MATHEMATICS

Class-IX

Topic-15 CONSTRUCTIONS

INDEX		
S. No.	Topic	Page No.
1.	Theory	$1-12$
2.	Exercise (Board Level)	13
3.	Exercise-1	$14-15$
4.	Answer Key	15

CH-15

CONSTRUGTIONS

A. CONSTRUCTIONS

(a) To construct the bisector of a line segment

STEPS :
(i) Draw a line segment $A B$ of given length.
(ii) With centre A and radius more than half of $A B$, draw arcs, one on each side of $A B$.
(iii) With B as centre and the same radius as before, draw arcs, cutting the previously drawn arcs at E and F respectively.
(iv) Join $E F$ intersecting $A B$ at M. Then M bisects the line segment $A B$ as shown in figure.

Justification : Let us see how the above steps of construction give us the perpendicular bisector of $A B$. Join A and B both to E and F to form $E A, E B, F A$ and $F B$. In triangles EAF and EBF, we have

$$
\begin{array}{ll}
\mathrm{AE}=\mathrm{BE} & {[\because \text { Arcs of equal radii are equal }]} \\
A F=B F & {[\because \text { Arcs of equal radii are equal }]} \\
E F=E F & {[C o m m o n]}
\end{array}
$$

So, by SSS - criterion of congruence, we have
$\Delta \mathrm{EAF} \cong \triangle \mathrm{EBF}$
$\Rightarrow \quad \angle \mathrm{AEM}=\angle \mathrm{BEM}$
In triangles EMA and EMB, we have

$E A=E B$	$[\because$ Arcs of equal radii are equal]
$E M=E M$	$[$ Common $]$
$\angle A E M=\angle B E M$	$[$ From (i)]

So, by SAS congruence criterion, we have
$\triangle \mathrm{EMA} \cong \triangle \mathrm{EMB}$
$\Rightarrow \quad \mathrm{AM}=\mathrm{BM}$ and $\angle \mathrm{EMA}=\angle \mathrm{EMB}$
But, $\angle E M A$ and $\angle E M B$ form a linear pair.
$\therefore \quad \angle \mathrm{EMA}+\angle \mathrm{EMB}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{EMA}=\angle \mathrm{EMB}=90^{\circ} \quad[\because \angle \mathrm{EMA}=\angle \mathrm{EMB}]$
Thus, we have
$\mathrm{AM}=\mathrm{BM}$ and $\angle \mathrm{EMA}=\angle \mathrm{EMB}=90^{\circ}$
Hence, EF is the perpendicular bisector of AB .
Following examples will illustrate the above procedure.

(b) To construct the bisector of a given angle

Let $A B C$ be the given angle to be bisected.

STEPS :

(i) With B as centre and a suitable radius, draw an arc which cuts ray $B A$ at point D and ray $B C$ at point E.
(ii) Taking D and E as centres and with equal radii draw arcs which intersect each other at point F. In this step, each equal radius must be more than half the length DE.
(iii) Join B and F and produce to get the ray $B F$.

Ray $B F$ is the required bisector of the given angle $A B C$.
Justification : Join DF and EF.

In Δ BDF and $\Delta \mathrm{BEF}$:

	$\mathrm{BD}=\mathrm{BE}$	[Radii of the same arc]
	$\mathrm{DF}=\mathrm{EF}$	[Radii of the equal arcs]
	$\mathrm{BF}=\mathrm{BF}$	[Common]
\Rightarrow	$\Delta \mathrm{BDF} \cong \triangle \mathrm{BEF}$	[By SSS]
\Rightarrow	$\angle \mathrm{DBF}=\angle \mathrm{EBF}$	$[$ By cpctc]
i.e.,	$\angle \mathrm{ABF}=\angle \mathrm{CBF}$	$\Rightarrow \quad \mathrm{BF}$ bisects $\angle \mathrm{ABC} . \quad$ Hence Proved.

(c) To construct the required angle

(i) To Construct the Required Angle of 60° :

STEPS :

(I) Draw a line BC of any suitable length.
(II) With B as centre and any suitable radius, draw an arc which cuts $B C$ at point D.
(III) With D as centre and radius same, as taken in step (II), draw one more arc which cuts previous arc at point E .
(IV) Join BE and produce upto any point A. Then, $\angle \mathrm{ABC}=\mathbf{6 0}{ }^{\circ}$
(ii) To Construct an Angle of 120° :

STEPS :

(I) Draw a line BC of any suitable length.
(II) Taking B as centre and with any suitable radius, draw an arc which cuts $B C$ at point D.
(III) Taking D as centre, draw an arc of the same radius, as taken in step (II), which cuts the first arc at point E.
(IV) Taking E as centre and radius same, as taken in step (II), draw one more arc which cuts the first arc at point F.
(V) Join BF and produce upto any suitable point A .
Then, $\angle A B C=120^{\circ}$
(iii) To Construct an Angle of 30° :

STEPS :

(I) Construct angle $\mathrm{ABC}=60^{\circ}$ by compass.
(II) Draw BD , the bisector of angle ABC . Then, $\angle \mathrm{DBC}=3 \mathbf{3 0}^{\circ}$
(iv) To Construct an Angle of 90° :

STEPS :

(I) Construct angle $\mathrm{ABC}=120^{\circ}$ by using compass.
(II) Draw PB, the bisector of angle EBG. Then, $\angle \mathrm{PBC}=\mathbf{9 0 ^ { \circ }}$

Alternative Method :

(I) Draw a line segment BC of any suitable length.
(II) Produce CB upto an arbitrary point O.
(III) Taking B as centre, draw an arc which cuts $O C$ at points D and E.
(IV) Taking D and E as centres and with equal radii draw arcs
which cut each other at point P. [The radii in this step must be of length more than half of DE.]
(V) Join BP and produce. Then, $\angle \mathrm{PBC}=9 \mathbf{9 0}^{\circ}$
(v) To Construct an Angle of 45° :

STEPS :

(I) Draw $\angle \mathrm{PBC}=90^{\circ}$
(II) Draw AB which bisects angle PBC.

Then, $\angle \mathrm{ABC}=45^{\circ}$

Alternative Method :

STEPS :

(I) Construct $\angle \mathrm{ABC}=60^{\circ}$.
(II) Draw $B D$, the bisector of angle $A B C$.
(III) Draw $B E$, the bisector of angle $A B D$.

Then, $\angle E B C=45^{\circ}$

(vi) To Construct an Angle of 105° :

STEPS :

(I) Construct $\angle \mathrm{ABC}=120^{\circ}$ and $\angle \mathrm{PBC}=90^{\circ}$
(II) Draw BO , the bisector of $\angle \mathrm{ABP}$.

Then, $\angle \mathrm{OBC}=105^{\circ}$
(vii) To Construct an Angle of $15 \mathbf{0}^{\circ}$.

STEPS :

(I) Draw line segment $B C$ of any suitable length. Produce $C B$ upto any point O.
(II) With B as centre, draw an arc (with any suitable radius) which cuts $O C$ at points D and E.
(III) With D as centre, draw an arc of the same radius, as taken in step (II), which cuts the first arc at point F.
(IV) With F as centre, draw one more arc of the same radius, as taken in step (II), which cuts the first arc at point G.
(V) Draw PB, the bisector of angle EBG.

Now $\angle \mathrm{FBD}=\angle \mathrm{GBF}=\angle \mathrm{EBG}=60^{\circ}$
Then, $\angle \mathrm{PBC}=15 \mathbf{0}^{\circ}$
(viii) To Construct an Angle of 135°.

STEPS :

(I) Construct $\angle \mathrm{PBC}=150^{\circ}$ and $\angle \mathrm{GBC}=120^{\circ}$
(II) Construct BQ , the bisector of angle PBG.

Then, $\angle Q B C=135^{\circ}$

(d) To construct a Triangle

(i) To construct an equilateral triangle when its one side is given.

In order to construct an equilateral triangle when the measure (length) of its side is given, we follow the following steps :

STEPS :

(I) Draw a ray AX with initial point A.

(II) With centre A and radius equal to length of a side of the triangle draw an arc BY, cutting the ray $A X$ at B.
(III) With centre B and the same radius draw an arc cutting the arc BY at C.
(IV) Join $A C$ and $B C$ to obtain the required triangle.
(ii) When the base of the triangle, one base angle and the sum of other two sides are given.

STEPS :

(I) Obtain the base, base angle and the sum of other two sides. Let $A B$ be the base, $\angle A$ be the base angle and ℓ be the sum of the lengths of other two side $B C$ and $C A$ of $\triangle A B C$.

(II) Draw the base AB.
(III) Draw $\angle \mathrm{BAX}$ of measure equal to that of $\angle \mathrm{A}$.
(IV) From ray $A X$, cut off line segment $A D$ equal to ℓ (the sum of other two dies).
(V) Join BD
(VI) Draw the perpendicular bisector of BD meeting AD at C .
(VII) Join BC to obtain the required triangle ABC.

Justification : Let us now see how do we get the required triangle.
Since point C lies on the perpendicular bisector of BD. Therefore,

$$
C D=C B
$$

Now, $\quad A C=A D-C D$
$\Rightarrow \quad A C=A D-B C \quad[\because C D=C B]$
$\Rightarrow \quad A D=A C+C B$
(iii) When the base of the triangle, one base angle and the difference of the other two sides are given.

STEPS :

(I) Obtain the base, base angle and the difference of two other sides. Let AB be the base, $\angle \mathrm{A}$ be the base angle and I be the difference of the other two sides $B C$ and $C A$ of $\triangle A B C$. i.e., $I=A C-B C$, if $A C>B C$ or, $I=B C-A C$, if $B C>A C$
(II) Draw the base $A B$ of given length.
(III) Draw $\angle \mathrm{BAX}$ of measure equal to that of $\angle \mathrm{A}$.
(IV) If $A C>B C$, then cut off segment $A D=A C-B C$ from ray $A X$. [in figure (i)]. If $A C<B C$, then extend $X A$ to X^{\prime}; on opposite side of $A B$ and cut off segment $A D=B C-A C$ from ray $A X^{\prime}$ [in figure (ii)].
(V) Join BD.
(VI) Draw the perpendicular bisector of BD which cuts AX or AX ', as the case may be, at C .
(VII) Join BC to obtain the required triangle ABC.

Justification : Let us now see how do we get the required triangle. Since C lies on the perpendicular bisector of $D B$.
$\therefore \quad C D=C B$
So, $\quad A D=A C-C D=A C-B C$.
(iv) When the perimeter of the triangle and both the base angles are given.

STEPS :

(I) Obtain the perimeter and the base angles of the triangle. Let ABC be a triangle of perimeter p cm and base BC.
(II) Draw a line segment $X Y$ equal to the perimeter p of $\triangle A B C$.
(III) Construct $\angle Y D X$ and $\angle X Y E$.
(IV) Draw bisectors of angles $\angle \mathrm{YXD}$ and $\angle \mathrm{XYE}$ and mark their intersection point as A.
(V) Draw the perpendicular bisectors of XA and YA meeting XY in B and C respectively.
(VI) Join $A B$ and $A C$ to obtain the required triangle $A B C$.

Justification : For the justification of the construction, we observe that B lies on the perpendicular bisector of $A X$.
$\therefore \quad X B=A B \quad \Rightarrow A X B=\angle B A X$
Similarly, C lies on the perpendicular bisector of $A Y$.
$\therefore \quad Y C=A C \quad \Rightarrow \quad \angle A Y C=\angle Y A C$
Now, $\quad X Y=X B+B C+C Y \quad \Rightarrow \quad X Y=A B+B C+A C$
In $\triangle \mathrm{AXB}$, we have
$\angle A B C=\angle A X B+\angle B A X=2 \angle A X B=\angle B X D=\angle B$
In $\triangle \mathrm{AYC}$,
$\angle \mathrm{ACB}=\angle \mathrm{AYC}+\angle \mathrm{YAC}=2 \angle \mathrm{AYC}=\angle \mathrm{CYE}=\angle \mathrm{C}$.

Solved Examples

Example. 1

Draw a line segment of length 7.8 cm , draw the perpendicular bisector of this line segment.
Sol. Let the given line segment be $A B=7.8 \mathrm{~cm}$.

STEPS :

(i) Draw the line segment $A B=7.8 \mathrm{~cm}$.
(ii) With point A as centre and a suitable radius, more than half the length of $A B$, draw arcs on both the sides of $A B$.
(iii) With point B as centre and with the same radius draw arcs on both the sides of $A B$. Let these arc cut at points $P \& Q$ as shown in the figure.
(iv) Draw a line through the points P and Q. The line so obtained is the required perpendicular bisector of given line segment $A B$.

Line $P Q$ is perpendicular bisector of $A B$.
(A) $P Q$ bisects $A B$ i.e., $O A=O B$.
$(B) P Q$ is perpendicular to $A B$
i.e., $\angle \mathrm{POA}=\angle \mathrm{POB}=90^{\circ}$.

Proof: In $\triangle \mathrm{APQ}$ and $\Delta \mathrm{BPQ}: \quad \mathrm{AP}=\mathrm{BP}$
$A Q=B Q$
$P Q=P Q$
[By construction]
[By construction]
[Common]
$\Rightarrow \quad \triangle \mathrm{APQ} \cong \triangle \mathrm{BPQ}$
[By SSS]
$\Rightarrow \quad \angle \mathrm{APQ}=\angle \mathrm{BPQ}$
[By cpctc]

```
Now, in \(\triangle \mathrm{APO} \& \Delta \mathrm{BPO}\)
    \(\mathrm{AP}=\mathrm{BP} \quad[\mathrm{By}\) construction \(]\)
    \(\mathrm{OP}=\mathrm{OP}\)
[Common side]
    \(\angle \mathrm{APO}=\angle \mathrm{BPO} \quad\) [Proved above]
\(\Rightarrow \quad \triangle \mathrm{APO} \cong \triangle \mathrm{BPO} \quad\) [By SAS]
\(\Rightarrow \quad O A=O B\)
And, \(\angle \mathrm{POA}=\angle \mathrm{POB}=\frac{180^{\circ}}{2}=90^{\circ}\left[\because \angle \mathrm{POA}+\angle \mathrm{POB}=180^{\circ}\right]\)
\(\Rightarrow \quad P Q\) is perpendicular bisector of \(A B\).
```


Example. 2

Draw an equilateral triangle having each side of 2.5 cm .
Sol. Given one side of the equilateral triangle be 2.5 cm .

STEPS :

(i) Draw a line segment $\mathrm{BC}=2.5 \mathrm{~cm}$.
(ii) Through B , construct ray BP making angle 60° with BC .
i.e., $\angle P B C=60^{\circ}$
(iii) Through C, construct $C Q$ making angle 60° with $B C$
i.e., $\angle \mathrm{QCB}=60^{\circ}$
(iv) Let $B P$ and $C Q$ intersect each other at point A.

Then, $\triangle \mathrm{ABC}$ is the required equilateral triangle.
Proof : Since, $\angle \mathrm{ABC}=\angle \mathrm{ACB}=60^{\circ}$
$\therefore \quad \angle \mathrm{BAC}=180^{\circ}-\left(60^{\circ}+60^{\circ}\right)=60^{\circ}$
$\Rightarrow \quad$ All the angles of the $\triangle A B C$ drawn are equal.
$\Rightarrow \quad$ All the sides of the $\triangle A B C$ drawn are equal.
$\Rightarrow \quad \Delta \mathrm{ABC}$ is the required equilateral triangle.
Hence Proved.

Alternative method :

If one side is 2.5 cm , then each side of the required equilateral triangle is 2.5 cm .

STEPS :

(i) Draw $\mathrm{BC}=2.5 \mathrm{~cm}$
(ii) With B as centre, draw an arc of radius 2.5 cm
(iii) With C as centre, draw an arc of radius 2.5 cm
(iv) Let the two arcs intersect each other at point A. Join AB and AC.

Example. 3

Construct a triangle with 3 cm base and sum of other two sides is 8 cm and one base angle is 60°.
Sol. Given the base $B C$ of the triangle $A B C$ be 3 cm , one base angle $\angle B=60^{\circ}$ and the sum of the other two sides be 8 cm i.e., $A B+A C=8 \mathrm{~cm}$.

STEPS :

(i) Draw $\mathrm{BC}=3 \mathrm{~cm}$
(ii) At point B , draw PB so that $\angle \mathrm{PBC}=60^{\circ}$
(iii) From BP , cut $\mathrm{BD}=8 \mathrm{~cm}$.
(iv) Join D and C.
(v) Draw perpendicular bisector of $C D$, which meets $B D$ at point A.
(vi) Join A and C.

Thus, $\triangle \mathrm{ABC}$ is the required triangle.

Proof : Since, $O A$ is perpendicular bisector of $C D$
$\Rightarrow \quad O C=O D$
$\angle A O C=\angle A O D=90^{\circ}$
Also, $\mathrm{OA}=\mathrm{OA} \quad$ [Common]
$\therefore \quad \triangle \mathrm{AOC} \cong \triangle \mathrm{AOD} \quad$ [By SAS]
$\Rightarrow \quad A C=A D$
$\therefore \quad B D=B A+A D=B A+A C=$ Given sum of the other two sides
Thus, base BC and $\angle \mathrm{B}$ are drawn as given and $\mathrm{BD}=\mathrm{BA}+\mathrm{AC}$.
Hence Proved.
Then, $\triangle A B C$ is the required equilateral triangle.

Example. 4

Construct a right triangle, when one side is 3.8 cm and the sum of the other side and hypotenuse is 6 cm .
Sol. Here, if we consider the required triangle to be $\triangle A B C$, as shown alongside.
Clearly, $A B=3.8 \mathrm{~cm}, \angle B=90^{\circ}$ and $B C+A C=6 \mathrm{~cm}$.

STEPS ：

（i）Draw $\mathrm{AB}=3.8 \mathrm{~cm}$
（ii）Through B ，draw line BP so that $\angle \mathrm{ABP}=90^{\circ}$
（iii）From BP ，cut $\mathrm{BD}=6 \mathrm{~cm}$
（iv）Join A and D ．
（v）Draw perpendicular bisector of $A D$ ，which meets $B D$ at point C ．
Thus，$\triangle \mathrm{ABC}$ is the required triangle．

Example． 5

Construct a triangle with base of 8 cm and difference between the length of other two sides is 3 cm and one base angle is 60° ．
Sol．Given the base $B C$ of the required triangle $A B C$ be 8 cm i．e．，$B C=8 \mathrm{~cm}$ ，base angle $B=60^{\circ}$ and the difference between the lengths of other two sides $A B$ and $A C$ be 3 cm ．
i．e．，$A B-A C=3 \mathrm{~cm}$ or $A C-A B=3 \mathrm{~cm}$ ．
（I）When $A B-A C=3 \mathrm{~cm}$ i．e．，$A B>A C$ ：

STEPS：
（i）Draw $\mathrm{BC}=8 \mathrm{~cm}$
（ii）Through point B ，draw BP so that $\angle \mathrm{PBC}=60^{\circ}$ ．
（iii）From BP cut $\mathrm{BD}=3 \mathrm{~cm}$ ．
（iv）Join D and C．
（v）Draw perpendicular bisector of DC ；which meets BP at point A．
（vi）Join A and C．
Thus，$\triangle \mathrm{ABC}$ is the required triangle．

Proof ：Since，OA is perpendicular bisector of CD
$\Rightarrow \quad O D=O C$
$\angle \mathrm{AOD}=\angle \mathrm{AOC}=90^{\circ}$
And，$O A=O A$
［Common］
$\therefore \quad \triangle \mathrm{AOD} \cong \triangle \mathrm{AOC}$
［By SAS］
$\Rightarrow \quad A D=A C$
［By cpctc］

Now, $B D=B A-A D=B A-A C \quad[\because A D=A C]$

> = Given difference of other two sides.

Thus, the base $B C$ and $\angle B$ are drawn as given and $B D=B A-A C$.

Hence Proved.

(II) When $A C-A B=3 \mathrm{~cm}$ i.e., $A B<A C$:

STEPS :

(i) Draw $\mathrm{BC}=8 \mathrm{~cm}$
(ii) Through B, draw line BP so that angle $\mathrm{PBC}=60^{\circ}$.
(iii) Produce BP backward upto a suitable point Q .
(iv) From BQ, cut BD $=3 \mathrm{~cm}$.
(v) Join D and C.
(vi) Draw perpendicular bisector of DC, which meets $B P$ at point A.
(vii) Join A and C.

Thus, $\triangle \mathrm{ABC}$ is the required triangle.

Proof: Since, $O A$ is perpendicular bisector of $C D$
$\Rightarrow \quad O D=O C$

$$
\angle \mathrm{AOD}=\angle \mathrm{AOC}=90^{\circ}
$$

And, $\quad O A=O A$
[Common]
$\therefore \quad \triangle \mathrm{AOD} \cong \triangle \mathrm{AOC}$
[By SAS]
$\Rightarrow \quad A D=A C$
[By cpctc]
Now $\quad B D=A D-A B=A C-A B$
$[\because A D=A C]$
= Given difference of other two sides.
Thus, the base $B C$ and $\angle B$ are drawn as given and $B D=A C-A B$.
Hence Proved.

Example. 6

Construct a triangle $A B C$ with $A B+B C+C A=12 \mathrm{~cm}, \angle B=45^{\circ}$ and $\angle C=60^{\circ}$.
Sol. Given the perimeter of the triangle $A B C$ be 12 cm i.e., $A B+B C+C A=12 \mathrm{~cm}$ and both the base angles be 45° and 60° i.e., $\angle B=45^{\circ}$ and $\angle C=60^{\circ}$.
STEPS :
(i) Draw a line segment $P Q=12 \mathrm{~cm}$
(ii) At P, construct line $P R$ so that $\angle R P Q=45^{\circ}$ and at Q, construct a line $Q S$ so that $\angle S Q P=60^{\circ}$.
(iii) Draw bisector of angles RPQ and SQP which meet each other at point A.
(iv) Draw perpendicular bisector of $A P$, which meets $P Q$ at point B.
(v) Draw perpendicular bisector of $A Q$, which meets $P Q$ at point C.
(vi) Join AB and AC.

Thus, $\triangle \mathrm{ABC}$ is the required triangle.
Proof : Since, MB is perpendicular bisector of AP
$\Rightarrow \quad \Delta \mathrm{PMB} \cong \triangle \mathrm{AMB}$
[By SAS]
$\mathrm{PB}=\mathrm{AB}$

Similarly, NC is perpendicular bisector of $A Q$.
$\Rightarrow \quad \Delta$ QNC $\cong \triangle$ ANC
[By SAS]
$\Rightarrow \quad \mathrm{CQ}=\mathrm{AC}$
[By cpctc]

Now, $P Q=P B+B C+C Q$
$=A B+B C+A C$
$=$ Given perimeter of the $\triangle \mathrm{ABC}$ drawn.
Also, $\angle \mathrm{BPA}=\angle \mathrm{BAP}$
[As $\Delta \mathrm{PMB} \cong \Delta \mathrm{AMB}]$
$\therefore \quad \angle \mathrm{ABC}=\angle \mathrm{BPA}+\angle \mathrm{BAP}$ [Exterior angle of a triangle $=$ sum of two interior opposite angles]
$\angle \mathrm{ABC}=\angle \mathrm{BPA}+\angle \mathrm{BAP}=2 \angle \mathrm{BPA}=\angle \mathrm{RPB}$
$=\angle \mathrm{ACB}$
[Given]

$\angle \mathrm{ACB}=\angle \mathrm{CQA}+\angle \mathrm{CQA}$
$=2 \angle \mathrm{CQA}[\because \Delta \mathrm{QNC} \cong \triangle \mathrm{ANC} \therefore \angle \mathrm{CQA}=\angle \mathrm{CAQ}]$
$=\angle \mathrm{SQC}=$ Given base angle ACB.
Thus, given perimeter $=$ perimeter of $\triangle \mathrm{ABC}$.
given one base angle = angle ABC
and, given other base angle $=$ angle $A C B$.

Check Your Level

1. Draw a line $A B$ of length 8 cm divide it into two equal parts.
2. Construct the angles of the following measurement.
(a) 30°
(b) $22 \frac{1}{2}$
(c) 15°
3. Construct a triangle $A B C$ with the following data $B C=4.7 \mathrm{~cm}, \angle B=43^{\circ}, A B+A C=9.2 \mathrm{~cm}$.
4. Construct a triangle $A B C$ with the following data $\angle B=43^{\circ}, \angle C=37^{\circ}$, perimeter 6.8 cm .
5. Construct a triangle $A B C$ with the following data $B C=6 \mathrm{~cm}, \mathrm{AC}-\mathrm{AB}=2 \mathrm{~cm}, \angle \mathrm{~B}=60^{\circ}$.

Exercise Board Level

TYPE (I) : VERY SHORT ANSWER TYPE QUESTIONS :
[01 MARK EACH]

1. Find the difference of $B C$ and $A C$ for which construction of a triangle $A B C$ in which $A B=4 \mathrm{~cm}$, $\angle A=60^{\circ}$ is not possible.
(Q.No. 2 to 7) : Write True or False in each of the following. Give reasons for your answer:
2. An angle of 52.5° can be constructed.
3. An angle of 42.5° can be constructed.
4. A triangle $A B C$ can be constructed in which $A B=5 \mathrm{~cm}, \angle A=45^{\circ}$ and $B C+A C=5 \mathrm{~cm}$.
5. A triangle $A B C$ can be constructed in which $B C=6 \mathrm{~cm}, \angle C=30^{\circ}$ and $A C-A B=4 \mathrm{~cm}$.
6. A triangle $A B C$ can be constructed in which $\angle B=105^{\circ}, \angle C=90^{\circ}$ and $A B+B C+A C=10 \mathrm{~cm}$.
7. A triangle $A B C$ can be constructed in which $\angle B=60^{\circ}, \angle C=45^{\circ}$ and $A B+B C+A C=12 \mathrm{~cm}$.

TYPE (II) : SHORT ANSWER TYPE QUESTIONS :
[02 MARKS EACH]
8. Draw an angle of 110° with the help of a protractor and bisect it. Measure each angle.
9. Draw a line segment $A B$ of 4 cm in length. Draw a line perpendicular to $A B$ through A and B, respectively. Are these lines parallel?
10. Draw an angle of 80° with the help of a protractor. Then construct angles of
(i) 40°
(ii)
160°
and
(iii) 120°.
11. Construct a triangle whose sides are $3.6 \mathrm{~cm}, 3.0 \mathrm{~cm}$ and 4.8 cm . Bisect the smallest angle and measure each part.
12. Construct a triangle $A B C$ in which $B C=5 \mathrm{~cm}, \angle B=60^{\circ}$ and $A C+A B=7.5 \mathrm{~cm}$.
13. Construct a square of side 3 cm .
14. Construct a rectangle whose adjacent sides are of lengths 5 cm and 3.5 cm .
15. Construct a rhombus whose side is of length 3.4 cm and one of its angles is 45°.

TYPE (III) : LONG ANSWER TYPE QUESTIONS:
[03 MARK EACH]
(Q.No. 16 to 20) Construct each of the following and give justification :
16. A triangle if its perimeter is 10.4 cm and two angles are 45° and 120°.
17. A triangle $P Q R$ given that $Q R=3 \mathrm{~cm}, \angle P Q R=45^{\circ}$ and $\mathrm{QP}-\mathrm{PR}=2 \mathrm{~cm}$.
18. A right triangle when one side is 3.5 cm and sum of other sides and the hypotenuse is 5.5 cm .
19. An equilateral triangle if its altitude is 3.2 cm .
20. A rhombus whose diagonals are 4 cm and 6 cm in lengths.

Exercise－1

SUBJECTIVE QUESTIONS

Subjective Easy，only learning value problems

Section（A）：Constructions

A－1．For each angle，given below，make a separate construction．Draw a ray $B C$ and an another ray $B A$ so that the $\angle A B C$ is equal to ：
（i） 15°
（ii） $22 \frac{1^{0}}{2}$
（iii） 75°
（iv）$\quad 52 \frac{1^{0}}{2}$
（v）$\quad 67 \frac{1^{\circ}}{2}$
（vi） 165°
（vii） 135°

A－2．Construct an equilateral triangle with side ：
（i） 5 cm
（ii） 5.4 cm
（iii） 6.2 cm

A－3．Construct a triangle $A B C$ ，in which ：
（i）base $A B=5.4 \mathrm{~cm}, \angle B=45^{\circ}$ and $A C+B C=9 \mathrm{~cm}$ ．
（ii）base $B C=6 \mathrm{~cm}, \angle B=60^{\circ}$ and $A B+A C=9.6 \mathrm{~cm}$ ．
（iii）base $A C=5 \mathrm{~cm}, \angle C=90^{\circ}$ and $A B+B C=10.6 \mathrm{~cm}$ ．
A－4．Construct a right triangle，with base $=4 \mathrm{~cm}$ and the sum of the other side and hypotenuse $=9.4 \mathrm{~cm}$ ．
A－5．Construct a triangle $A B C$ ，in which ：
（i）$\quad \mathrm{BC}=4.8 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}$ and $\mathrm{AB}-\mathrm{AC}=2.4 \mathrm{~cm}$ ．
（ii）$\quad \mathrm{BC}=4.8 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}$ and $\mathrm{AC}-\mathrm{AB}=2.4 \mathrm{~cm}$ ．
（iii） $\mathrm{AB}=5.3 \mathrm{~cm}, \angle \mathrm{~A}=60^{\circ}$ and $\mathrm{AC}-\mathrm{BC}=2 \mathrm{~cm}$ ．
（iv）$A B=5.3 \mathrm{~cm}, \angle A=60^{\circ}$ and $B C-A C=2 \mathrm{~cm}$ ．
A－6．Construct a triangle ABC ，with ：
（i）perimeter $=12 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}$ and $\angle \mathrm{C}=60^{\circ}$ ．
（ii）perimeter $=11.6 \mathrm{~cm}, \angle \mathrm{~B}=60^{\circ}$ and $\angle \mathrm{C}=90^{\circ}$ ．
（iii）perimeter $=11 \mathrm{~cm}, \angle \mathrm{~A}=60^{\circ}$ and $\angle \mathrm{C}=45^{\circ}$ ．
（iv）perimeter $=10 \mathrm{~cm}, \angle \mathrm{~B}=\angle \mathrm{C}=60^{\circ}$ ．
A－7．Without finding the length of each side of the equilateral triangle construct it．If its perimeter is 16 cm ．

A－8．Construct a $\triangle P Q R$ in which base $Q R=4 \mathrm{~cm}, \angle \mathrm{R}=30^{\circ}$ and $\mathrm{PR}-\mathrm{PQ}=1.1 \mathrm{~cm}$ ．

OBJECTIVE QUESTIONS

Single Choice Objective，straight concept／formula oriented

Section（A）：Constructions

A－1．With the help of a ruler and compass，it is possible of construct an angle of ：
（A） 37°
（B） 40°
（C） 37.5°
（D） 48.5°

A-2. The construction of a triangle $A B C$ in which $A B=4 \mathrm{~cm}, A=60^{\circ}$ is not possible when difference of $B C$ and $A C$ is equal to :
(A) 3.5 cm
(B) 4.5 cm
(C) 3 cm
(D) 2.5 cm

A-3. In figure, $\angle \mathrm{XYL}=\angle \mathrm{LYZ}$ and $\angle \mathrm{LYM}=\angle \mathrm{MYZ}$. If $\angle \mathrm{XYZ}=90^{\circ}$, then $\angle \mathrm{XYM}=$

(A) 60°
(B) 75°
(C) 45°
(D) $67 \frac{1}{2}^{\circ}$

A-4. In figure, $B D=A B+A C$ and $A Q \perp C D$ at L, then :

(A) $A C=A D$
(B) $A C=A B$
(C) $A C=C D$
(D) $A C=A L$

A-5. In figure, $A N=A M=L N=L M$. If $\overrightarrow{A Y}$ bisects $\overparen{L M}$ and $\overrightarrow{A C}$ bisects $X A Y$, then $\angle B A C=$

(A) 60°
(B) 45°
(C) 75°
(D) 85°

Answer Key

Exercise-1

OBJECTIVE QUESTIONS

Section (A)

A-1. (C)
A-2. (B)
A-3. (D)
A-4. (A)
A-5. (C)

