangle.

If $A P: P B=1: 2=P D: D R$, what is the ratio of the area of $A B C D$ to the area of PBQR ?
(A) $1: 2$
(B) $2: 1$
(C) $1: 1$
(D) $2: 3$
7. $A B C D$ is a parallelogram. $\triangle D E C$ is drawn such that $B E=\frac{1}{3} A E$. Sum of the areas of $\triangle A D E$ and $\triangle B E C$ is:

(A) $\frac{1}{3}$ area of parallelogram $A B C D$
(B) $\frac{1}{2}$ area of parallelogram $A B C D$
(C) $\frac{2}{3}$ area of $\triangle \mathrm{DEC}$
(D) $\frac{1}{2}$ area of $\triangle \mathrm{DEC}$
8. E is the midpoint of diagonal $B D$ of a parallelogram $A B C D$. If the point E is joined to a point F on $D A$ such that $D F=\frac{1}{3} D A$, then the ratio of the area of $\triangle D E F$ to the area of quadrilateral $A B E F$ is :
(A) $1: 3$
(B) $1: 4$
(C) $1: 5$
(D) $2: 5$
9. $A B C D$ (in order) is a rectangle with $A B=C D=\frac{12}{5}$ and $B C=D A=5$. Point P is taken on $A D$ such that $\angle \mathrm{BPC}=90^{\circ}$. The value of $(\mathrm{BP}+\mathrm{PC})$ is equal to:
(A) 5
(B) 6
(C) 7
(D) 8
10. In the diagram, $A B C D$ is a rectangle and point E lies on $A B$. Triangle $D E C$ has $\angle D E C=90^{\circ}, D E=3$ and $E C=4$. The length of $A D$ is :

(A) 2.4
(B) 2.8
(C) 1.8
(D) 3.2
11. In the figure $P Q R S$ is a rectangle, which one is true?

(A) area of $\Delta \mathrm{APS}=$ area of $\Delta \mathrm{QRB}$
(B) $P A=R B$
(C) area of $\Delta \mathrm{PQS}=$ area of $\Delta \mathrm{QRS}$
(D) all of these
12. $A B C D$ is parallelogram, $A E \perp D C$ and $C F \perp A D$. If $A B=16 \mathrm{~cm}, A E=8 \mathrm{~cm}, C F=10 \mathrm{~cm}$, find $A D$.
(A) 16 cm
(B) 12 cm
(C) 12.8 cm
(D) 10.2 cm
13. The perimeter of an isosceles triangle is 32 cm and its base is 12 cm . One of its equal sides forms the diagonal of a parallelogram. Find the area of parallelogram.
(A) $48 \mathrm{~cm}^{2}$
(B) $38 \mathrm{~cm}^{2}$
(C) $96 \mathrm{~cm}^{2}$
(D) None of these

Exercise-3

NTSE PROBLEMS (PREVIOUS YEARS)

1. The area of a rhombus is $36 \mathrm{~cm}^{2}$. If one diagonal is double of second, then the length of bigger diagonal is
[RAJASTHAN NTSE Stage-1 2005]
(A) 6 cm
(B) 12 cm
(C) 16 cm
(D) 36 cm
2. In the following figure, the area of the shaded portion is [RAJASTHAN NTSE Stage-1 2007]

(A) $85 \mathrm{~cm}^{2}$
(B) $420 \mathrm{~cm}^{2}$
(C) $750 \mathrm{~cm}^{2}$
(D) $1500 \mathrm{~cm}^{2}$
3. In the figure $A D=\frac{1}{2} D B, B E=E C$ and $C F=\frac{1}{3} A F$. If the area of $\triangle A B C=120 \mathrm{~cm}^{2}$, the area (in cm^{2}) of $\triangle \mathrm{DEF}$ is :
[Harayana NTSE Stage-1 2013]

(A) 21
(B) 35
(C) 40
(D) 45
4. $\quad \square \mathrm{ABCD}$ is a trapezium, $\mathrm{AB} \| \mathrm{DC}$. Diagonals of trapezium intersect to each other at point O :
$\operatorname{Ar}(\triangle \mathrm{AOB})=3 \mathrm{sq} . \mathrm{cm}, \operatorname{Ar}(\triangle \mathrm{COD})=12 \mathrm{sq} . \mathrm{cm}, \operatorname{Ar}(\square \mathrm{ABCD})=$ \qquad .
[MAHARASHTRA NTSE Stage-1 2013]

(A) 27 sq. cm
(B) $45 \mathrm{sq} . \mathrm{cm}$
(C) $36 \mathrm{sq} . \mathrm{cm}$
(D) $18 \mathrm{sq} . \mathrm{cm}$
5. In the figure given below, points P and Q are mid points on the sides $A C$ and $B P$ respectively. Area of each part is shown in the figure, then find the value of $x+y$. [Maharashtra NTSE Stage-1 2013]

(A) 11
(B) 4
(C) 7
(D) 18
6. PQRS is a parallelogram and M, N are the mid-points of $P Q$ and $R S$ respectively. Which of the following is not true ?
[M.P. NTSE Stage-1 2013]

(A) RM trisects QS
(B) PN trisects QS
(C) $\Delta \mathrm{PSN} \cong \triangle \mathrm{RQM}$
(D) MS is not parallel to QN
7. In $\triangle A B C, E$ divides $A B$ in the ratio 3:1 and F divides $B C$ in the ratio 3:2, then the ratio of areas of $\triangle B E F$ and $\triangle A B C$ is :
[Jharkhand NTSE Stage-1 2014]
(A) $3: 5$
(B) $3: 10$
(C) $1: 5$
(D) $3: 20$
8. In the figure, the area of square $A B C D$ is $4 \mathrm{~cm}^{2}$ and E any point on $A B . F, G, H$ and K are the mid point of DE, CF, DG, and CH respectively. The area of $\triangle \mathrm{KDC}$ is - [Delhi NTSE Stage-1 2016]

(A) $\frac{1}{4} \mathrm{~cm}^{2}$
(B) $\frac{1}{8} \mathrm{~cm}^{2}$
(C) $\frac{1}{16} \mathrm{~cm}^{2}$
(D) $\frac{1}{32} \mathrm{~cm}^{2}$
9. $\quad \mathrm{ABCD}$ is a square of area of 4 square units which is divided into 4 non overlapping triangles as shown in figure, then sum of perimeters of the triangles so formed is [Delhi NTSE Stage-1 2016]

(A) $8(2+\sqrt{2})$
(B) $8(1+\sqrt{2})$
(C) $4(1+\sqrt{2})$
(D) $4(2+\sqrt{2})$
10. In the diagram $A B C D$ is a rectangle with $A E=E F=F B$, the ratio of the areas of triangle $C E F$ and that of rectangle $A B C D$ is
[Delhi NTSE Stage-1 2016]

(A) $1: 6$
(B) $1: 8$
(C) $1: 9$
(D) $1: 10$

Answer Key

Exercise Board Level

TYPE (I)

1. $48 \mathrm{~cm}^{2}$
2. (iv)
3. a rhombus of area $24 \mathrm{~cm}^{2}$
4. $\quad \frac{1}{2} \operatorname{ar}(A B C)$
5. $1: 2$
6. $8 \mathrm{~cm}^{2}$
TYPE (II)
7. (i) $90 \mathrm{~cm}^{2}$
(ii) $45 \mathrm{~cm}^{2}$
(iii) $45 \mathrm{~cm}^{2}$
TYPE (III)
8. $(3 a+b):(a+3 b) \quad$ 16. $12 \mathrm{~cm}^{2}$

Exercise-1

OBJECTIVE QUESTIONS

Section (A)

A-1. $\begin{array}{lllllllll} & \text { (A) } & \text { A-2. } & \text { (D) } & \text { A-3. } & \text { (B) } & \text { A-4. } & \text { (D) } & \text { A-5. }\end{array}$ (C) $\begin{array}{ll}\text { A-6 } & \text { (A) }\end{array}$
A-7. (D)
A-8. (D)

Exercise-2

Ques.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$
Ans.	D	A	C	B	C	A	B	C	C	A	D	C	C

Exercise-3

Ques.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Ans.	B	C	B	A	D	D	D	B	D	A

